Book contents
- Frontmatter
- Contents
- Preface
- 1 The N-body problem
- 2 Predictor–corrector methods
- 3 Neighbour treatments
- 4 Two-body regularization
- 5 Multiple regularization
- 6 Tree codes
- 7 Program organization
- 8 Initial setup
- 9 Decision-making
- 10 Neighbour schemes
- 11 Two-body algorithms
- 12 Chain procedures
- 13 Accuracy and performance
- 14 Practical aspects
- 15 Star clusters
- 16 Galaxies
- 17 Planetary systems
- 18 Small-N experiments
- Appendix A Global regularization algorithms
- Appendix B Chain algorithms
- Appendix C Higher-order systems
- Appendix D Practical algorithms
- Appendix E KS procedures with GRAPE
- Appendix F Alternative simulation method
- Appendix G Table of symbols
- Appendix H Hermite integration method
- References
- Index
Appendix F - Alternative simulation method
Published online by Cambridge University Press: 18 August 2009
- Frontmatter
- Contents
- Preface
- 1 The N-body problem
- 2 Predictor–corrector methods
- 3 Neighbour treatments
- 4 Two-body regularization
- 5 Multiple regularization
- 6 Tree codes
- 7 Program organization
- 8 Initial setup
- 9 Decision-making
- 10 Neighbour schemes
- 11 Two-body algorithms
- 12 Chain procedures
- 13 Accuracy and performance
- 14 Practical aspects
- 15 Star clusters
- 16 Galaxies
- 17 Planetary systems
- 18 Small-N experiments
- Appendix A Global regularization algorithms
- Appendix B Chain algorithms
- Appendix C Higher-order systems
- Appendix D Practical algorithms
- Appendix E KS procedures with GRAPE
- Appendix F Alternative simulation method
- Appendix G Table of symbols
- Appendix H Hermite integration method
- References
- Index
Summary
Realistic N-body simulations of star cluster evolution require a substantial programming effort. Since it takes time to develop suitable software, published descriptions tend to lag behind or be non-existent. However, one large team effort has reached a degree of development that merits detailed comments, especially since many results have been described in this book. In the following we highlight some aspects relating to the integration method as well as the treatment of stellar evolution, based on one available source of information [Portegies Zwart et al., 2001].
N-body treatment
The kira integrator advances the particle motions according to the standard Hermite method [Makino, 1991a] using hierarchical (or quantized) time-steps [McMillan, 1986]. An efficient scheme was realized with the construction of the high-precision GRAPE computers which calculate the force and force derivative and also include predictions on the hardware.
One special feature here is the use of hierarchical Jacobi coordinates which is reminiscent of an earlier binary tree formulation [Jernigan & Porter, 1989]. This representation is equivalent to the data structure used in KS and chain regularization.
- Type
- Chapter
- Information
- Gravitational N-Body SimulationsTools and Algorithms, pp. 369 - 370Publisher: Cambridge University PressPrint publication year: 2003