Book contents
- Global Strength of Ships
- Reviews
- Global Strength of Ships
- Copyright page
- Dedication
- Contents
- Preface
- Abbreviations
- 1 Ship Structures and Structural Design Practice
- 2 The Evolution of Ship Structures from Antiquity to the Present Day
- 3 Sea Loads on Ship Structures
- 4 Primary Loading of Ship Structures
- 5 Hull Structure, Mechanical Equipment and Cargo-Related Loads
- 6 Linear Response to Primary Loading
- 7 Nonlinear Response to Primary Loading
- 8 Hull Girder Vibration
- 9 Probabilistic Modelling of Primary Loading and Hull Girder Response
- 10 Design of Hull Girder for Strength
- 11 Aspects of Uncertainty
- 12 Ship Structural Reliability Theory and Applications
- 13 Hull Girder Strength Assessment Using the Finite Element Method
- 14 Optimum Design of Ship Structures
- Book part
- Index
- References
4 - Primary Loading of Ship Structures
Published online by Cambridge University Press: 20 March 2025
- Global Strength of Ships
- Reviews
- Global Strength of Ships
- Copyright page
- Dedication
- Contents
- Preface
- Abbreviations
- 1 Ship Structures and Structural Design Practice
- 2 The Evolution of Ship Structures from Antiquity to the Present Day
- 3 Sea Loads on Ship Structures
- 4 Primary Loading of Ship Structures
- 5 Hull Structure, Mechanical Equipment and Cargo-Related Loads
- 6 Linear Response to Primary Loading
- 7 Nonlinear Response to Primary Loading
- 8 Hull Girder Vibration
- 9 Probabilistic Modelling of Primary Loading and Hull Girder Response
- 10 Design of Hull Girder for Strength
- 11 Aspects of Uncertainty
- 12 Ship Structural Reliability Theory and Applications
- 13 Hull Girder Strength Assessment Using the Finite Element Method
- 14 Optimum Design of Ship Structures
- Book part
- Index
- References
Summary
In this chapter both hull girder longitudinal bending and torsional loading are treated. Ship-type bodies are considered in both still water and waves (quasi-static loading). The equations for longitudinal bending moment and shear force are obtained. Wave profiles are considered and the use of sectional area curves is illustrated. The balancing procedure of the hull girder on a wave is then described. The various factors that affect longitudinal bending moment and shear force distributions are discussed and reference is made to the Smith effect. Torsional loads are considered next and their generation is described in the case of both closed-deck and open-deck hull forms. Expressions obtained for torsional moments in the past as well as those included in the IACS Common Structural Rules are given. Wave loading of ship hulls is considered and classical linear strip theory is described. The IACS approach to estimating primary longitudinal bending loads and corresponding strength requirements is described. The role of classification societies in ensuring safety and durability is discussed, following which the formulas developed for bending moments and shear forces are presented.
Keywords
- Type
- Chapter
- Information
- Global Strength of ShipsAnalysis and Design using Mathematical Methods, pp. 122 - 171Publisher: Cambridge University PressPrint publication year: 2025