Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-06T04:12:09.073Z Has data issue: false hasContentIssue false

4 - Applications of the linear approximation

Published online by Cambridge University Press:  05 April 2013

Hans C. Ohanian
Affiliation:
University of Vermont
Remo Ruffini
Affiliation:
Università degli Studi di Roma 'La Sapienza', Italy
Get access

Summary

Twinkle, Twinkle, Little Star

How I Wonder Where You Are.

“1.75 seconds of arc from where I seem to be

For ds2 = (1 − 2G M/r )dx2 − (1 + 2G M/r )(dx2 + dy2 + dz2).”

Source unknown

In this chapter we will obtain some simple time-independent solutions of the linear field equations, such as the solution for the field produced by a static spherical mass and by a steadily rotating mass. For a given solution of the field equations, the equation of motion then permits us to predict the trajectories of particles or of light signals, which we can compare with experimental or observational data.

Most of the experimental or observational tests that have so far been performed on the relativistic theory of gravitation involve only the linear approximation. For instance, the gravitational time dilation predicted by the linear approximation has been tested and confirmed by experiments with clocks in the gravitational field of the Earth. Some other tests exploit the motion of light signals in the gravitational field of the Sun. Since light signals are necessarily relativistic, their motion provides a direct test of the relativistic features of our equations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, T., et al. (2011). Measurement of the neutrino velocity with the OPERA detector in the CNGS beam. arXiv:1109.4897.
Alley, C. O. (1979). Relativity and Clocks. In Proceedings of the 33rd Annual Symposium on Frequency Control. Washington, DC: Electronic Industries Assoc.Google Scholar
Anderson, J. D., et al. (1975). Astrophys. J. 200, 221.CrossRef
Bertotti, B., et al. (2003). Nature 425, 374.CrossRef
Blandford, R. D., and Narayan, R. (1986). Astrophys. J. 310, 568.CrossRef
Blandford, R. D., and Narayan, R. (1992). Ann. Rev. Astron. Astrophys. 30, 311.CrossRef
Bourassa, R. R., and Kantowski, R. (1975). Astrophys. J. 195, 13.CrossRef
Cassan, A., et al. (2012). Nature 481, 167.CrossRef
Chang, K., and Refsdal, S. (1979). Nature 279, 561.CrossRef
Chang, K. (1984). Astron. Astrophys. 130, 157.
Chou, C. W., et al. (2010). Science 329, 1630.CrossRef
Chwolson, O. (1924). Astr. Nachrichten 221, 329.CrossRef
Ciufolini, I. (1989). Int. J. Mod. Phys. A 4, 3083.CrossRef
Ciufolini, I., and Pavlis, , E. C. (2004). Nature 431, 95.
Eddington, A. (1920). Space, Time, and Gravitation. Cambridge: Cambridge University Press.Google Scholar
Falco, E. E., Shapiro, I. I., and Krolik, J. H. (1990). 0957+561: The Time Delay Revisited. In Gravitational Lensing, ed. Mellier, Y., Fort, B., and Soucail, G.. Berlin: Springer-Verlag.Google Scholar
Florides, P. (2002). Int. J. Mod. Phys. A 20, 2759.CrossRef
Fomalont, E. B., and Sramek, R. A. (1976). Phys. Rev. Lett. 36, 1475.CrossRef
Häfele, J. C., and Keating, R. E. (1972). Science 177, 168.CrossRef
Hewitt, J. N. (1993). Gravitational Lenses. In Texas PASCOS 92: Relativistic Astrophysics & Particle Cosmology, ed. Akerlof, C. W. and Srednicki, M. A.. New York: New York Academy of Sciences.Google Scholar
Klüber, H. (1960). Vistas in Astronomy 3, 47.CrossRef
Komatsu, E., et al. (2009). Astrophys. J. Suppl. 180, 330.CrossRef
Kramer, M., et al. (2006). Science 314, 97.CrossRef
Kramer, M., and Wex, N. (2009). Class. Quant. Grav. 26, 073001.CrossRef
Krauss, L. M., and Tremaine, S. (1988). Phys. Rev. Lett. 60, 176.CrossRef
Krisher, T. P., et al. (1990). Phys. Rev. Lett. 64, 1322.CrossRef
Krisher, T. P., et al. (1993). Phys. Rev. Lett. 70, 2212.CrossRef
Lebach, D. E., et al. (1995). Phys. Rev. Lett. 75, 1439.CrossRef
Lense, J., and Thirring, H. (1918). Phys. Zeitsch. 19, 156.
Liebes, S. (1964). Phys. Rev. B 133, 835.CrossRef
Longo, M. L. (1988). Phys. Rev. Lett. 60, 173.CrossRef
LoPresto, J. C., and Schrader, C. (1991). Astrophys. J. 376, 757.CrossRef
McGruberIII, C. H. (1982). Phys. Rev. D 25, 3191.CrossRef
Ohanian, H. C. (1983). Astrophys. J. 271, 551.CrossRef
Pound, R. V., and Rebka, G. A. (1960). Phys. Rev. Lett. 4, 337.CrossRef
Pound, R. V., and Snider, J. L. (1964). Phys. Rev. Lett. 13, 539.CrossRef
Pound, R. V., and Snider, J. L. (1965). Phys. Rev. B 140, 788.CrossRef
Press, W. H., and Gunn, J. E. (1973). Astrophys. J. 185, 397.CrossRef
Reasenberg, R. D., and Shapiro, I. I. (1976). Solar System Tests of General Relativity. In Proceedings of the International Symposium on Experimental Gravitation, ed. Bertotti, B.. Rome: Academia Nazionale dei Lincei.Google Scholar
Reasenberg, R. D., et al. (1979). Astrophys. J. 234, L219.CrossRef
Refsdal, S (1964). Mon. Not. R. Astron. Soc. 128, 295.CrossRef
Robertson, D. S., et al. (1991). Nature 349, 768.CrossRef
Ruffini, R. J., and Sigismondi, C. (2003). Nonlinear Gravitodynamics, The Lense-Thirring Effect. Singapore: World Scientific Publishing Co.CrossRefGoogle Scholar
Schild, R. (1990). The Time Delay of Q0957+561 A,B from 10 Years of Optical Monitoring. In Gravitational Lensing, ed. Mellier, Y., Fort, B., and Soucail, G.. Berlin: Springer-Verlag.Google Scholar
Schneider, P., Ehlers, J., and Falco, E. E. (1992). Gravitational Lenses. Berlin: Springer-Verlag, Chapter 7.Google Scholar
Seielstadt, G. A., et al. (1970). Phys. Rev. Lett. 24, 1373.CrossRef
Shapiro, I. I. (1964). Phys. Rev. Lett. 13, 26.CrossRef
Shapiro, I. I., et al. (1966). Phys. Rev. Lett. 17, 933.CrossRef
Shapiro, I. I., et al. (1968). Phys. Rev. Lett. 20,1265.CrossRef
Shapiro, I. I., et al. (1971). Phys. Rev. Lett. 26, 1132.CrossRef
Shapiro, S. S., et al. (2004). Phys. Rev. Lett. 92, 121101.CrossRef
Sramek, R. A. (1971). Astrophys. J. 167, L55.CrossRef
Treu, T. (2010). Annu. Rev. Astron. Astrophys. 48, 87.CrossRef
Vanderriest, C., et al. (1989). Astron. and Astrophys. 215, 1.
Vessot, R. F. C., and Levine, M. W. (1979). Gen. Rel. and Grav. 10, 181.CrossRef
Vessot, R. F. C., et al. (1980); Phys. Rev. Lett. 45, 2081.CrossRef
Walsh, D., Carswell, R. F., and Weynman, R. J. (1979). Nature 279, 381.CrossRef
Young, P. (1981). Astrophys. J. 244, 756.CrossRef
Young, P., et al. (1981). Astrophys. J. 244, 723.CrossRef
Zwicky, F. (1937). Phys. Rev. 51, 290.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×