Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T13:54:41.492Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  15 April 2022

Roger G. Barry
Affiliation:
University of Colorado Boulder
Thian Yew Gan
Affiliation:
University of Alberta
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Global Cryosphere
Past, Present, and Future
, pp. 451 - 562
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbot, D. S. and Pierrehumbert, T. T. (2010). Mudball: surface dust and Snowball Earth deglaciation. Geophys. Res. Lett., 115: D03104, doi: 10.1029/2009JD012007.Google Scholar
Abdalati, W. (2007). Greenland Ice Sheet melt characteristics derived from passive micro-wave data. Boulder, CO: National Snow and Ice Data Center. Digital media.Google Scholar
Abdalati, W. and Steffen, K. (1997). Snowmelt on the Greenland Ice Sheet as derived from passive microwave satellite data. J. Climate, 10: 165–75.Google Scholar
Abdalati, W. and Steffen, K. (2001). Greenland Ice Sheet melt extent: 1979–1999. J. Geophys. Res., 106 (D24): 33, 983–8.Google Scholar
Abel, G. (1955). Températures et formation de glace dans les grottes du Salzburg (Autriche), Proc. 1st Int. Cong. Speleol., Paris, 1953. 2: 321–4.Google Scholar
Abram, N. J., Wolff, E. W., and Curran, M. A. J. (2013). A review of sea ice proxy information from polar ice cores. Quat. Sci. Rev., 79: 168–83, doi: 10.1016/j.quascirev.2013.01.01.Google Scholar
Abramov, V. A. (1992). Russian iceberg observations in the Barents Sea, 1933–1990. Polar Res., 11: 93–7.Google Scholar
Abramov, V. A. (1996). Atlas of Arctic icebergs. Fair Lawn, NJ: Backbone Publishing Co. 70 pp.Google Scholar
ACIA (2005). Arctic climate impact assessment. New York: Cambridge University Press, 1042 pp.Google Scholar
Ackerman, S. A., et al. (1998). Discriminating clear sky from clouds with MODIS, J. Geophys. Res., 103 (D24): 32, 141–57.Google Scholar
Ackerman, S. A., et al. (1995). Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II .2. Aircraft HIS results, J Atmos. Sci., 52: 4246–63.Google Scholar
Ackley, S. F. (1979). Mass-balance aspects of Weddell sea pack ice. J. Glaciol., 24 (90): 391405.Google Scholar
Ackley, S. F. (1996). Sea ice. In Trigg, George L et al., (eds.), Encyclopedia of applied physics. New York: VCH Publishers. 17: pp. 81103.Google Scholar
Ackley, S. F., Lange, M., and Wadhams, P. (1990). Snow cover effects on Antarctic sea ice thickness. In Ackley, S. F. and Weeks, W. F. (eds.), Sea ice properties and processes. CRREL Monograph 90–1. Hanover, NH: US Army Cold Regions Research and Engineering Laboratory Engin. Lab. pp. 225–9.Google Scholar
Adam, J. C., Hamlet, A. F., and Lettenmaier, D. P. (2009). Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol. Proc., 23: 962–72.Google Scholar
Adams, P. (1992). J. B. Tyrell and D. H. Dunble on lake ice. Arctic 45: 195–8.Google Scholar
Adrian, R. and Hintze, T. (2000). Effects of winter air temperature on the ice phenology of the Müggelsee (Berlin, Germany). Verh. Int. Verein. Limnol., 27: 2808–11.Google Scholar
Adusumilli, S., Fricker, H. A., Siegfried, M. R., Padman, L., Paolo, F. S., and Ligtenberg, S. R. M. (2018). Variable basal melt rates of Antarctic Peninsula ice shelves, 1994–2016, Geophys. Res. Lett., 45: 4086–95, doi: 10.1002/2017GL076652.Google Scholar
Afultis, M. A. (1987). Iceberg populations south of 48° N since 1900. Report of the International Ice Patrol in the North Atlantic. Bull. No. 74, CG 188–42. U.S. Dept. of Transportation, U.S. Coast Guard. pp. 63–7, 358.Google Scholar
Afultis, M. A. and Martin, S. (1987). Satellite passive microwave studies of the Sea of Okhotsk ice cover and its relation to oceanic processes, 1978–1982. J. Geophys. Res., 92: 13,01328.Google Scholar
Agassiz, L. (1967). Studies on glaciers (trans. of Agassiz, L. 1840 Études sur les glaciers, trans., ed. Carozzi, A. V). New York: Hafner Publ. Co. 213 pp.Google Scholar
Ahlmann, H. W. (1924). Le niveau de glaciation comme fonction de l’accumulation d’humidité sous forme solide. Geogr. Ann, 6: 223–72.Google Scholar
Ahlmann, H. W. (1935). Scientific results of the Norwegian-Swedish Spitsbergen Expedition in 1934. Part V. Geogr. Annal., 17: 167218.Google Scholar
Ahlmann, H. W. (1948). Glaciological research on the North Atlantic coast. Roy. Geogr. Soc., Res. Ser., no. 1. 83 pp.Google Scholar
Ahlmann, H. W. and Tryselius, O. (1929). Der Kårsa Gletscher in Swedisch Lappland. Geogr. Annal., 11: 132.Google Scholar
Aizen, V. B., et al. (2006). Glacier changes in the central and northern Tien Shan during the last 140 years based on surface and remote-sensing data. Annals Glaciol., 43: 202–13.CrossRefGoogle Scholar
Alekseyev, V. R., et al. (eds.). (1973). Siberian naleds. USSR Academy of Sciences (1969). Draft Translation 399. Hanover, NH: US Army Cold Regions Research and Engineering Laboratory. 300 pp.Google Scholar
Alexeev, S. V., Alexeeva, L. P., and Kononov, A. M. (2008). Permafrost and cryopegs of the Anabar shield. In Kane, D. L. and Hinkel, K. M. (eds.), Proceedings of the ninth international conference on permafrost, Fairbanks, AK: University of Alaska, Institute of Northern Engineering. pp. 31–5.Google Scholar
Alford, D. and Armstrong, R. (2010). The role of glaciers in stream flow from the Nepal Himalaya. The Cryosphere Discuss, 4: 469–94.Google Scholar
Allen, C., et al. (1997). Airborne radio echo sounding of outlet glaciers in Greenland, Int. J. Re. Sens. 18(14): 3103–8.Google Scholar
Allen, J. R. and Long, D. G. (2006). Microwave observations of daily Antarctic sea-ice edge expansion and contraction rates. IEEE Geosci. Remote Sensing Lett., 3: 54–8.Google Scholar
Allen, P. A. and Etienne, J. L. (2008). Sedimentary challenge to Snowball Earth. Nat. Geosci., 1: 818–25.Google Scholar
Alley, R. B. (2000). The two-mile time machine: ice cores, abrupt climate change, and our future. Princeton, NJ: Princeton University Press. 229 pp.Google Scholar
Alley, R. B., et al. (2009). Past extent and status of the Greenland Ice Sheet. In Alley, R. B., Brigham-Grette, J., Miller, G. H., and Polyak, L., (eds.), Past climate variability and change in the Arctic and at high latitudes. U.S. Climate Change and Science Program, Synthesis and Assessment 1.2. Reston, VA: US Geological Survey. pp. 303415.Google Scholar
Alley, R. B., et al. (2010). History of the Greenland Ice Sheet: Paleoclimatic insights. Quat. Sci. Rev., 29 (15–16): 1728–56.Google Scholar
Alley, R. B. and Clark, P. U. (1999). The deglaciation of the Northern Hemisphere: a global perspective. Ann. Rev. Earth Planet. Sci., 27: 149–82.Google Scholar
Allison, I., Barry, R. G., and Goodison, B. E. (2001). Climate and cryosphere (CliC) project science and co-ordination plan (Version 1). Geneva: World Meteorological Organization. WMO/TD 1053, 96 pp.Google Scholar
Allison, I. and Kruss, P. (1977). Estimation of recent climatic change in Irian Jaya by numerical modeling of its tropical glaciers. Arct. Alp. Res., 9: 4960.Google Scholar
Allison, I. and Peterson, J. A. (1976). Ice areas on Puncak Jaya – their extent and recent history. In Hope, G. S., Peterson, J. A., Radok, U., and Allison, I. (eds.), The equatorial glaciers of New Guinea – results of the 1971–1973 Australian Universities’ expeditions to Irian Jaya: survey, glaciology, meteorology, biology and paleoenvironments. Rotterdam: A. A. Balkema. pp. 2738.Google Scholar
Allix, A. (1924). Avalanches. Geogr. Rev., 14 (4): 519–60.CrossRefGoogle Scholar
Alvarez-Solas, J., et al. (2010). Links between ocean temperature and iceberg discharge during Heinrich Events. Natur Geeosci., 3: 122–6.Google Scholar
AMAP (2017). Snow, water, ice and permafrost in the Arctic (SWIPA). Oslo, Norway:Arctic Council Secretariat.Google Scholar
Anacona, P. I., Mackintosh, A., and Norton, K. P. (2015). Hazardous processes and events from glacier and permafrost areas: lessons from the Chilean and Argentinean Andes. Earth Surf. Proc. Land., 40 (1): 221, 37, doi: 10.1002/esp.3524.Google Scholar
Anandakrishnan, S., et al. (2007). Discovery of till deposition at the grounding line of Whillans Ice Stream. Science, 315: 1835–8.Google Scholar
Anderson, E. A. (1976). A point energy and mass balance model of a snow cover, NOAA Technical Report NWS, 19: 150 pp.Google Scholar
Andersen, S., et al. (2007). Intercomparison of passive microwave sea ice concentration retrievals over the hh-concentration Arctic sea ice. J. Geophys. Res., 112: C08004. doi: 10.1029/2006JC003543.Google Scholar
Anderson, M. R., Crane, R. G., and Barry, R. G. (1985). Characteristics of Arctic Ocean ice determined from SMMR data for 1979: case studies in the seasonal sea ice zone. Adv. Space Res,. 5 (6) G. Ohring and H. J. Bolle (eds.). Space Observations for Climate Studies: 257–61.Google Scholar
Anderson, R. K., et al. (2008). A millennial perspective on Arctic warming from 14 C in quartz and plants emerging from beneath ice caps. Geophys. Res. Lett., 35: L01502. doi: 10.1029/2007GL032057.Google Scholar
Andreadis, K. M. and Lettenmaier, D. P. (2006). Assimilating remotely sensed snow observations into a macroscale hydrology model. Adv. Water Resour., 29: 872–86.Google Scholar
Andreas, E. L., et al. (1990). Lidar-derived particle concentrations in plumes from Arctic leads. Annals Glaciol., 14: 912.Google Scholar
Andreas, E. L., Jordan, R. E., and Makshtas, A. P. (2005). Simulations of snow, ice, and near-surface atmospheric processes on Ice Station Weddell. Bound.-Layer Met., 114: 439–60.Google Scholar
Andrews, J. T. (2000). Icebergs and iceberg rafted detritus (IRD) in the North Atlantic: facts and assumptions. Oceanography, 13 (3): 100–8.Google Scholar
Andrews, J. T. and Miller, G. H. (1972): Quaternary history of northern Cumberland Peninsula, Baffin Island, N.W.T., Canada. Part IV: maps of the present glaciation limits and lowest equilibrium line altitude for north and south Baffin Island. Arct. Alp. Res., 4: 4559.Google Scholar
Andreescu, M.-P. and Frost, D. B. (1998). Weather and traffic accidents in Montreal, Canada. Clim. Res., 9: 225–30.Google Scholar
Anisimov, O. A. (1989) Changing climate and permafrost distribution in the Soviet Arctic. Phys. Geog., 10(3): 285–93.Google Scholar
Anisimov, O. A. and Nelson, F. E. (1990). Application of mathematical models to investigate the interaction between the climate and permafrost. Soviet Met. Hydrol., 1990 (10): 813.Google Scholar
Anisimov, O. A. and Nelson, F. E. (1996). Permafrost distribution in the Northern Hemisphere under scenarios of climatic change. Global Planet. Change, 14: 5972.Google Scholar
Anisimov, O. A. and Nelson, F. E. (1997). Permafrost zonation and climate change in the Northern Hemisphere: results from transient general circulation models. Clim. Change, 35: 241–58.Google Scholar
Anisimov, O. A. and Reneva, S. (2006). Permafrost and changing climate: the Russian perspective. Ambio, 35 (4): 169–75.Google Scholar
Anisimov, O. A., Shiklomanov, N. I., and Nelson, F. E. (1997). Global warming and active layer thickness: results from transient general circulation models. Global Planet. Change, 15: 6177.Google Scholar
Anisimov, O. A., Shiklomanov, N. I., and Nelson, F. E. (2002). Variability of seasonal thaw depth in permafrost regions: A stochastic modelling approach. Ecol. Modelling, 153: 217–27.Google Scholar
Aniya, M., et al. (1996). Inventory outlet glaciers of the Southern Patagonia Icefield, South America. Photogram, Eng, Rem. Sensing, 62: 1361–9.Google Scholar
Anschutz, H., et al. (2009). Revisiting sites of the South Pole Queen Maud Land Traverses in East Antarctica: Accumulation data from shallow firn cores. J. Geophys. Res., 114: D24106, doi: 10.1029/2009JD012204.Google Scholar
Arctic and Antarctic Research Institute. (2007). Sea ice charts of the Russian Arctic in gridded format, 1933–2006. Edited and compiled by Smolyanitsky, V., et al., Boulder, CO: National Snow and Ice Data Center. Digital media.Google Scholar
Arctic Climatology Project. (2000). Environmental Working Group joint U.S.-Russian sea ice atlas. Tanis, F. and Smolyanitsky, V. (eds.). Ann Arbor, MI: Environmental Research Institute of Michigan in association with the National Snow and Ice Data Center. CD-ROM.Google Scholar
Arendt, A., et al. (2002). Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science, 297 (5580): 382–6.CrossRefGoogle ScholarPubMed
Arendt, A. A., et al. (2009). Validation of high-resolution GRACE mascon estimates of glacier mass changes in the St. Elias Mountains, Alaska, USA, using aircraft laser altimetry. J. Glaciol., 54 (188): 778–87.Google Scholar
Arendt, A., et al. (2012). Randolph Glacier Inventory [v2.0]: A Dataset of Global Glacier Outlines. Global Land Ice Measurements from Space, Boulder Colorado, USA. Digital Media 32 pp. Available online at: http://www.glims.org/RGI/RGI_Tech_Report_V2.0.pdfGoogle Scholar
Arendt, A., et al. (2015). Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 5.0. Boulder, CO, USA: Global Land Ice Measurements from Space.Google Scholar
Arenstein, J. (1849). Beobachtungen über die Eisverhältnisse der Donau. 1847/48 und 1848/49. Wissenschaft, Vienna: Sitzunsgbericht Akad. 5: 331.Google Scholar
Armitage, T. W. K., Bacon, S., and Kwok, R. (2018). Arctic sea level and surface circulation response to the Arctic Oscillation. Geophy. Res. Lett., 45: 6576–84.Google Scholar
Armour, K. C. et al. (2016). Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci., 9 (7): 549, doi: 10.1038/Ngeo2731.Google Scholar
Armstrong, B. R. and Williams, K. (1986). The avalanche book. Golden, CO: Fulcrum. 240 pp.Google Scholar
Armstrong, R. (2001). Historical Soviet daily snow depth version 2 (HSDSD). Boulder, CO: National Snow and Ice Data Center. CD-ROM.Google Scholar
Armstrong, R. L., Brodzik, M. J., Savoie, M., and Knowles, K., (2006). Multi-Sensor snow mapping and global trends, WDC for Glaciology, Boulder, 30th Anniversary Workshop, University of Colorado, Boulder, October 25, 2006.Google Scholar
Armstrong, R., Alford, D., and Racoviteanu, A. (2009). Glaciers as indicators of climate change – the special case of the high elevation glaciers of the Nepal Himalaya. In Water storage. A strategy for climate change adaptation in the Himalaya. Sustainable Mountain Development No. 56. Kathmanudu, Nepal: ICIMOD. pp. 1618.Google Scholar
Armstrong, R. L. and Armstrong, B. R. (1987). Snow and avalanche climates of the western United States: A comparison of maritime, intermountain and continental conditions. Avalanche Formation, Movement and Effects. IAHS Publ., 162: 282–94.Google Scholar
Armstrong, R. and Brodzik, M. J. (2002). Hemispheric-scale comparison and evaluation of passive microwave snow algorithms. Annals Glaciol., 34: 3844.Google Scholar
Armstrong, R., Brodzik, M. J., and Savoie, M. H. (2003). Multi-sensor approach to mapping snow cover using data from NASA’s EOS Aqua and Terra spacecraft (AMSR-E and MODIS). Boulder, CO: National Snow and Ice Data Center (NSIDC), University of Colorado.Google Scholar
Armstrong, R. L., Brodzik, M. J., Knowles, K., and Savoie, M. (2005). Global monthly EASE-Grid snow water equivalent climatology. Boulder, CO: National Snow and Ice Data Center. Digital media.Google Scholar
Armstrong, R. L. and Brun, E. (eds.) (2008). Snow and climate: Physical processes, surface energy exchange and modeling. Cambridge: Cambridge University Press. 222 pp.Google Scholar
Armstrong, R. L. (2010). The glaciers of the Hindu Kush–Himalayan region. Technical Paper. Kathmandu, Nepal: CIMOD. 20 pp.Google Scholar
Armstrong, R. L., and Brodzik, M. J. (2001). Recent Northern Hemisphere snow extent: a comparison of data derived from visible and microwave sensors. Geophy. Res. Lett., 28 (19): 3673–6.Google Scholar
Armstrong, T. E. (1952). The northern sea route: Soviet exploitation of the North East Passage. Cambridge: Scott Polar Research Institute. Special publ. no. 1, 20 pp.Google Scholar
Arzel, O., Fichefet, T., and Goosse, H. (2006). Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs. Ocean Modelling, 12: 401–15.Google Scholar
Ashton, G. D. (1980). Freshwater ice growth, motion, and decay. In Colbeck, S. C. (ed.), Dynamics of snow and ice masses. New York: Academic Press. pp. 261304.Google Scholar
Aspen Environmental Group and Cubed, M. (2005). Potential changes in hydropower production from global climate change in California and the western United States. CEC-700–2005–010. California Energy Commission. 65 pp.Google Scholar
Asplin, M. G., Lukovich, J. V., and Barber, D. G. (2009). Atmospheric forcing of the Beaufort Sea ice gyre: Surface pressure climatology and sea ice motion. J. Geophys. Res., 114 (D00D05): 9.Google Scholar
Assel, R. and Herche, L. (2000). Coherence of long-term lake ice records. Verh. Int. Verein. Limnol., 27: 2789–92.Google Scholar
Assel, R., Cronk, K., and Norton, D. (2003). Recent trends in Laurentian Great Lakes ice cover. Clim. Change 57: 185204.Google Scholar
Ashton, G. D. (ed.) (1986). River and lake ice engineering. Highlands Ranch, CO: Water Resources Publication. 486 pp.Google Scholar
Astakov, V. I. (1986). Geological conditions for the burial of Pleistocene glacier ice on the Yensisey. Polar Geog. Geol., 10: 286–95.Google Scholar
Atkinson, D. E., et al. (2006). Canadian cryospheric responses to an anomalous warm summer: synthesis of the climate change action fund project the state of the arctic cryosphere during the extreme warm summer of 1998. Atmos.-Ocean, 44: 347–76.Google Scholar
Aubekerov, B. and Gorbunov, A. P. (1999). Quaternary permafrost and mountian glaciation in Kazakhstan. Permafrost Periglac. Proc., 10: 6580.Google Scholar
Ávila, E. E., et al. (2009). Initial stages of the riming process on ice crystals, Geophys. Res. Lett., 36: L09808. doi:10.1029/2009GL037723.Google Scholar
Bader, H. (1961). The Greenland ice sheet, CRREL Mongr, I B2; Hannover, NH, US Army Cold Regions Research and Engineering Laboratory, 18 pp. https://erdc-library.erdc.dren.mil/jspui/bitstream/11681/2674/1/CRREL-Mono-1-B2.pdfGoogle Scholar
Bader, H., et al. (1939). Der Schnee und seine Metamorphose. Beitr. Geologie der Schweiz, Geotechnische Serie-Hydrologie, Issue 3. Bern: Kümmerly and Frey, (In English as Snow and its metamorphosis. Snow, Ice and Permafrost research Establishment, SIPRE Translation No. 14, 1954, 313 pp.)Google Scholar
von Baer, K. E. (1838a). On the ground ice or frozen soil of Siberia. J. Roy. Geog. Soc., 8: 210–13.Google Scholar
von Baer, K. E. (1838b). Intelligence upon the frozen ground in Siberia. J. Roy. Geog. Soc., 8: 401–6.Google Scholar
Bahr, D. B. (1997a). Global distribution of glacier properties: A stochastic scaling paradigm. Water Resour. Res., 33: 1669–79.Google Scholar
Bahr, D. B. (1997b). Width and length scaling of glaciers. J. Glaciol., 43 (145): 557–62.Google Scholar
Bahr, D. and Dyurgerov, M. B. (1999). Characteristic mass-balance scaling with valley glacier size. J. Glaciol., 45 (149): 1721.Google Scholar
Bahr, D. B., Dyurgerov, M., and Meier, M. F. (2009). Sea-level rise from glaciers and ice caps: A lower bound. Geophys. Res. Lett., 36: L03501. doi: 10.1029/2008GL036309.Google Scholar
Bahr, D. B., Meier, M. F., and Peckham, S. D. (1997). The physical basis of glacier volume – area scaling. J. Geophys. Res., 102 (B9): 20, 355–62.Google Scholar
Bakkehøi, S. Domaas, U., and Lied, K. (1983). Calculation of snow avalanche run-out distance. Annal. Glaciol., 4: 24–9.Google Scholar
Ballantyne, J. and Long, D. G. (2002). A mulitdecadal study of the number of Antarctic icebergs using scatterometer data. Geoscience and Remote Sensing Symposium 2002, IGARSS ’02, IEEE International, vol. 5: 3029–31. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1237370Google Scholar
Bales, R. C., et al. (2009). Annual accumulation for Greenland updated using ice core data developed during 2000–2006 and analysis of daily coastal meteorological data. J. Geophys. Res., 114 (D06115): 14.Google Scholar
Baldocchi, D. D., Matt, D. R., Hutchison, B. A., and McMillen, R. T. (1984). Solar radiation within an oak-hickory forest: an evaluation of the extinction coefficients for several radiation components for fully-leafed and leafless periods. Agric. For. Meteorol., 32: 307–22.Google Scholar
Bamber, J. L. (1994). Ice sheet altimeter processing scheme. Int. J. Remote Sens., 15: 925–38.Google Scholar
Bamber, J. L., Alley, R. B., and Joughin, I. (2007). Rapid response of modern day ice sheets to external forcing. Earth Planet. Sci. Lett., 257: 113.Google Scholar
Bamber, J. L. and Bentley, C. R. (1994). Comparison of satellite-altimetry and ice-thickness measurements of the Ross Ice Shelf, Antarctica. Ann. Glaciol., 20: 357–64.Google Scholar
Bamber, J. L. and Kwok, R. (2004). Remote sensing techniques. In Bamber, J. L. and Payne, A. J. (eds.), Mass balance of the cryosphere: Observations and modelling of contemporary and future changes. Cambridge: Cambridge University Press. pp. 59113.Google Scholar
Bamber, J. L. and Payne, A. J. (eds.). (2004). Mass balance of the cryosphere: Observations and modelling of contemporary and future changes. Cambridge: Cambridge University Press. 666 pp.Google Scholar
Bamber, J. L. and Rivera, A. (2007). A review of remote sensing methods for glacier mass balance determination. Glob. Planet. Change, 59: 133–48.Google Scholar
Bamber, J. L., Vaughan, D. G., and Joughin, I. (2000). Widespread complex flow in the interior of the Antarctic Ice Sheet. Science 287 (5456): 1248–50.Google Scholar
Bamber, J. L., et al. (2009). Reassessment of the potential sea-level rise from a collapse of the West Antarctic Ice Sheet. Science 324: 901–3.Google Scholar
Bamber, J. L., Westaway, R. M., Marzeion, B., and Wouters, B. (2018). The land ice contribution to sea level during the satellite era, Environ. Res. Lett., 13 (6): 063008, doi:10.1088/1748-9326/aac2f0.Google Scholar
Barber, D. G., et al. (2001a). Physical processes within the North Water (NOW) polynya, Atmosphere – Ocean, 39 (3): 163–6.Google Scholar
Barber, D. G., et al. (2001b). Sea-ice and meteorological conditions in Northern Baffin Bay and the North Water Polynya between 1979 and 1996. Atmosphere – Ocean 39 (3): 343–59.Google Scholar
Barber, D. G. and Massom, R. A. (2007). The role of sea ice in bipolar polynya processes. In Smith, W. O. and Barber, D. G. (eds.), Polynyas: Windows into polar oceans. New York: Elsevier. 474 pp.Google Scholar
Barclay, D. J., Wiles, G. C., and Calkin, P. E. (2009). Holocene glacier fluctuations in Alaska, Quat. Sci. Rev. 28: 2034–48.Google Scholar
Bareiss, J. and Görgen, K. (2005). Spatial and temporal variability of sea ice in the Laptev Sea: and review of satellite passive-microwave data and model results, 1979 to 2002. Glob. Planet. Change 48: 2854.Google Scholar
Barendregt, R. W. and Dud-Rodkin, A. (2004). Chronology and extent of Late Cenozpic ice sheets in North America: A magnetostratigraphic assessment. In Ehlers, J. and Gibbard, P. L. (eds.), Quaternary glaciations extent and chronology. Part 2. North America. Amsterdam: Elsevier. pp. 18;Google Scholar
Barendregt, R. and Irving, E. (1998). Changes in the extent of North American ice sheets during the late Cenozoic. Can. J. Earth Sci. 35 (5): 504–9.Google Scholar
Barichivich, J., Briffa, K. R., and Myneni, R. B., et al. (2013). Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Glob. Chang. Biol., 19: 3167–83, doi: 10.1111/gcb.12283.Google Scholar
Barker, P. F., Dickmann, B., and Escutia, C. (2007b). Onset of Cenozoic Antarctic glaciation. Deep-Sea Res. II, 54: 2293–307.Google Scholar
Barker, P. F., et al. (2007a). Onset and role of the Antarctic Circumpolar Current, Deep-sea Res. Part 2. Topical Studies in Oceanography, 54 (21–22): 2388–98.Google Scholar
Barker, S., et al. (2009). Interhemispheric Atlantic seesaw response during the last deglaciation. Nature, 457: 1097–103.Google Scholar
Barletta, , V. R., et al. (2013). Scatter of mass changes estimates at basin scale for Greenland and Antarctica. The Cryosphere, 7: 1411–32, https://doi.org/10.5194/tc-7–1411-2013, 2013Google Scholar
Barnes, H. T. (1906). Ice formation: with special reference to anchor-ice and frazil. New York: J. Wiley and Sons. 260 pp.Google Scholar
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438: 303–9.Google Scholar
Barnett, T. P., Pierce, D. W., Hidalgo, H. G., Bonfils, C., Santer, B. D., Das, T., Bala, G., Wood, A. W., Nozawa, T., Mirin, A. A., Cayan, D. R., and Dettinger, M. D. (2008). Human-induced changes in the hydrology of the western United States. Science, 319: 1080–3.Google Scholar
Barrans, N. E. and Sharp, M. J. (2010). Sustained rapid shrinkage of Yukon glaciers since the 1957–1958 International Geophysical Year, Geophys. Res. Lett., 37: L07501. doi: 10.1029/2009GL042030.Google Scholar
Barry, R. G. (1966). Meteorological aspects of the glacial history of Labrador-Ungava with special reference to vapor transport, Geogr. Bull. (Ottawa) 8 (4): 319–40.Google Scholar
Barry, R. G. (1985). Snow and ice data. In Hecht, A. D. (ed.), Paleoclimate analysis and modeling. New York: J. Wiley and Sons, 259–90.Google Scholar
Barry, R. G. (1987). The cryosphere – neglected component of the climate system. In Radok, U. (ed.), Towards understanding climate change. Boulder, CO: Westview Press, 3567.Google Scholar
Barry, R. G. (1989). The present climate of the Arctic Ocean and possible past and future states. In Herman, Y. (ed.), The arctic seas: climatology, oceanography, biology and geology. Van Nostrand: Reinhold Co. pp. 146.Google Scholar
Barry, R. G. (1991). Observational evidence of changes in global snow and ice cover. In Schlesinger, M. E. (ed.), Greenhouse gas-induced climatic change: a critical appraisal of simulations and observations. Amsterdam: Elsevier. pp. 329–45.Google Scholar
Barry, R. G. (1993). Canada’s cold seas. In French, H. M. and Slaymaker, O. (eds.), Canada’s cold environments. Montreal: McGill-Queen’s University Press. pp. 2961.Google Scholar
Barry, R. G. (1995a). Observing systems and data sets related to the cryosphere in Canada: A contribution to planning for the Global Climate Observing System. Atmosphere-Ocean, 33 (4): 771807.Google Scholar
Barry, R. G. (1996). The parameterization of surface albedo for sea ice and its snow cover. Progr. Phys. Geog., 20 (1): 6177.Google Scholar
Barry, R. G. (1997). Cryospheric data for model validations: requirements and status. Annals Glaciol., 26: 371–5.Google Scholar
Barry, R. G. (2000). Data on the geographical distribution of sea ice. In Tanis, F. and Smolianitsky, V. (eds.), Atlas climatology project environmental working group. Joint U.S.-Russian Atlas of Arctic Sea Ice. NSIDC, Boulder, CO. CD-ROM.Google Scholar
Barry, R. G. (2002a). History of the World Data Center for Glaciology, Boulder, and the National Snow and Ice Data Center at the University of Colorado. Glaciol. Data Report GD-30. Twenty-fifth Anniversary. Monitoring an Evolving Cryosphere. NSIDC, Univ. of Colorado, Boulder, CO. pp. 17.Google Scholar
Barry, R. G. (2002b). The role of snow and ice in the global climate system: A review. Polar Geog., 24 (3): 235–46.Google Scholar
Barry, R. G. (2003). Mountain cryospheric studies and the WCRP Climate and Cryosphere (CliC) Project. J. Hydrology Special Issue: Mountain Hydrology and Water Resources (eds., H. Lang and G. Kaser) 282 (1–4): 177–81.Google Scholar
Barry, R. G. (2006). The status of research on glaciers and global glacier recession: A review, Progr. Phys. Geogr., 30 (3): 285306.Google Scholar
Barry, R. G. (2008). Mountain weather and climate. 3rd edn. Cambridge: Cambridge University Press. 506 pp.Google Scholar
Barry, R. G., (2009). Snow cover. In Cuff, D. and Goudie, A. (eds.), The Oxford companion to global change. Oxford Reference Online. Oxford University Press. University of Glasgow. May 26, 2009. www.oxfordreference.com/view/10.1093/acref/9780195324884.001.0001/acref-9780195324884Google Scholar
Barry, R. G. and Carleton, A. M. (2001). Synoptic and dynamic climatology. London: Routledge. 620 pp.Google Scholar
Barry, R. G., Fallot, J.-M., and Armstrong, R. L. (1995). Twentieth-century variability in snow cover conditions and approaches to detecting and monitoring changes: Status and prospects. Progr. Phys. Geog., 19 (4): 520–32.Google Scholar
Barry, R. G. and Maslanik, J. A. (1989). Arctic sea ice characteristics and associated atmosphere-ice interactions in summer inferred from SMMR data and drifting buoys: 1979 to 1985. R.G. GeoJournal, 18: 3544.Google Scholar
Barry, R. G., Moritz, R. E., and Rogers, J. C. (1979). The fast ice regimes of the Beaufort and Chukchi Sea coasts, Alaska. Cold Regions Sci. Technol., 1: 129–52.Google Scholar
Barry, R. G., et al. (1989). Characteristics of Arctic sea ice from remote sensing data and their relationship to atmospheric processes. Annals Glaciol., 12: 915.Google Scholar
Barry, R. G., et al. (1993). The Arctic sea-ice-climate system: Observations and modeling. Rev. Geophys., 31: 397422.Google Scholar
Barry, R. G. and Serreze, M. C. (2000). Atmospheric components of the Arctic ocean freshwater balance and their interannual variability. In Lewis, E. L., et al. (eds.) The freshwater budget of the arctic ocean. Springer, Netherlands: Kluwer Academic Publ.: pp. 4556Google Scholar
Barry, R. G., Jania, J., and Birkenmajer, K. (2011). A. B. Dobrowolski – the first cryospheric scientist – and the subsequent development of cryospheric science. Hist. Geo-Space Sci., 2: 7579Google Scholar
Barry, R. and Gan, T. Y. (2011). Global Cryosphere, Past, Present and Future, 472 pages, UK: Cambridge University Press, ISBN: 9780521769815 (Hardcover) & 9780521156851 (Paperback).Google Scholar
Barsch, D. (1988). Rock glaciers. In Clark, M. J. (ed.), Advances in periglacial geomorphology. Chichester: John Wiley and Sons. pp. 6990.Google Scholar
Bartelt, P., Salm, B., and Gruber, U. (1999). Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining. J. Glaciol., 45 (150): 242–54.Google Scholar
Bartelt, P. and Lehning, M. (2002). A physical SNOWPACK model for the Swiss avalanche warning services, Part I: Numerical model. Cold Reg. Sci. Technol., 35 (3): 123–45.Google Scholar
Bartholomew, I., et al. (2010). Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nature Geosci., 3 (6): 408–11.CrossRefGoogle Scholar
Bartlett, P. A., MacKay, M. D., and Verseghy, D. L. (2006). Modified snow algorithms in the Canadian Land Surface Scheme: Model runs and sensitivity analysis at three boreal forest stands. Atmos. Ocean, 44 (3): 207–22, doi: 10.3137/ao.440301.Google Scholar
Bassford, R. P., et al. (2006). Quantifying the mass balance of ice caps on Severnaya Zemlya, Russian High Arctic. I: Climate and mass balance of the Vavilov Ice Cap. Arct. Antarct. Alpine Res., 38: 112.Google Scholar
Batirov, R. S., et al. (2003). Avalanches of Uzbekistan. Tashkent: SANIGMI. 119 pp.Google Scholar
Battle, W. R. B. and Lewis, W. V. (1951). Temperature observations in Bergschrunds and their relationship to cirque erosion. J. Geol., 59 (6): 537–45.Google Scholar
Bauer, A. (1955). The balance of the Greenland ice sheet, J. Glaciol., 2 (17): L456–62.Google Scholar
Bayr, K. J., Hall, D. K., and Kovalick, W. M. (1994). Observations on glaciers in the eastern Austrian Alps using satellite data. Internat. J. Remote Sens., 15: 1733–42.Google Scholar
Bazant, Z. P., Zi, G., and McClung, D. (2003). Size effect law and fracture mechanics of the triggering of dry snow slab avalanches, J. Geophys. Res., 108 (B2): 2119. doi: 10.1029/2002JB001884.Google Scholar
Bazhev, A. (1997). Methods determining the internal infiltration accumulation of glaciers. In Kotltakov, V. M. (ed.), 34 Selected papers on main ideas of the Soviet glaciology, 1940s to 1980s, Moscow: Glaciological Association, Institute of Geography, RAN. pp. 371–81.Google Scholar
Beaty, C. B. (1975). Sublimation or melting: Observations from the White Mountains, California and Nevada, USA, J. Glaciol., 14: 275–86.Google Scholar
Becker, A., et al. (2013). A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present, Earth Syst. Sci. Data, 5: 7199.CrossRefGoogle Scholar
Beckley, B. D., et al. (2017). On the ‘Cal-Mode’ Correction to TOPEX Satellite Altimetry and Its Effect on the Global Mean Sea Level Time Series, J Geophy Res-Oceans, 122: 8371–84, https://doi.org/10.1002/2017jc013090Google Scholar
Bedford, D. P. and Barry, R. G. (1994). Glacier trends in the Caucasus, 1960s to 1980s, Phys. Geog., 15: 414–24.Google Scholar
Bedford, D. and Douglass, A. (2008). Changing properties of snowpack in the Great Salt Lake Basin, western United States, from a 26-year SNOTEL record. Prof. Geog. 60: 374–86.Google Scholar
Beedle, M. J. (2005). Climatic drivers of glacier mass balance in southeast Alaska in the second half of the twentieth century. M.A. thesis, Boulder, CO: University of Colorado, 172 pp.Google Scholar
Beedle, M. J., et al. (2008). Improving estimation of glacier volume change: a GLIMS case study of Bering Glacier System, Alaska. The Cryosphere, 2: 3351.Google Scholar
Belchansky, G. I., Douglas, D. C., and Platonov, N. G. (2004). Duration of the Arctic melt season: regional and interannual variability, 1979–2001. J. Climate, 17: 6780.Google Scholar
Bell, R., et al. (2007). Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature, 445: 904–7.Google Scholar
Bell, R., et al. (2011). Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 331 (6024): 1592–5, doi: 10.1126/science.1200109.Google Scholar
Beltos, S. (2017). Frequency of ice-jam flooding of Peace-Athabasca Delta. Can. J. Civ. Eng., NRC Res. Press, 45: 71–5 dx.doi.org/10.1139/cjce-2017–0434Google Scholar
Beltaos, S., Tang, P., and Rowsell, R. Ice jam modelling and field data collection for flood forecasting in the Saint John River, Canada, Hydrological Processes, 26: 2535–45, doi: 10.1002/hyp.9293.Google Scholar
Beltaos, S. (ed.). (1995). River ice jams. Highlands Ranch, CO: Water Resources Publ., 390 pp.Google Scholar
Beltaos, S. (2001). Hydraulic roughness of breakup ice jams. ASCE J. Hydraul. Eng., 127 (8): 650–6.Google Scholar
Beltaos, S. (2007). The role of waves in ice-jam flooding of the Peace–Athabasca delta, Hydrol. Process., 21 (19): 2548–59.Google Scholar
Beltaos, S. (2008a). Progress in the study and management of river ice jams. Cold Reg. Sci. Technol., 51: 219.Google Scholar
Beltaos, S. (ed.). (2008b). River ice breakup. Highlands Ranch, CO: Water Resources Publ., 462 pp.Google Scholar
Beltaos, S. (2010). Internal strength properties of river ice jams. Cold Reg. Sci. Technol., 62: 8391.Google Scholar
Beltaos, S. and Carter, T. (2009). Field studies of ice breakup and jamming in the Mackenzie delta. 15th Workshop on river ice. St. John’s, Newfoundland. Committee on River Ice Processes and the Environment. pp. 266–83.Google Scholar
Beltaos, S. and Prowse, T. (2009). River-ice hydrology in a shrinking cryosphere. Hydrol. Process., 23: 122–44.Google Scholar
Beltaos, S., et al. (2006). Climatic effects on ice-jam flooding of the Peace-Athabaska delta. Hydrol. Proc., 20 (19): 4031–50.Google Scholar
Bengtsson, L. (1986). Spatial variability of lake ice covers. Geogr. Ann., 68A (1–2): 113–21.Google Scholar
Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., et al. (2018). The European mountain cryosphere: a review of its current state, trends, and future challenges. Cryosphere 12: 759–94, doi: 10.5194/tc-12-759-2018.Google Scholar
Benn, D. I. and Lehmkuhl, F. (2000). Mass balance and equilibrium-line altitudes of glaciers in high mountain environments. Quart. Int., 65–66: 1529.Google Scholar
Benn, D. I., Warren, C. R., and Mottram, R. H. (2007). Calving processes and the dynamics of calving glaciers. Earth Sci. Rec., 82: 143–79.Google Scholar
Benn, D., et al. (2009). Englacial drainage systems formed by hydrologically driven crevasse propagation. J. Glaciol., 55 (191): 513–23.Google Scholar
Benson, B. and Magnuson, J. (2000), updated 2007. Global lake and river ice phenology database. Boulder, CO: National Snow and Ice Data Center/World Data Center for Glaciology. Digital media.Google Scholar
Benson, C. S. (1962). Stratigraphic studies in the snow and firn of Greenland ice sheet. US Army, Hanover, NH. CRREL Research Report 70, 93 pp.Google Scholar
Bentley, M. J., et al. (2006). Geomorphological evidence and cosmogenic 10Be/26Al exposure ages for the Last Glacial Maximum and deglaciation of the Antarctic Peninsula Ice Sheet. Bull. Geol. Soc. Amer., 118: 1149–59.Google Scholar
Bentley, M. J., et al. (2009). Mechanisms of Holocene palaeoenvironmental change in the Antarctic Peninsula region. Holocene, 19: 5169.Google Scholar
Bentley, W. A. and Humphries, W. J. (1931). Snow crystals. New York: McGraw-Hill (reprinted by Dover Publications, New York, 1964, 1973).Google Scholar
Benn, D. L. and Evans, D. J. A. (1998). Glaciers and glaciation. London: Arnold. 734 pp.Google Scholar
Bereiter, B., et al. (2015). Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett., 42: 542–9, doi: 10.1002/2014GL061957.Google Scholar
Berg, N. H. (1986). Blowing snow at a Colorado alpine site: Measurements and implications. Arctic Alp. Res., 18: 147–61.Google Scholar
Berger, A. and Loutre, M. F. (2010). Modeling the 100-kyr glacial–interglacial cycles. Glob. Planet. Change, 72 (4): 275–81.Google Scholar
Berger, C. L., et al. (2002). A climatology of northwest Missouri snowfall events: Long- term trends and interannual variability. Phys. Geogr., 23: 427–48.Google Scholar
Bergeron, V., Berger, C., and Betterton, M. D. (2006). Controlled irradiative growth of penitentes. Phys. Rev. Lett., 96 (098502): 4.Google Scholar
Berghuijs, W. R., Woods, R. A., and Hrachowitz, M. (2014). A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Chang. 4: 583–6, doi: 10.1038/nclimate2246.Google Scholar
Bergström, S. (1995), The HBV model. In Singh, V. P. (ed.), Computer models of watershed hydrology. Highlands Ranch, CO: Water Resources Publications, pp. 443–76.Google Scholar
Berro, D. C., Mercalli, L., and Mortara, G. (2007). Evoluzions dei ghiacciai italiani nel periodo 2000–2007. Nimbus, 15 (3–4): 629.Google Scholar
Berthier, E., et al. (2007). Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Rem. Sensing Environ., 108: 327–38.Google Scholar
Berthier, E., et al. (2010). Contribution of Alaska glaciers to sea-level rise derived from satellite imagery. Nature Geosci., 3: 92–5.Google Scholar
Betin, V. V. and Preobazhensky, Y. V. (1959). Variations in the state of the ice on the Baltic Sea and in the Danish Sound. Trudy Gos. Okean. Inst. (Moscow), 37: 313.Translation 102, U.S. Navy Hydrographic Office, 1961.Google Scholar
Betterton, M. D. (2001). Theory of structure formation in snowfields motivated by penitentes, suncups, and dirt cone. Phys. Rev. E., 63 (056129): 12.Google Scholar
Bhampri, R. and Bolch, T. (2009). Glacier mapping: A review with special reference to the Indian Himalayas. Progr. Phys. Geog., 33: 672705.Google Scholar
Bhattacharya, I., et al. (2009). Surface melt area variability of the Greenland ice sheet: 1979–2008. Geophys. Res. Lett., 36: L20502, doi: 10.1029/2009GL039798.Google Scholar
Bhatt, U. S., et al. (2007). Examining glacier mass balances with a hierarchical modeling approach. J. Computing Sci. Eng., 9: 61–7.Google Scholar
Bianchi Janetti, E., et al. (2008). Regional snow-depth estimates for avalanche calculations using a two-dimensional model with snow entrainment. Annla Glaciol., 49: 6370.Google Scholar
Bieniek, P. A., Bhatt, U. S., Rundquist, L. A., Lindsey, S. D., Zhang, X., and Thoman, R. L. (2011). Large-scale climate controls of interior Alaska river ice breakup. J. Clim. 24: 286–97. https://doi.org/10.1175/2010JCLI3809.1Google Scholar
Biftu, G. F. and Gan, T. Y. (2001). Semi-distributed, physically based, hydrological modeling of the Paddle River Basin, Alberta using remotely sensed data. J. Hydrol., 244: 137–56, doi: 10.1016/S0022–1694(01)00333-X.Google Scholar
Bigg, G. R. (1999). An estimate of the flux of iceberg calving from Greenland. Arct. Antarct. Alp. Res., 31: 174–8.Google Scholar
Bigg, G. R., et al. (1997). Modelling the dynamics and thermodynamics of icebergs. Cold Regions Sci. Technol. 26: 113–35.CrossRefGoogle Scholar
Bigg, G. R. and Wilton, D. J. (2014). Iceberg risk in the Titanic year of 1912: was it exceptional? Weather, 69 (4): 100–4., RMS, https://doi.org/10.1002/wea.2238CCrossRefGoogle Scholar
Bilello, M. A. (1980). Maximum thickness and subsequent decay of lake, river, and fast sea ice in Canada and Alaska. Hanover, NH: U.S. Army Cold Regions Research and Engineering Laboratory, CRREL Report 80–6.Google Scholar
Bindschadler, R., et al. (1996). Surface velocity and mass balance of ice streams D and E, West Antarctica. J. Glaciol., 42 (142): 461–75.Google Scholar
Bindschadler, R., et al. (2008). The Landsat image mosaic of Antarctica. Rem. Sensing Environ., 112 (12): 4214–26.Google Scholar
Bindschadler, R., et al. (2011). Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year. Cryosphere, 5: 569–88.Google Scholar
Bintanja, R. and van de Wal, R. S. W. (2008). North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. Nature, 454: 869–72.Google Scholar
Bintanja, R., van der Linden, E. C., and Hazeleger, W. (2011). Boundary layer stability and Arctic climate change: a feedback study using EC-Earth. Climate Dynamics, 39: 2659–73.Google Scholar
Birkenmajer, K., et al. (2005). First Cenozoic glaciers in West Antarctica. Polish Polar Res., 26: 312.Google Scholar
Birkeland, K. W. (1998). Terminology and predominant processes associated with the formation of weak layers of near-surface crystals in the mountain snowpack. Arct. Alp. Res., 30 (2): 193–9.Google Scholar
Birkeland, K. W. (2001). Spatial patterns of snow stability throughout a small mountain range, J. Glaciol., 47 (157): 176–86.Google Scholar
Bishop, M. and Barry, R. G., et al. (2004). Global land ice measurements from space (GLIMS): Remote sensing and GIS investigations of the Earth’s cryosphere. Geocarto Internat., 19: 5784.Google Scholar
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G., Abramov, A., et al. (2019). Permafrost is warming at a global scale, Nat. Commun., 10: 264.Google Scholar
Bjørk, A. A., et al. (2012). An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland, Nat. Geosci., 5: 427–32.Google Scholar
Björnsson, H. (2002). Subglacial lakes and jökulhlaups in Iceland. Global Planet. Change, 35: 255–71.Google Scholar
Björnsson, H. (2009). Jöklar á Íslandi (Glaciers in Iceland). Reyjavik: Opna, 478 pp.Google Scholar
Björnsson, H., et al. (2003). Surges of glaciers in Iceland. Ann. Glaciol., 36: 8290.Google Scholar
Björnsson, H., et al. (2006). Climate change response of Vatnajökull, Hofsjökull and Langjökull ice caps, Iceland. European Conference on Impacts of Climate Change on Renewable Energy Sources Reykjavik, Iceland, June 5–9, 2006, 4 pp.Google Scholar
Bleil, U. and Thiede, J. (1990). The geological history of Cenozoic polar oceans: Arctic versus Antarctic – an Introduction. In Bleil, U. and Thiede, J. (eds.), The geological history of Cenozoic polar oceans: Arctic versus Antarctic. Dordrecht, Netherlands: Kluwer. pp. 18.Google Scholar
Bliss, A., Hock, R., and Cogley, J. G. (2013). A new inventory of mountain glaciers and ice caps for the Antarctic periphery. Ann. Glaciol., 54: 191–9.CrossRefGoogle Scholar
Blunier, T., et al. (1997). Timing of the Antarctic Cold Reversal and the atmospheric CO2 increase with respect to the Younger Dryas event. Geophys. Res. Lett., 24 (21): 2683–6.Google Scholar
Bockheim, J. G., et al. (2008). Distribution of permafrost types and buried ice in ice-free areas of Antarctica. In Kane, D. L. and Hinkel, K. M. (eds.), Proceedings of the Ninth International Conference on Permafrost, Fairbanks, AK: University of Alaska, Institute of Northern Engineering. pp. 125–30.Google Scholar
Boé, J., Hall, A., and Qu, X. (2009). September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nature Geoscience 2: 341–3.Google Scholar
Bolch, T., Menounos, B., and Wheate, R. (2010). Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens. Environ. 114: 127–37. doi: 10.1016/j.rse.2009.08.015.Google Scholar
Bolch, T. (2007). Climate change and glacier retreat in northern Tien Shan (Kazakhstan/ Kyrgyzstan) using remote sensing data. Global Planet. Change 56: 112.Google Scholar
Bolsenga, S. J. (1968). River ice jams. A literature review. U.S. Lake Survey, Rep. 5–5. Detroit, MI: Dept. of the Army, Corps of Engineers, Lake Survey District. 568 pp.Google Scholar
Bond, G., et al. (1993). Correlations between climate records from North Atlantic sediments and Greenland ice. Nature, 365: 143–7.Google Scholar
Bony, S., et al. (2015). Clouds, circulation and climate sensitivity, Nat. Geosci., 8: 261–8, https://doi.org/10.1038/ngeo2398.Google Scholar
Boon, S., et al. (2010). Forty-seven years of research on the Devon Island Ice Cap, Arctic Canada. Arctic, 63: 1329.Google Scholar
Borodachev, B. E. and Shilnikov, V. I. (2003). Istoriya L’dovoi Aviatsionnoi Razedki v Arktikei na Zamerzayushchikh Moryakh Rossii (1924–1993) (The History of Aerial Ice Reconnaissance in the Arctic and Ice-covered Seas of Russia, 1924–1993). Gidrometeoizdat: St. Petersburg, 441 pp.Google Scholar
Borstad, C. P. and McClung, D. M. (2009). Sensitivity analyses in snow avalanche dynamics modeling and implications when modeling extreme events. Canad. Geotech. J. 46 (9): 1024–33.Google Scholar
Boulton, G. S., Peacock, J. D., and Sutherland, D. G. (2002). Quaternary. In Trewin, N. H. (ed.), The geology of Scotland. 4th edn., London: The Geological Society. pp. 409–30.Google Scholar
Bourke, R. H. and Garrett, R. P. (1987). Sea ice thickness distribution in the Arctic Ocean. Cold. Regions Sci. Technol. 13: 259–80.Google Scholar
Bourke, R. H. and Mclaren, A. S. (1992). Contour mapping of Arctic Basin ice draft and roughness parameters. J. Geophys. Res., 97: 17, 715–28.Google Scholar
Bovis, M. J. (1977). Statistical forecasting of snow avalanches, San Juan Mountains, southern Colorado. USA J. Glaciol., 18 (78): 8799.CrossRefGoogle Scholar
Bovis, M. J. and Mears, A. I. (1976). Statistical prediction of snow avalanche runout from terrain variables in Colorado. Arct. Alp. Res., 8: 115–20.Google Scholar
Box, J. E., et al. (2009). Greenland. Arctic Report Card 2009. www.arctic.noaa.gov/reportcard/Google Scholar
Bradley, R. S. and England, J. H. (2008). The Younger Dryas and the sea of ancient ice. Quat. Res., 70 (1): 110.Google Scholar
Bradley, R. S., et al. (2009). Recent changes in freezing level heights in the Tropics with implications for the deglacierization of high mountain regions. Geophys. Res. Lett. 36: L17701. doi: 10.1029/2009GL037712.Google Scholar
Braithwaite, R. J., Zhang, Y., and Raper, S. C. B. (2002). Temperature sensitivity of the mass balance of mountain glaciers and ice caps as a climatological characteristic. Zeit. Gletscherk. Glazial., 38: 3561.Google Scholar
Brandt, R. E., et al. (2005). Surface albedo of the Antarctic sea ice zone. J. Clim., 18: 3606–22.Google Scholar
Bras, R. L. (1990). Hydrology, An introduction to hydrologic science. Reading, MA: Addison Wesley. 643 pp.Google Scholar
Braun, L. N., Weber, M., and Schulz, M. (2000). Consequences of climate change for runoff from Alpine regions. Annals Glaciol., 31: 1925.Google Scholar
Braun, M., Humbert, A., and Moll, A. (2009). Changes of Wilkins Ice Shelf over the past 15 years and inferences on its stability. The Cryosphere, 3: 4156.Google Scholar
Brenner, A. C., DiMarzio, J. P., and Zwally, H. J. (2007). Precision and accuracy of satellite radar and laser altimeter data over the continental ice sheets. IEEE Trans. Geosci. Remote Sens., 45: 321–31.Google Scholar
Brigham, L. W., Grishchenk, V. D., and Kamesaki, K. (1999). The natural environment, ice navigation and ship Technology. In Østreng, W. (ed.), The natural and societal challenges of the Northern Sea Route. A reference work. Dordrecht: Kluwer Academic Publishers. pp. 48120.Google Scholar
British Glaciological Society. (1949). Joint Meeting of the British Glaciological Society, the British Rheologists’ Club and the Institute of Metals. J. Glaciol., 1: 231–40.Google Scholar
Brockamp, B. and Mothes, H. (1930). Seismische Untersuchungen aufdem Pasterzegletscher. Zeit. Geophys., 6: 482500.Google Scholar
Broecker, W. S. (1997).Thermohaline circulation, the Achilles Heel of our climate system: Will man-made CO2 upset the current balance? Science, 278 (5343): 1582–8.Google Scholar
Broecker, W. S., et al. (2010). Putting the Younger Dryas cold event into context. Quat. Sci. Rev., 29 (9–10): 1078–81.Google Scholar
Brohan, P., et al. (2006). Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111: D12106, doi: 10.1029/2005JD006548.Google Scholar
Bromirski, P. D. , Sergienko, O. V. , and MacAyeal, D. R. (2009). Transoceanic infra-gravity waves impacting Antarctic ice shelves. Geophys. Res. Lett., 37: L02502, doi: 10.1029/2009GL041488.Google Scholar
Bromwich, D. H. and Kurtz, D. D. (1984). Katabatic wind forcing of the Terra Nova Bay polynya. J.Geophys. Res., 89: 3561–72.Google Scholar
Bromwich, D. H. and Parish, T. R. (1998). Chapter 4 of Meteorology of the Antarctic, Meteorology of the Southern Hemisphere. In Karoly, D. J. and Vincent, D. G. (eds.), American Meteorological Society, ISBN: 978-1-935704-10-2Google Scholar
Brönnimann, S., et al. (2008). Can we reconstruct Arctic sea ice back to 1900 with a hybrid approach? Clim. Past Discuss., 4: 955–79.Google Scholar
Bronselaer, B., Winton, M., Griffies, S., Hurlin, W., Rodgers, K., Serigenko, O., Stouffer, R., and Russell, J., J. (2018). Change in future climate due to Antarctic meltwater, Nature, 564: 5358, doi: 10.1038/s41586-018-0712-z.Google Scholar
Brown, C. S., Meier, M. F., and Post, A. (1982). Calving speed of Alaska tidewater glaciers, with application to Columbia Glacier. U.S. Geol. Surv. Profess. Paper 1258-C, 13 pp.Google Scholar
Brown, J., Ferrians, Jr., O. J., Heginbottom, J. A., and Melnikov, E. S. (1997). Circum-arctic map of permafrost and ground-ice conditions, circum-pacific mMap series, US Geological Survey, ISBN 0-607-88745-1Google Scholar
Brown, J., et al. (1998). revised (2001). Circum-Arctic map of permafrost and ground ice conditions. Boulder, CO: National Snow and Ice Data Center/World Data Center for Glaciology. Digital Media.Google Scholar
Brown, J., Hinkel, K. M., and Nelson, F. E. (2000). The circumpolar active layer monitoring (CALM) program: research designs and initial results. Polar Geogr., 24: 165258.Google Scholar
Brown, L. and Duguay, C. (2011). The fate of lake ice in the North American Arctic. The Cryosphere, 5 (4): 869–92, doi: 10.5194/tc-5-869-2011.Google Scholar
Brown, R. D. (1998). El Nino and North American snow cover. Proc. 55th Eastern Snow Conference, Jackson, N. H., June 4–6, pp. 165–72.Google Scholar
Brown, R. (Coordinating editor). (1999). Canadian contributions to GCOS. Freshwater ice.Google Scholar
Brown, R., Vikhamar-Schuler, D., Bulygina, O., Derksen, C., Loujus, K., Mudryk, L., et al. (2017). Arctic terrestrial snow cover. In Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017, Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP). pp. 2564.Google Scholar
Brown, R. D., Brasnett, B., and Robinson, D. (2003). Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmosphere-Ocean, 41 (1): 114, doi: 10.3137/ao.410101.Google Scholar
Brown, R. D. (2000). Northern Hemisphere snow cover variability and change, 1915–1997. J. Climate, 13: 2339–55.Google Scholar
Brown, R. and Armstrong, R. L. (2008). Snow-cover data: measurement, products and sources. In Armstrong, R. L. and Brun, E. (eds.), Snow and climate: physical processes, surface energy exchange and modeling. Cambridge, UK: Cambridge University Press. pp. 181216.Google Scholar
Brown, R. D. and Cote, P. (1992). Interannual variability of landfast ice thickness in the Canadian High Arctic, 1950–89. Arctic, 45: 273–84.Google Scholar
Brown, R. D. and Mote, P.W. (2009). The response of Northern Hemisphere snow cover to a changing climate. J. Climate, 22: 2124–45.CrossRefGoogle Scholar
Brown, R. D., Walker, A., and Goodison, B. E. (2000). Seasonal snow cover monitoring in Canada – an assessment of Canadian contributions for global climate monitoring. Proc. 57th Eastern Snow Conference, Syracuse, NY, May 17–19, 2000: pp. 131–41.Google Scholar
Brown, R. D., et al. (2004). Climate variability and change – cryosphere. In Threats to water availability in Canada, NWRI scientific assessment, Report Series No. 3, Environment Canada, 128 pp.Google Scholar
Brown, R. D. and Robinson, D. A. (2011). Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere, 5: 219–29, doi: 10.5194/tc-5-219-2011.CrossRefGoogle Scholar
Bruce, I. (2009). On thin ice: winter sports and climate change, 54 pages, David Suzuki Foundation, ISBN 978–1-897375–24-2.Google Scholar
Brun, E., et al. (1992). A numerical model to simulate snow cover stratigraphy for operational avalanche forecasting. J. Glaciol., 38: 1322.Google Scholar
Brun, E. et al. (2012). Simulation of northern Eurasian local snow depth, mass, and density using a detailed snowpack model and meteorological reanalyses. Journal of Hydrometeorology, 14 (1): 203–19, doi: 10.1175/jhm-d-12-012.1.Google Scholar
Brun, F., Berthier, E., Wagnon, P., Kääb, A., and Treichler, D. (2017). A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci., 10: 668. Available at: https://doi.org/10.1038/ngeo2999Google Scholar
Brutsaert, W. (1982). Evaporation into the atmosphere, 299 pp., D. Reidel, Dordecht, Netherlands.Google Scholar
Budd, W. F., Dingle, R., and Radok, U. (1964). Byrd snow drift project. meteorology dept., Australia: University of Melbourne, Publ. No. 6.Google Scholar
Budd, W. F., Jenssen, D., and Radok, U. (1971). Derived physical characteristics of the Antarctic ice sheet. ANARE interim report series, A(IV) Glaciology, 120, 178 pp.Google Scholar
Budd, W. F. and Jenssen, D. (1975). Numerical modeling of glacier systems. Proc. Moscow Sympos. on Snow and Ice in Mountainous Regions Internat. Assoc. Hydrol. Sci. Publ. No. 104: 257–91.Google Scholar
Budd, W. F., and McInnes, B. J. (1979). Periodic surging of the Antarctic ice sheet – an assessment by modelling. Hydrol Sci. Bull., 24: 95104.Google Scholar
Budd, W. F., Smith, I. L., and Wishart, E. (1967). The Amery ice shelf. In Oura, H. (ed.), Physics of snow and ice. Proceedings of the international conference on low temperature science. I (1). Sapporo: Hokkaido University. pp. 447–67.Google Scholar
Budyko, M. I. (1969). The effect of solar radiation variations on the climate of the earth. Tellus, 21: 611–19.Google Scholar
Bulygina, O. N., Razuvaev, V. N., and Korshunova, N. N., (2009), Changes in snow cover over Northern Eurasia in the last few decades, Environ. Res. Lett., 4 (045026): 6, doi: 10.1088/1748–9326/4/4/045026.Google Scholar
Bulygina, O., Groisman, P. Y., Razuvaev, V. N., and Korshunova, N. N. (2011). Changes in snow cover characteristics over Northern Eurasia since 1966. Environ Res Lett., 6 (4): doi: 10.1088/1748-9326/6/4/045204.Google Scholar
Burgess, D. O., et al. (2005). Flow dynamics and iceberg calving rates of the Devon ice cap, Nunavut, Canada. J. Glaciol., 51: 219–30.Google Scholar
Burgess, D. and Sharp, M. J. (2008). Recent changes in thickness of the Devon Island ice cap, Canada. J. Geophys. Res., 113 (B7): B07204, doi: 10.1029/2007JB005238.Google Scholar
Burgess, E. W., et al. (2010). A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (1958–2007). J. Geophys. Res., 115: F02004, doi: 10.1029/2009JF001293.Google Scholar
Bürki, R. , Elsasser, H. , and Abegg, B. (2003). Climate change and winter sports: Environmental and economic threats. 5th World Conference on Sport and Environment, Turin, December 2–3, 2003. IOC/UNEP.Google Scholar
Burn, C. R. and Nelson, F. E. (2006). Comment on “A projection of severe near-surface permafrost degradation during the 21st century” by David M. Lawrence and Andrew G. Slater. Geophys. Res. Lett., 33: L21503, doi: 10.1029/2006GL027077.Google Scholar
Burn, C. R. and Kokelj, S. V. (2009). The environment and permafrost of the Mackenzie Delta area. Permafrost Periglac. Proc., 10: 83105.Google Scholar
Burnett, A. W., et al. (2003). Increasing Great Lake-effect snowfall during the Twentieth Century: A regional response to global warming? J. Clim., 16: 3535–41.Google Scholar
Burrows, C. J. (1976). Icebergs in the Southern Ocean. New Zealand Geographer, 32: 127–38.Google Scholar
Buser, O. (1983). Avalanche forecast with the method of nearest neighbours: an interactive approach.Cold Reg. Sci. Technol., 8: 155–63.Google Scholar
Butkovich, T. R. (1954). Ultimate strength of ice. SIPRE Res. Rep., 11 (US Army): 12.Google Scholar
Butsic, V., Hanak, E., and Valletta, R. (2009). Climate Change and Housing Prices: Hedonic Estimates for Ski Resorts in Western North America, Working Paper 2008–12, Federal Reserve Bank San Francisco.Google Scholar
Butt, M. (2009). Application of global snow model for the estimation of snow depth in the UK. Meteorol. Atmos. Phy., 105: 181–90.Google Scholar
Caian, M., Koenigk, T., Döscher, R., and Devasthale, A. (2018). An interannual link between Arctic sea-ice cover and the North Atlantic Oscillation. Climate Dynamics, 50: 423–41.Google Scholar
CAA, 2016, Technical aspects of snow avalanche risk management—Resources and Guidelines for Avalanche Practitioners in Canada. In Campbell, C., Conger, S.,Google Scholar
Caine, N. (2002). Declining ice thickness on an alpine lake is generated by increased winter precipitation. Clim. Change, 54 (4): 463–70.Google Scholar
Callaghan, T. V., et al. (2010). A new climate era in the sub-Arctic: Accelerating climate changes and multiple impacts, Geophysical Research Letters, 37: L14705, doi: 10.1029/2009GL042064.Google Scholar
Callaghan, T. V., et al. (2011a). Chapter 4. Changing snow cover and its impacts. In Snow, water, ice and permafrost in the Arctic (SWIPA), 4:1-58 Oslo: Arctic Monitoring and Assessment Programme (AMAP), 538 pp.Google Scholar
Callaghan, T. V., et al. (2011b). The changing face of Arctic snow cover: A synthesis of observed and projected changes. Ambio., 40 (Suppl 1): 1731, doi: 10.1007/s13280-011-0212-y.Google Scholar
Campbell, E. C., et al. (2019). Antarctic offshore polynyas linked to Southern Hemisphere climate anomalies. Nature, 570: 319–25, https://doi.org/10.1038/s41586-019–1294-0Google Scholar
Campbell, I. B. and Claridge, G. C. C. (2009). Antarctic permafrost soils. In Margesin, R. (ed.), Permafrost soils. Berlin: Springer Verlag. pp. 1731.Google Scholar
Campbell, W. J. (1965). The wind-driven circulation of ice and water in a polar ocean. J Geophys Res., 70: 3279–01.Google Scholar
Caputo, M. V. and Crowell, J. C. (1985). Migration of glacial centers across Gondwana during Paleozoic Era Geol. Soc. Amer. Bull., 96 (8): 1020–36.Google Scholar
Callendar, G. S. (1938). The artificial production of carbon dioxide and its influence on temperature. Quart. J. Roy. Met. Soc., 64: 223–40.Google Scholar
Callendar, G. S. (1961). Temperature fluctuations and trends over the earth. Quart. J. Roy. Met. Soc., 87: 112.Google Scholar
Carenzo, M., et al. (2009). Assessing the transferability and robustness of an enhanced temperature-index glacier-melt model. J. Glaciol., 55 (190): 258–74.Google Scholar
Carey, K. L. (1973). Icings developed from surface water and ground water. Cold Regions Sci, Eng. Monogr. III D3. Hannover, NH: US Army Cold Regions Research and Engineering Laboratory. 65 pp.Google Scholar
Carey, M. (2005). Living and dying with glaciers: people’s historical vulnerability to avalanches and outburst floods in Peru. Global and Planetary Change, 47: 122–34.Google Scholar
Carmack, E. and Melling, H. (2011). Warmth from the deep. Nature Geosci, 4: 78, https://doi.org/10.1038/ngeo1044.CrossRefGoogle Scholar
Carlson, A. E., et al. (2007). Geochemical proxies of North American freshwater routing during the Younger Dryas cold event. Proc. Nat. Acad. Sci., 104: 6556–61.Google Scholar
Carlson, A. E., et al. (2008). Rapid early Holocene deglaciation of the Laurentide ice sheet. Nature Geoscience, 1: 62–4.Google Scholar
Carozzi, A. V. (ed.). (1967). Studies on glaciers. Transl. of Agassiz, L. 1840 Etudes sur les glaciers, Neuchatel. New York: Hafner Publishing Co. 213 pp.Google Scholar
Carr, M. L., Gaughan, S. P., George, C. R., and Mason, J. G., (2015). CRREL’s Ice Jam Database: Improvements and Updates, 18th Workshop on Hydraulics of Ice Covered Rivers Quebec City, Canada, August 18–20, 2015.Google Scholar
Carrivick, , J. L., et al. (2012). Late-Holocene changes in character and behaviour of land-terminating glaciers on James Ross Island, Antarctica. J. Glaciol., 58: 1176–90.Google Scholar
Carrivick, J. L., et al. (2017). Ice-dammed lake drainage evolution at Russell Glacier, West Greenland. Frontiers in Earth Science, 5: 100.Google Scholar
Carsey, F. D. (ed.). (1992). Microwave remote sensing of sea ice. Washington, DC: American Geophysical Union. 462 pp.Google Scholar
Carsey, F. D., et al. (1993). Status and future directions of remote sensing of sea. In: F.D. Carsey (ed.) Microwave Remote Sensing of Sea Ice. Amer. Geophys. Union, 26: 443–6.Google Scholar
Casassa, G., et al. (2002). Current knowledge of the Southern Patagonia Icefield. In Casassa, G., Sepu´lveda, F. V., and Sinclair, R. (eds.), The Patagonian ice fields: a unique natural laboratory for environmental and climate change studies. New York: Kluwer Academic/Plenum Publishers. pp. 6783.Google Scholar
Castebrunet, H., et al. (2014). Projected changes of snow conditions and avalanche activity in a warming climate: the French Alps over the 2020–2050 and 2070–2100 periods. The Cryosphere, 8 (5): 1673–97, doi: 10.5194/tc-8-1673-2014.Google Scholar
Cavalieri, D. J., Gloersen, P., and Campbell, W. J. (1984). Determination of sea ice parameters with Nimbus 7 SMMR. J. Geophys. Res., 89 (D4): 5355–69.Google Scholar
Cayan, D. R., et al. (2001). Changes in the onset of spring in the western United States. Bull. Am. Met. Soc., 82: 399415.Google Scholar
Cazenave, , A., et al. (2018). Global sea level budget 1993-present. Earth System Science Data, 10 (3), http://doi.org/10.5194/essd-10–1551-2018Google Scholar
Cazenave, A., Lombard, A., and Llovel, W. (2008). Present-day sea level rise: A synthesis, Comptes Rendus Geosciences, 340 (11): 761–70.Google Scholar
Chamberlin, T. C. (1894). Glacial studies in Greenland. J. Geol., 2 (7): 649–66.Google Scholar
Chamberlin, T. C. (1897). Glacial studies in Greenland. X. The Bowdoin Glacier. J. Geol., 5 (3): 229–40.Google Scholar
Chang, A. T. C., Foster, J. L., and Hall, D. K. (1987). Nimbus-7 derived global snow cover parameters. Annals Glaciol., 9: 3944.Google Scholar
Chang, A. T. C., Foster, J. L., and Rango, A. (1991). Utilization of surface cover composition to improve the microwave determination of snow water equivalent in a mountain basin. Int. J. Remote Sensing, 12 (11): 2311–9.Google Scholar
Chang, A. T. C., et al. (1982). Snow water equivalent accumulation by microwave radiometry. Cold Reg. Sci. Technol., 5 (3): 259–67.Google Scholar
Chang, A. J. , et al. (1997). Snow parameters derived from microwave measurements during the BOREAS winter field campaign. J. Geophys. Res., 102: 29663–71.Google Scholar
Chapin, F. S., et al. (2005). Role of land-surface changes in Arctic summer warming. Science, 310 (5748): 657–60.Google Scholar
Chapman, W. L. and Walsh, J. E. (2007). Simulations of Arctic temperature and pressure by global coupled models. J. Clim., 20: 609–32, doi: 10.1175/JCLI4026.1.Google Scholar
Charrassin, J.-B., et al. (2008). Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals. Proc. Nat. Acad. Sci., 105 (33): 11,6349.Google Scholar
Chekotillo, A., Tsvid, A. A., and Makarov, V. N. (1960). Naledy na territorii SSSR i bor’ba s nim (Icings in the USSR snf their control). Blaoveshchensk: Amur. Knizhn. Izdat. 207 pp. (transl. 1965 for CRREL, US Army, Hanover, NH).Google Scholar
Chen, F., et al. (2014). Modeling seasonal snowpack evolution in the complex terrain and forested Colorado Headwaters region: A model intercomparison study. J. Geophys. Res. Atmos., 119 (13): 795–13,819, doi: 10.1002/2014JD022167.Google Scholar
Chen, J. L., Wilson, C. R., and Tapley, B. D., (2013). Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nat. Geosci., 9: 549–52, https://doi.org/10.1038/NGEO1829Google Scholar
Chen, J.-Y. and Funk, M. (1990). Mass balance of Rhonegletscher during 1982/83–1986/87. J. Glaciol., 36 (123): 199209.Google Scholar
Chen, J.-Y. and Ohmura, A. (1990). Estimation of Alpine glacier water resources and their change since the 1870s. Hydrology in Mountainous Regions. I – Uydrological Measurements; the Water Cycle (Proceedings of two Lausanne Symposia, August 1990). IAHS Publ. no. 193, pp. 127–35.Google Scholar
Chen, J. L., et al. (2009). Accelerated Antarctic ice loss from gravity measurements. Nature Geosci., 2: 859–62.Google Scholar
Chen, J. L., Wilson, C. R., and Tapley, B. D. (2006). Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science, 313: 1958–60.Google Scholar
Chen, Y. and She, Y. (2019). Temporal and Spatial Variations of River Ice Breakup Timing across Canada, CGU HS Committee on River Ice Processes and the Environment, 20th Workshop on the Hydraulics of Ice Covered Rivers Ottawa, Ontario, Canada, May 14–16, 2019.Google Scholar
Chen, J. M., Rich, P. M., Gower, S. T., Norman, J. M., and Plummer, S. (1997). Leaf area index of boreal forests: Theory, techniques and measurements. J. Geophys. Res., 102: 29,42944.Google Scholar
Cheng, G. and Dramis, F. (1992). Distribution of mountain permafrost and climate. Permafrost & Periglac. Proc., 3: 8391.Google Scholar
Cherry, J. E., et al. (2007). Development of the pan-Arctic snowfall reconstruction: new land-based solid precipitation estimates for 1940–99. J. Hydromet., 8 (6): 1243–63.Google Scholar
Chinn, T. J. (1999). New Zealand glacier response to climate change of the past two decades. Global Planet. Change, 22 (1–4): 155–68.Google Scholar
Christoffersen, P., et al. (2018). Cascading lake drainage on the Greenland Ice Sheet triggered by tensile shock and fracture, Nat. Commun., Vol. 9, Article number:1064.Google Scholar
Choudhury, B. J., (1993), Reflectivities of selected land surfaces types at 19 and 37 GHz from SSM/I observations. Remote Sens. Environ., 46: 117.CrossRefGoogle Scholar
Chudinova, S. M., Frauenfeld, O. W., Barry, R. G., Zhang, T.-J., and Sorokovikov, V. A. (2006). Relationship between air and soil temperature trends and periodicities in the permafrost regions of Russia. J. Geophys. Res., 111 (F02008): 15.Google Scholar
Church, et al. (2013). Sea level change, in climate change 2013, the physical science basis. In Stocker, T. F., et al. (eds.), Contribution of WG I to AR5 of the intergovernmental panel on climate change, Cambridge, UK: Cambridge University Press.Google Scholar
Ciracì, E., Velicogna, I., and Swenson, S. (2020). Continuity of the mass loss of the world’s glaciers and ice caps from the GRACE and GRACE follow‐on missions. Geophy. Res. Lett., 47 (9): e2019GL086926. https://doi.org/10.1029/2019GL086926Google Scholar
Clair, T. A. and Ehrman, J. M. (1998). Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers. Water Res. Res., 34 (3): 447–55.Google Scholar
Clark, M. P., Serreze, M. C., and Barry, R. G. (1996). Characteristics of Arctic Ocean climate based on COADS data, 1980–1993. Geophys. Res. Lett., 23 (15): 1953–6.Google Scholar
Clark, P. U. and Huybers, P. (2009). Global change: Interglacial and future sea level. Nature, 462: 856–7.Google Scholar
Clark, P. U. and Pollard, D. (1998). Origin of the middle Pleistocene transition by ice sheet erosion of regolith. Paleoceanog., 13: 19.Google Scholar
Clark, P. U., et al. (2009). The last glacial maximum. Science, 325 (5941): 710–14.Google Scholar
Clarke, G. K. C. (1991). Length, width and slope influences on glacier surging. J. Glaciol., 36: 236–46.Google Scholar
Clarke, G. K. C. (2003). Hydraulics of subglacial outburst floods: new insights from the Spring-Hutter formulation. J. Glaciol., 49 (165): 299313.Google Scholar
Clarke, G. K. C. (2005). Subglacial processes. Annu. Rev. Earth Planet. Sci., 33: 247–76.Google Scholar
Clarke, G. K. C. et al. (2015). Projected deglaciation of western Canada in the twenty-first century. Nat. Geosci., 8 (5): 372–7, doi: 10.1038/ngeo2407.Google Scholar
Clifford, D. (2010). Global estimates of snow water equivalent from passive microwave instruments: history, challenges and future developments. Int. J.Rem. Sensing, 31 (14): 3707–26.Google Scholar
Cline, D. K. , et al. (2007). Overview of the Second Cold Land Processes Experiment (CLPX-II). IEEE Proc. International Geoscience and Remote Sensing Symposium, Barcelona.Google Scholar
Cogley, J. G. (2009). Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann. Glaciol., 50: 96100.Google Scholar
Colbeck, S. C. (1983). Theory of metamorphism of dry snow. J. Geophys. Res., 88: 5475–82.Google Scholar
Colbeck, S. C. (1997). A review of sintering in seasonal snow. CRREL Report 97–10. Hanover, NH: US Army Cold Regions Research & Engineering Laboratory. 17 pp.Google Scholar
Collins, D. N. (2006). Climatic variation and runoff in mountain basins with differing proportions of glacier cover. Nordic Hydrol., 37: 315–26.Google Scholar
Cogley, J. G. (2005). Mass and energy balances of glaciers and ice sheets. In Anderson, M. G. (ed.), Encyclopedia of hydrological sciences, vol. 4. New York: J. Wiley and Sons. pp. 2555–74.Google Scholar
Cogley, J. G., (2008). Measured rates of glacier shrinkage. Geophys. Res. Abstracts, 10: EGU2008-A-11595.Google Scholar
Cogley, J. G. (2009a). Geodetic and direct mass-balance measurements: comparison and joint analysis. Annals Glaciol., 50: 96100.Google Scholar
Cogley, J. G. (2009b). A more complete version of the World Glacier Inventory. Annals Glaciol., 50 (53): 32–8.Google Scholar
Collins, D. N. (2008). Climatic warming, glacier recession and runoff from Alpine basins after the Little Ice Age maximum. Ann. Glaciol., 48: 119–24.Google Scholar
Colony, R., Radionov, V., and Tanis, F. I. (1998). Measurements of precipitation and snow pack at the Russian North Pole drifting stations. Polar Record, 34: 314.Google Scholar
Comiso, J. C. (1986). Characteristics of Arctic winter sea ice from satellite multispectral microwave observation. J. Geophys, Res., 91 (Cl): 975–94.Google Scholar
Comiso, J. C. (2010). Variability and trends of the global sea ice cover. In Thomas, D. N. and Dieckmann, G. S. (eds.), Sea ice. 2nd edn. Chichester: Wiley-Blackwell. pp. 205–46.Google Scholar
Comiso, J. C. (2012). Large decadal decline in the Arctic multiyear ice cover. J. Clim., 25: 1176–93.Google Scholar
Comiso, J. C., Kwok, R., Martin, S., and Gordon, A. L. (2011). Variability and trends in sea ice extent and ice production in the Ross Sea. J Geophys Res., 116 (C04):021. https://doi.org/10.1029/2010JC006391Google Scholar
Comiso, J. C., et al. (2017). Positive trend in the Antarctic sea ice cover and associated changes in surface temperature. J. of Climate, 30 (6): 2251–67, doi: 10.1175/Jcli-D-16-0408.1.Google Scholar
Comiso, J. C., Parkinson, C. L., Gersten, R., and Stock, L. (2008). Accelerated decline in the Arctic Sea ice cover. Geophys. Res. Letters, 35: L01703. https://doi.org/10.1029/2007GL031972Google Scholar
Comiso, J. C., Cavalieri, D. J., and Markus, T. (2003). Sea ice concentration, ice temperature, and snow depth using AMSR-E data. IEEE Trans. Geosci. Remote Sensing, 42: 243–52.Google Scholar
Comiso, J. C., Cavalieri, D., Parkinson, C., and Gloersen, P. (1997). Passive microwave algorithms for sea ice concentrations: A comparison of two techniques. Remote Sensing Environ., 60 (3): 357–84.Google Scholar
Committee on Climate, Energy, and National Security. (2009). Scientific value of Arctic sea ice imagery derived products. Washington, DC: National Research Council. 48 pp.Google Scholar
Connolly, R., et al. (2019). Northern hemisphere snow-cover trends (1967–2018): a comparison between climate models and observations. Geoscience, 9: 135, doi: 10.3390/geosciences9030135.Google Scholar
Conway, H. and Abrahamson, J. (1984). Snow-slope stability – a probabilistic approach. J. Glaciol., 34 (117): 170–7.Google Scholar
Conway, H., et al. (1999). Past and future grounding-line retreat of the West Antarctic ice sheet. Science, 286: 280–3.Google Scholar
Cook, A. J., et al. (2005). Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308: 541–4.Google Scholar
Cook, A. J. and Vaughan, D. G. (2010). Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere, 4: 7798.Google Scholar
Cooley, S. and Pavelsky, T. (2016). Spatial and temporal patterns in Arctic river ice breakup revealed by automated ice detection from MODIS imagery. Remote Sensing of Environment, 175: 310–22, http://dx.doi.org/10.1016/j.rse.2016.01.004Google Scholar
Coon, M. D., et al. (1998). The architecture of anisotropic elastic-plastic sea ice mechanics constitutive law. J. Geophys. Res., 103 (C10): 21, 915–25.Google Scholar
Copland, L. and Mueller, D. (2017). Arctic ice shelves and ice islands. Dordrecht: Springer. DOI: 10.1007/978-94-024-1101-0_11.Google Scholar
Copland, L., Sharp, M. J., and Dowdeswell, J. A. (2003). The distribution and flow characteristics of surge-type glaciers in the Canadian High Arctic. Ann. Glaciol., 36L: 7381.Google Scholar
Costard, F., et al. (2007). Impact of the global warming on the fluvial thermal erosion over the Lena River in central Siberia. Geophys. Res. Lett., 34: L14501, doi: 10.1029é2007GL030212.Google Scholar
Cotté, C. and Guinet, C. (2007). Historical whaling records reveal major regional retreat of Antarctic sea ice. Deep Sea Res., 54: 243–52.Google Scholar
Cox, J. (2005). The snow/snow water equivalent ratio and its predictability across Canada. MSc thesis, Montreal: McGill University. 102 pp.Google Scholar
Crary, A. P. (1958). Arctic ice island and ice shelf studies. Part I. Arctic, 11: 242.Google Scholar
Crary, A. P. (1960). Arctic ice islands and ice shelf studies. Part. II. Arctic., 13: 3250.Google Scholar
Crary, A. P., et al. (1962). Glaciological regions of the Ross Ice Shelf. J. Geophys. Res., 67: 2791–807.Google Scholar
Crocker, G. B. and Cammaert, A. B. (1994). Measurements of bergy bit and growler populations off Canada’s East Coast. In: Proc. of IAHR Ice Symposium, Trondheim, Norway, August 23–26, 1994, Vol 1: 167–76.Google Scholar
Crites, H., Kokelj, S. V., and Lacelle, D. (2020). Icings and groundwater conditions in permafrost catchments of northwestern Canada. Sci Rep, 10: 3283, https://doi.org/10.1038/s41598-020–60322-wGoogle Scholar
Cullen, , et al. (2013). A century of ice retreat on Kilimanjaro: The mapping reloaded. Cryosphere, 7: 419–31.Google Scholar
Curran, M. A. J., et al. (2003). Ice core evidence for sea ice decline since the 1950s. Science 302, 295: 1890–2.Google Scholar
Curry, J. A., Schramm, J. L., and Ebert, E. E. (1995). Sea ice-albedo climate feedback mechanism. Journal of Climate, 8: 240–7.Google Scholar
Cuffey, K. M. and Paterson, W. S. B. (2010). The physics of glaciers. 4th edn. Burlington, MA: Butterworth-Heinemann/Elsevier. 704 pp.Google Scholar
Czudek, T. and Demek, J. (1970). Thermokarst in Siberia and its influence on the development of lowland relief. Quat. Res., 1: 103–20.Google Scholar
Dadic, R., et al. (2010). Wind influence on snow depth distribution and accumulation over glaciers. J. Geophys. Res., 115: F01012. doi: 10.1029/2009JF001261.Google Scholar
Dahl, S. O., et al. (2005). Weichselian glaciation history in the Rondane ‘dry valleys’ of central Scandinavia. Geological Society of America. 2005 Salt Lake City Annual Meeting, paper 178–9.Google Scholar
Dahl-Jensen, D., et al. (2009). The greenland ice sheet in a changing climate: snow, water, ice and permafrost in the arctic (SWIPA). Oslo: Arctic Monitoring and Assessment Programme (AMAP). 115 pp.Google Scholar
Dai, J. C., et al. (2009). Cold decade (AD 1810–1819) caused by Tambora (1815) and another (1809) stratospheric volcanic eruption. Geophy. Res. Lett., 36: L22703, doi: 10.1029/2009GL040882.Google Scholar
Daly, S. F. (2008). Evolution of frazil ice. Proceedings of 19th IAHR International Symposium on Ice “Using New Technology to Understand Water-Ice Interaction.” Jasek. M. (ed). Vol. 1: 2947.Google Scholar
Dansgaard, W., et al. (1969). One thousand centuries of climatic record from camp century on the greenland ice sheet. Science, 166 (3903): 377–80.Google Scholar
Darby, D. A. (2003). Sources of sediment found in sea ice from the western Arctic Ocean, new insights into processes of entrainment and drift patterns. J. Geophys. Res., 108 (C8): 3257.Google Scholar
Darby, D. A. (2008). Arctic perennial ice cover over the last 14 million years. Paleoceanog., 23: PA1S07.Google Scholar
Darwin, C. (1839). Journal of researches into the natural history and geology of the countries visited during the voyage of H.M.S. Beagle round the world, under the Command of Capt. Fitz Roy, R.N. 2nd edn. London, UK: H. Colburn. p. 325. (http://darwin-online.org.uk/content/frameset?itemID=F20&viewtype=text&pageseq=1).Google Scholar
Das, S. B., et al. (2008). Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science, 320: 778–81.Google Scholar
Davies, B. J. and Glasser, N. F. (2012). Accelerating shrinkage of Patagonian glaciers from the “Little Ice Age” (c. AD 1870) to 2011. J. Glaciol., 58: 1063–84.Google Scholar
Davis, P. T., Menounos, B., and Osborn, G. (2009). Introduction, Holocene and latest Pleistocene alpine glacier fluctuations: a global perspective. Quat. Sci. Rev., 28 (21–22): 2021–33.Google Scholar
De Angelis, H. and Skvarca, P. (2003). Glacier surge after ice shelf collapse. Science, 299 (5612): 1560–2.Google Scholar
DeBeer, C. M., Wheater, H. S., Carey, S. K., and Chun, K. P. (2016). Recent, climatic, cryospheric, and hydrological changes over the interior of western Canada: A review and synthesis. Hydrology and Earth System Sciences, 20: 1573–98.Google Scholar
DeConto, R. M., et al. (2008). Thresholds for Cenozoic bipolar glaciation. Nature, 455: 652–6.Google Scholar
DeConto, R. M. and Pollard, D. (2016). Contribution of Antarctica to past and future sea-level rise. Nature, 531: 591–7.Google Scholar
de Freitas, C. R. (1975). Estimation of the disruptive impacts of snowfalls in urban areas. J. Appl. Met., 14: 1166–73.Google Scholar
de la Mare, W. K. (1997). Abrupt mid-twentieth-century decline in Antarctic sea-ice extent from whaling records. Nature, 389: 5760.Google Scholar
de la Mare, W. K. (2009). Changes in Antarctic sea-ice extent from direct historical observations and whaling records. Climatic Change, 92: 461–93.Google Scholar
de Quervain, M. R. (1950). Die Festigkeitseigenschaften der Schneedecke und ihre Messung. Geofis. pura appl., 18: 315.Google Scholar
de Quervain, M. and Meister, R. (1987). Fifty years of snow profiles on the Weissflujoch and relations to the surrounding avalanche activity (1936/37–1985–86). In Salm, B. and Guler, H. (eds.), Avalanche formation, movement and effects. Proceedings of the Davos Symposium), IAHS Publ. no. 162, Wallingford, UK: IAHS. pp. 161–81.Google Scholar
de Rham, L. P., Prowse, T. D., and Bonsal, B. R. (2008). Temporal variations in river-ice breakup over the Mackenzie River Basin, Canada. J. Hydrol., 349: 441–54.Google Scholar
de Scally, F. A. (1992). Influence of avalanche snow transport on snowmelt runoff. J. Hydrol., 137: 7397.Google Scholar
Dedieu, J. F., et al. (2003). Glacier mass balance determination by remote sensing in the French Alps: Progress and limitation for time series monitoring. International Geoscience and Remote Sensing Symposium (IGARSS) ’03, Proceedings 4: 2602–04.Google Scholar
Dedrick, K. R. (2002). Estimating sea ice thickness distributions and modeling their evolution in time. Oceans ’02 MTSE/IEEE., 2: 877–83.Google Scholar
Dee, D. P., et al. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137: 553–97, doi: 10.1002/qj.828.Google Scholar
del Rosario Prieto, A., García-Herrera, B. R., and Hernández Martin, E. (2004). Early records of icebergs in the South Atlantic Ocean from Spanish documentary sources. Clim. Change, 66: 2948.Google Scholar
Demuth, M. N., Munro, D. S., and Young, G. J. (eds.). (2006). Peyto Glacier – One century of science. Saskatoon, Saskatchewan: National Water Research Institute.Google Scholar
den Hartog, G., et al. (1983). An investigation of a polynya in the Canadian archipelago, Pt. 3. Surface heat flux. J. Geophys. Res., 88: 2911–16.Google Scholar
Denton, G. H., et al. (2010). The last glacial termination. Science, 328 (5986): 1652–6.Google Scholar
Depoorter, M. A., et al. (2013). Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502 (7469): 8992, doi: 10.1038/nature12567.Google Scholar
Derksen, C., et al. (2009). Northwest Territories and Nunavut snow characteristics from a Subarctic traverse: Implications for passive microwave remote sensing. J. Hydromet., 10: 448–63.Google Scholar
Derksen, C., et al. (2014). Physical properties of Arctic versus subarctic snow: Implications for high latitude passive microwave snow water equivalent retrievals. J. Geophys. Res. Atmos., 119: 7254–70, doi: 10.1002/2013JD021264.Google Scholar
Derksen, C., Walker, A., Goodison, B., and Strapp, J. W. (2005). Integrating in situ and multi-scale passive microwave data for estimation of sub-grid scale snow water equivalent distribution and variability. IEEE Transactions on Geoscience and Remote Sensing, 43 (5): 960–72.Google Scholar
Derouin, S. (2020). River ice is disappearing, Eos, 101, AGU, Published on February 18, 2020, https://doi.org/10.1029/2020EO140159.Google Scholar
Déry, S. J. and Brown, R. D. (2007). Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback. Geophys. Res. Lett., 34 (22): L22504, doi: 10.1029/2007GL031474.Google Scholar
Deser, C. and Teng, H.-Y. (2008). Recent trends in Arctic sea ice and the evolving role of atmospheric circulation forcing, 1979–2007. In De Weaver, E. T., Bitz, C., and Tremblay, L.-B. (eds.), Arctic sea ice decline: Observations, projections, mechanisms, and implications. Washington, DC: American Geophysical Union. pp. 726.Google Scholar
Desinov, L. V. and Konovalov, V. G. (2007). Distancionny monitoring mnogoletnego regima oledenenia Pamira (Monitoring of multiannual glacial regime in the Pamir using remote sensing). Moscow: Inst. of Geography, RAS. Data Glaciol. Studies 103: 129–34 (in Russian).Google Scholar
Dewalle, D. R. and Rango, A. (2008). Principles of snow hydrology. Cambridge: Cambridge University Press. 410 pp.Google Scholar
Dobhal, D. P., Gergan, J. T., and Thayyen, R. J. (2004). Recession and morphogeometrical changes of Dokriani glacier (1962–1995), Garhwal Himalaya, India. Curr. Sci., 86 (5): 101–7.Google Scholar
Deutschen Höhlen- und Karstforscher. (2005). Berchtesgadener Alpen. Karst und Höhle 2004/2005. Munich: Verband Deutschen Höhlen- und Karstforscher. 237 pp.Google Scholar
De Vernal, A. and Hillaire-Marcel, C. (2008). Natural variability of Greenland climate, vegetation, and ice volume during the past million years. Science, 320 (5883): 1622–5.Google Scholar
de Woul, M. (2008). Response of glaciers to climate change. Dissertations from the Department of Physical Geography and Quaternary Geology no. 13. Stockholm University. 20 pp.Google Scholar
de Woul, M. and Hock, R. (2005). Static mass-balance sensitivity of Arctic glaciers and ice caps using a degree-day approach. Ann. Glacio., 42: 217–24.Google Scholar
Dessler, A. E., Schoeberl, M. R., Wang, T., Davis, S. M., and Rosenlof, K. H. (2013). Stratospheric water vapor feedback. Proceed. of National Academy of Sciences of the United States of America, 110: 18087–91.Google Scholar
Devik, O. (1949). Freezing water and supercooling, anchor ice and frazil ice. J. Glaciol, 1 (6): 307–9.Google Scholar
Deynoux, M. (2004). Earth’s glacial record. Cambridge: Cambridge University Press. 384 pp.Google Scholar
Diablobanquisa, , et al. (2016). September Arctic sea ice extent: 1935–2014, Revista de Climatología.Google Scholar
Dickfoss, P. V., et al. (1997). History of ice at Candelaria Ice Cave, New Mexico. In Maybery, K. (comp.) A natural History of El Malpais. Socorro, NM: New Mexico Bureau of Mines and Mineral Resources. Bulletin No. 156. pp.91112.Google Scholar
Dickfoss, P., Betancourt, J. L., and Thompson, L. (1997). History and paleoclimatic potential of Candelaria Ice Cave, west-central New Mexico. In Zidek, G. (ed.), A Natural History of El Malpais. New Mexico Bureau of Mines and Mineral Resources. Bulletin No. 156t, pp.91112.Google Scholar
Dickinson, R. E., et al. (1991). Evapotranspiration models with canopy resistance for use in climate models. A review. Agric. For. Meteorol., 54: 373–88.Google Scholar
Dickson, R. R. (2009). The integrated Arctic Ocean Observing System (iAOOS) in 2008. A Report of the Arctic Ocean Sciences Board. 84 pp.Google Scholar
Diemand, D. (1983). Measurement of iceberg temperatures. Icebrg Res. (Scot Polar Res, Inst., Cambridge), No. 5: 316.Google Scholar
Dieng, H. B., et al. (2017). New estimate of the current rate of sea level rise from a sea level budget approach. Geophy. Res. Lett., 44: 3744–51, https://doi.org/10.1002/2017GL073308Google Scholar
Ding, S., W. Chen, J. Feng, and H.-F. Graf, (2017). Combined Impacts of PDO and Two Types of La Niña on Climate Anomalies in Europe. Journal of Climate, 30, 3253–3278.Google Scholar
Ding, Y.-J. and Liu, S.-Y. (2006). The retreat of glaciers in response to recent climate warming in west China. Ann. Glaciol., 43: 97106.Google Scholar
Dingman, S. L., et al. (1980). Climate, snow cover, microclimate anhydrology of the Arctic coastal plain. In Brown, J., et al. (eds.), An arctic ecosystem: the coastal tundra at Barrow, Alaska. Stroudsburg, PA: Dowden, Hutchinson and Ross. pp. 3065.Google Scholar
Diolaiuti, G., et al. (2012). Evidence of climate change impact upon glaciers’ recession within the Italian Alps—The case of Lombardy glaciers. Theor. Appl. Climatol., 109: 429–45.Google Scholar
Dirmeyer, P. A., et al. (2006). GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Met. Soc., 87: 1381–97.Google Scholar
Ditlevsen, P. D. and Ditlevsen, O. D. (2009). On the stochastic nature of the rapid climate shifts during the Last Ice Age. J. Clim., 22: 446–57.Google Scholar
Divine, D. V. and Dick, C. (2006). Historical variability of sea ice edge position in the Nordic Seas. J. Geophys. Res., 111: C01001. doi: 10.1029/2004JC002851.Google Scholar
Dmitrenko, I. A., et al. (2006). Seasonal variability of Atlantic water on the continental slope of the Laptev Sea during 2002–2004. Earth Planet. Sci. Lett., 244: 736–43.Google Scholar
Dmitrenko, I. A., et al. (2009). Sea-ice production over the Laptev Sea 244: shelf inferred from historical summer-to-winter hydrographic observations of 1960s-1990s. Geophys. Res. Lett., 36: L13605.Google Scholar
Dobhal, D. P. (2004). Retreating Himalayan glaciers – An overview. Proc: Receding glaciers in Indian Himalayan Region (IHR) – Environmental and Social Implications, pp. 2638.Google Scholar
Dobrowolski, A. B. (1923). Historja naturalna lodu (Natural history of ice) (in Polish, French summary). Warsaw: Naklad H. Lindenfelda. 940 pp.Google Scholar
Dolan, W., Yang, X., Zhang, S., and Pavelsky, T. (2019). Working towards optical remote sensing of pan-Arctic river and lake ice, CGU HS Committee on River Ice Processes and the Environment, 20th Workshop on the Hydraulics of Ice Covered Rivers Ottawa, Ontario, Canada, May 14–16, 2019.Google Scholar
Dong, J., Walker, J. P., and Houser, P. R. (2005). Factors affecting remotely sensed snow water equivalent uncertainty. Remote Sens. Environ., 97 (1): 6882.Google Scholar
Donner, J. (2005). The Quaternary history of Scandinavia. Cambridge: Cambridge University Press. 212 pp.Google Scholar
Doran, P. T., et al. (2000). Sedimentology and geochemistry of a perennially ice-covered epishelf lake in Bunger Hills Oasis, East Antarctica. Antarct. Sci., 12: 131–40.Google Scholar
Doronin, Y. P. and Kheisin, D. E. (1977). Sea ice. Rotterdam: Balkema. 323 pp.Google Scholar
Dowdeswell, J. A. (1989). On the nature of Svalbard icebergs. J. Glaciol., 35: 224–34.Google Scholar
Dowdeswell, J. A., Whittington, R. J., and Hodgkins, R. (1992). The sizes, frequencies, and freeboards of East Greenland icebergs observed using ship radar and sextant. J. Geophys. Res., 97 (C3): 3515–28.Google Scholar
Dowdeswell, J. A., Glazovsky, A. F., and Macheret, Y. Y. (1995). Ice divides and drainage basins on the ice caps of Franz Josef Land, Russian High Arctic, defined from Landsat, KFA-1000 ad ERS-1 SAR imagery. Arct. Alp, Res, 27: 264–70.Google Scholar
Dowdeswell, J. A., et al. (2004). Form and flow of the Devon Island Ice Cap, Canadian Arctic. J. Geophys. Res., 109: F02002, doi: 10.1029/2003JF000095.Google Scholar
Dowdeswell, J. A. and Hagen, J. O. (2004). Arctic ice caps and glaciers. In Bamber, J. L. and Payne, A. J. (eds.), Mass balance of the cryosphere. Ch. 14, Cambridge: Cambridge University Press, pp. 527–57.Google Scholar
Dowdeswell, J. A., et al. (2010). The glaciology of the Russian High Arctic from Landsat imagery. In Williams, R. S. Jr. and Ferrigno, J. G. (eds.), Satellite image atlas of glaciers. Glaciers of Asia. U.S. Geological Survey Profess. Paper, 1386-F, pp. 94125.Google Scholar
Doyle, P. F. and Ball, J. F. (2008). Changing ice cover regime in southern British Columbia due to changing climate. In Proceedings of the 19th IAHR International Symposium on Ice. Using New Technology to Understand Water-Ice Interaction (Jasek M., Ed.). St Joseph Communications, Vancouver, Canada. pp. 5161.Google Scholar
Dozier, J., Schneider, S. R, and McGinnis, D. F. Jr. (1981). Effect of grain size and snowpack water equivalence on visible and near-infrared satellite observations of snow. Water Resour. Res., 17: 1213–21.Google Scholar
Dozier, J., et al. (2009). Interpretation of snow properties from imaging spectrometry. Remote Sens. Environ., 113: S25S37.Google Scholar
Drenkhan, F., et al. (2015) The changing water cycle: climatic and socioeconomic drivers of water-related changes in the Andes of Peru. Wiley Interdiscip. Rev. Water, 2 (6): 715–33, doi: 10.1002/wat2.1105.Google Scholar
Drewry, D. J., Jordan, S. R., and Jankowski, E. (1982). Measured properties of the Antarctic ice sheet: surface configuration, ice thickness, volume and bedrock characteristics. Ann. Glaciol., 3: 8391.Google Scholar
Driedger, C. L. and Fountain, A. G. (1989). Glacier outburst floods at Mount Rainier, Washington State, USA. Ann. Glaciol., 13: 51–5.Google Scholar
Drinkwater, M. R. (1998). Active microwave remote sensing of observations of Weddell Sea ice. In Jeffries, M. (ed.), Antarctic sea ice physical processes, interactions and variability. Antarctic Res. Ser. 74, Washington, DC: American Geophysical Union. pp. 187212.Google Scholar
Drobot, S. D. and Anderson, M. R. (2001). An improved method for determining snowmelt onset dates over Arctic sea ice using Scanning Multichannel Microwave Radiometer and Special Sensor Microwave/Imager data. J. Geophys. Res., 106 (D20): 24,03350.Google Scholar
Drobot, S. D., et al. (2008). Evolution of the 2007–2008 Arctic sea ice cover and prospects for a new record in 2008. Geophys. Res. Lett. 35 (L19501): 5.Google Scholar
Drygalski, E. von and Machatschek, F. (1942). Encyclopaedie der. Erdkunde. Gletscherkunde: ViennaL Franz Deuticke. 261 pp.Google Scholar
Dud-Rodkin, A., et al. (2004). Timing and extent of Plio-Pleistocene glaciations in north-western Canada and east-central Alaska. In Ehlers, J. and Gibbard, P. L. (eds.), Quaternary glaciations -extent and chronology, Part II, North America. New York: Elsevier. pp. 313–45.Google Scholar
Duguay, C. R., et al. (2003). Ice cover variability on shallow lakes at high latitudes: Model simulations and observations. Hydrol. Proc., 17: 3465–83.Google Scholar
Duguay, C. R., et al. (2006). Recent trends in Canadian lake ice cover. Hydrol. Proc., 20: 781801.Google Scholar
Dunbar, M. (1969). The geographical position of the North Water. Arctic, 22: 438–41.Google Scholar
Dunbar, M. and Greenway, K. R. (1956). Arctic Canada from the air. Ottawa: Queen’s Printer. 541 pp.Google Scholar
Dunble, D. H. (1860). On the contraction and expansion of ice. Canad. J. Industry, Sci., Art, n.s. No. 29: 418–25.Google Scholar
Dutra, E., et al. (2010). An improved snow scheme for the ECMWF land surface model: description and offline validation. Journal of Hydrometeorology, https://doi.org/10.1175/2010JHM1249.1Google Scholar
Dutrieux, P. et al. (2014). Strong sensitivity of Pine Island ice shelf melting to climatic variability. Science, 343: 174–8, https://doi.org/10.1126/science.1244341, 2014.Google Scholar
Dye, D. G. (2002). Variability and trends in the annual snow-cover cycle in Northern Hemisphere land areas, 1972–2000. . Hydrol. Proc., 16: 3065–77.Google Scholar
Dyer, J. L. and Mote, T. L. (2006). Spatial variability and trends in observed snow depth over North America. Geophys. Res. Lett., 33: L16503, doi: 10.1029/2006GL027258.Google Scholar
Dyunin, A. K., et al. (1977). Strong snow-storms, their effect on snow cover and snow accumulation. J. Glaciol., 19 (81): 441–9.Google Scholar
Dyurgerov, M. B. (2001). Mountain glaciers at the end of the twentieth century: global analysis in relation to climate and water cycle. Polar Geog., 25: 241336.Google Scholar
Dyurgerov, M. (2003). Mountain and subpolar glaciers show an increase in sensitivity to climate warming and intensification of the water cycle. J. Hydrol., 282: 164–76.Google Scholar
Dyurgerov, M. B. (2010). Reanalysis of glacier changes: from the IGY to the IPY, 1960–2008. Data Glaciol. Stud., 108: 1116.Google Scholar
Dyurgerov, M. B. and Bahr, D. B. (1999). Correlations Between glacier properties – Finding appropriate parameters for glacier monitoring. J. Glaciol., 45 (149): 916.Google Scholar
Dyurgerov, M. B. and Meier, M. F. (1999). Analysis of winter and summer glacier mass balances. Geog. Ann., 81A: 541–54.Google Scholar
Dyurgerov, M. B. and Meier, M. F. (2005). Glaciers and the changing Earth system: a 2004 snapshot. Inst. Arct. Alp. Res. Occas. Pap. 58. Boulder: University of Colorado. 117 pp.Google Scholar
Dyurgerov, M. B., Meier, M. F., and Bahr, D. B. (2009). A new index of glacier area change: A tool for glacier monitoring. J. Glaciol., 55 (192): 710–16.Google Scholar
Ebbesmeyer, C. C., Okubo, A., and Helset, H. J. M. (1980). Description of iceberg probability between Baffin Bay and the Grand Bank using a stochastic model. Deep-Sea Res., 27A: 975–86.Google Scholar
Ebert, E. E. and Curry, J. A. (1993). An intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere interactions. J. Geophys. Res., 98 (C6): 10,085110.Google Scholar
Eckert, N., Baya, H., and Deschatres, M. (2010). Assessing the response of snow avalanche runout altitudes to climate fluctuations using hierarchical modeling: Application to 61 winters of data in France. J. Climate, 23: 3157–80.Google Scholar
Eckert, N., et al. (2013). Temporal trends in avalanche activity in the French Alps and subregions: from occurrences and runout altitudes to unsteady return periods. J. Glaciol., 59 (213): 93114, doi: 10.3189/2013JoG12J091.Google Scholar
Edgar, K. M., et al. (2007). No extreme bipolar glaciation during the main Eocene calcite compensation shift. Nature, 448: 908–11.Google Scholar
Eicken, H., et al. (1995). Thickness, structure, and properties of level summer multi-year ice in the Eurasian sector of the Arctic Ocean. J. Geophys. Res., 100 (19): 22697–710.Google Scholar
Eicken, H., et al. (2005). Zonation of the Laptev Sea landfast ice cover and its importance in a frozen estuary. Global Planet. Change, 48: 5583.Google Scholar
Eicken, H., et al. (2009a). Field techniques for sea ice research. Fairbanks, AK: University of Alaska Press. 566 pp.Google Scholar
Eicken, H., et al. (2009b). Recurring spring leads and landfast ice in the Beaufort and Chukchi Seas, 1993–2004. Boulder, CO: National Snow and Ice Data Center. Digital media.Google Scholar
Eicken, H., Lovecraft, A. L., and Druckenmiller, M. J. (2009). Sea-ice system services: A framework to help identify and meet information needs relevant for Arctic observing networks. Arctic, 62: 119–36.Google Scholar
Eicken, H., Tucker, W. B. III, and Perovich, D. K. (2001). Indirect measurements of the mass balance of summer Arctic sea ice with an electromagnetic induction technique. J. Glaciol., 33: 194200.Google Scholar
Eisen, O., Harrison, W. D., and Raymond, C. F. (2001). The surges of Variegated Glacier, Alaska, U.S.A., and their connection to climate and mass balance. J. Glaciol., 47 (158): 351–58.Google Scholar
Eisen, O., et al. (2008). Ground-based measurements of spatial and temporal variability of snow accumulation In East Antarctica. Rev. Geophys., 46: RG2001, doi: 10.1029/2006RG000218.Google Scholar
Eisenman, I. (2010). Geographic muting of changes in the Arctic sea ice cover. Geophys. Res. Lett., 37: L16501, doi: 10.1029/2010GL043741.Google Scholar
Eisenman, I., Untersteiner, N., and Wettlaufer, J. S. (2007). On the reliability of simulated Arctic sea ice in global climate models. Geophys. Res. Lett., 34: L10501, doi: 10.1029/2007GL029914.Google Scholar
Eisenman, I. and Wettlaufer, J. S. (2009). Nonlinear threshold behavior during the loss of Arctic sea ice. Proc. Nat. Acad. Sci., 106: 2832.Google Scholar
Eckel, O. (1955). Statisches zur Vereisubg der Ostalpenseen. Wetter u. Leben, 7: 4957.Google Scholar
Elder, K. and Armstrong, B. (1987). A quantitative approach for verifying avalanche hazard ratings. In Salm, B. and Gubler, H. (eds.), Avalanche formation, movement and effects. Int. Assoc, Hydrol Sci., 162: 593601.Google Scholar
Eldrett, J. S., et al. (2007). Continental ice in greenland during the eocene and oligocene. Nature, 446: 176–9.Google Scholar
Ellis, A. W. and Johnson, J. J. (2004). Hydroclimatic analysis of snowfall trends associated with the North American Great Lakes. J. Hydrometeorol., 5: 471–86.Google Scholar
Elo, A-R. and Vavrus, S. (2000). Ice modelling calculations comparison of the PROBE and LIMNOS models. Verh. Int. Verien. Limnol., 27: 2816–19.Google Scholar
Elsasser, H. and Messerli, P. (2001). The vulnerability of the snow industry in the Swiss Alps. Mountain Res. Devel., 21 (4): 335–9.Google Scholar
Elsberg, D. H., et al. (2001) Quantifying the effects of climate and surface change on glacier mass balance, J. Glaciol., 47: 649–58.Google Scholar
Elverhøi, A., et al. (2002). The Eurasian Arctic during the last ice age. Amer. Scientist, 90: 32–9.Google Scholar
Emery, W. J., Fowler, C. W., and Maslanik, J. A. (1997). Satellite derived maps of Arctic and Antarctic sea-ice motion: 1988–1994. Geophys. Res. Lett., 24: 897900.Google Scholar
Emmerton, C. A., Lesack, L. F. W., and Marsh, P. (2007). Lake abundance, potential water storage, and habitat distribution in the Mackenzie River Delta, western Canadian Arctic. Water Resour. Res., 43: W05419, doi: 10.1029/2006WR005139.Google Scholar
Engell, M. C. (1910). Die Enstehung der Eisberge. Zeit. f. Gletscherk., 5: 122–32.Google Scholar
England, J. H., et al. (2006). The Innuitian Ice Sheet: configuration, dynamics and chronology. Quart. Sci. Rev., 25: 689703.Google Scholar
England, J. H., et al. (2008). A millennial-scale record of Arctic Ocean sea ice variability and the demise of the Ellesmere Island ice shelves. Geophys. Res. Lett., 35 (L19502): 5.Google Scholar
Engram, M., Arp, C. D., Jones, B. M., Ajadi, O. A., and Meyer, F. J. (2018). Analyzing floating and bedfast lake ice regimes across Arctic Alaska using 25 years of space-borne SAR imagery. Remote Sensing of Environment, 209: 660–76, https://doi.org/10.1016/j.rse.2018.02.022Google Scholar
Ensminger, S. L., et al. (1999). Example of the dependence of ice motion on subglacial drainage system evolution, Matanuska Glacier, Alaska, United States, in Mickelson, D. M. and Attig, J. W. (eds.), Glacial processes: Past and present, Geol. Soc. Amer., Special Paper 337, pp. 1122.Google Scholar
Environment Canada. (2005). MANICE. Manual of standard procedures for observing and reporting ice conditions. Ottawa: Environment Canada, Canadian Ice Services.Google Scholar
EPICA Community Members. (2004). Eight glacial cycles from an Antarctic ice core. Nature, 429: 623–8.Google Scholar
EPICA Community Members. (2006). One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444: 195–8.Google Scholar
Escher-Vetter, H. (1985). Energy balance calculations from five years meteorological records at Vernagtferner,Oetztal Alps. Zeit. Gletscherk. Glazialgeol., 21: 397402.Google Scholar
Essery, R. (2013). Large-scale simulations of snow albedo masking by forests. Geophys. Res. Lett., 40: 5521–5, doi: 10.1002/grl.51008.Google Scholar
Essery, R. and Yang, Z.-L. (2001). An overview of models participating in the snow model intercomparison project (SnowMIP), 8th Scientific Assembly of IAMAS, Innsbruck, www.cnrm.meteo.fr/snowmip/Google Scholar
Essery, R., Long, Li and Pomeroy, J. W. (1999). A distributed model of blowing snow over complex terrain. Hydrol. Proc., 13: 2423–38.Google Scholar
Essery, R., et al. (2006). Boundary layer growth and advection of heat over snow and soil patches: Modelling and parametrization. Hydrological Processes, 20 (4): 953–67, doi: 10.1002/hyp.6122.Google Scholar
Essery, R., et al. (2009). SNOWMIP2, An evaluation of forest snow process simulations. Bull. Amer. Met. Soc., 90: 1120–35.Google Scholar
Essery, R., et al. (2009). SNOWMIP2, an Evaluation of Forest snow Process simulations. Bulletin America Meteorological Society, doi: 10.1175/2009BAMS2629.1.Google Scholar
Estilow, T. W., Young, A. H., and Robinson, D. A., (2015). A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth Syst. Sci. Data, 7: 137–42, doi: 10.5194/essd-7-137-2015.Google Scholar
Ethan, C. , Campbell, E. C. , et al. (2019). Antarctic offshore polynyas linked to Southern Hemisphere climate anomalies. Nature, 570: 319–25.Google Scholar
Etkin, B. (2010). A state space view of the ice ages – a new look at familiar data. Clim. Change, 100: 403–6.Google Scholar
Evans, S. (1967). Progress report on radio echo sounding. Polar Rec., 13 (85): 413–20.Google Scholar
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E., (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9: 1937–58, doi: 10.5194/gmd-9-1937-2016.Google Scholar
Fahnestock, M., et al. (1993). Greenland ice sheet surface properties and ice dynamics from ERS-1 SAR imagery. Science, 262 (5139): 1530–4.Google Scholar
Fahnestock, M. A., et al. (2000). A millennium of variable ice flow recorded in the Ross Ice Shelf, Antarctica. J. Glaciol., 46 (155): 652–64.Google Scholar
Fahnestock, M., Scambos, T. , Haran, T. , and Bauer, R. (2006). AWS data: characteristics of snow megadunes and their potential effect on ice core interpretation. Boulder, CO: National Snow and Ice Data Center. Digital media.Google Scholar
Fahnestock, M. A., et al. (2000). Snow megadune fields on the East Antarctic Plateau: extreme atmosphere-ice interaction. Geophys. Res. Lett., 27 (22): 3719–22.Google Scholar
Falkingham, J. C., Chagnon, R., and McCourt, S. (2002). Trends in sea ice in the Canadian Arctic. Ice in the environment, Vol. 1, Squire, V. and Langhorne, P. (eds.), Proc. 16th IAHR Internat. Sympos. on Ice, Int. Assoc. Hydraulic Eng. Rea., Dunedin, New Zealand. pp. 352–9.Google Scholar
Fallot, J.-M., Barry, R. G., and Hoogstrate, D. (1996). Variations of mean cold season temperature, precipitation and snow depths during the last 100 years in the Former Soviet Union (FSU). Hydrol. Sci. J., 42 (3): 301–27.Google Scholar
Fang, X., Ellis, C. R., and Stefan, H. G. (1996). Simulation and observation of ice formation (freeze-over) in a lake. Cold Reg. Sci. Technol., 24: 129–45.Google Scholar
Farinotti, D., Huss, M., Bauder, A., and Funk, M. (2009). An estimate of the glacier ice volume in the Swiss Alps. Glob. Planet. Change, 68: 225–31. doi: 10.1016/j.gloplacha.2009.05.004.Google Scholar
Farinotti, D., et al. (2015). Substantial glacier mass loss in the Tien Shan over the past 50 years. Nature Geoscience, doi: 10.1038/ngeo2513.Google Scholar
Farmer, C. J. Q., et al. (2010). Identification of snow cover regimes through spatial and temporal clustering of satellite microwave brightness temperatures. Remote Sensing Environ, 114: 199210.Google Scholar
Farmer, L. D. and Robe, R. Q. (1977). Photogrammetric determinations of iceberg volumes, photogram. Eng. Remote Sensing, 43: 183–9.Google Scholar
Farquharson, J. (1835). On the ice formed, under peculiar circumstances, at the bottom of running water. Phil. Trans. Roy Soc. London, 125: 329–43.Google Scholar
Farquharson, J. (1841). On ground Gru, or ice formed, under peculiar circumstances, at the bottom of running water. Phil. Trans. Roy Soc. London, 131: 37–9.Google Scholar
Farrell, S. L., et al. (2009). Five years of Arctic sea ice freeboard measurements from the Ice, Cloud and land Elevation Satellite. J. Geophys. Res., 14: C04008, doi: 10.1029/2008JC005074.Google Scholar
Feldl, N., Anderson, B., and Bordoni, S. (2017). Atmospheric eddies mediate lapse rate feedback and Arctic amplification. J. Clim., 9213–24, AMS, https://doi.org/10.1175/JCLI-D-16-0706Google Scholar
Feldl, N., Po-Chedley, S., Singh, H. K. A., et al. (2020). Sea ice and atmospheric circulation shape the high-latitude lapse rate feedback. Np.J. Clim. Atmos. Sci., 3, 41, https://doi.org/10.1038/s41612-020-00146-7Google Scholar
Feltham, D., Sammonds, P., and Hatton, D. (2002). Method of determining a geophysical-scale sea ice rheology from laboratory experiments. Ice in the environment. Proceedings, 16th IAHR International Symposium on Ice. Dunedin, New Zealand, pp. 94–9.Google Scholar
Ferraro, R., et al. (1994). Microwave measurements produce global climatic, hydrologic data. EOS Trans., AGU, 75 (30): 337–43.Google Scholar
Ferrians, O. J., Kachadoorian, R., and Green, G. W. (1969). Permafrost and related engineering problems in Alaska. USGS Prof. Paper 678, 37 pp.Google Scholar
Fetterer, F. and Untersteiner, N. (1998). Observations of melt ponds on Arctic sea ice. J. Geophys. Res., 103 (C11): 24, 821–35.Google Scholar
Fiedler, J. W. and Conrad, C. P. (2010). Spatial variability of sea level rise due to water impoundment behind dams. Geophys. Res. Lett., 37 (L12603): 6, doi: 10.1029/2010GL043462.Google Scholar
Fierz, C., et al. (2009). The international classification for seasonal snow on the ground. IHP-VII Technical Documents in Hydrology No83, IACS Contribution No1. Paris: UNESCO-IHP. 90 pp.Google Scholar
Finsterwalder, R. (1932). Wissenschaftliche Ergebnisse der Alai-Pamir Expedition 1928. I. Geodatische, topographische und glaziologische Ergebnisse. Berlin: D. Reimer.Google Scholar
Finsterwalder, S. (1897). Der Vernagtferner. Seine Geschichte und seine Vermessung in den Jahren 1888 und 1889. Wissenschaft. Ergänzungshefte, Zeitschr. Dtsch. Österreich. Alpenvereins 1: 196 & 2 maps.Google Scholar
Fischer, A. (2010). Glaciers and climate change: Interpretation of 50 years of direct mass balance of Hintereisferner. Global Planet. Change, 71: 1326.Google Scholar
Fischer, A., et al. (2016). Future Challenges for Glacier Monitoring in Austria, in Mountain Ice and Water, Developments in Earth Surface Processes. Elsevier Science.Google Scholar
Fitzharris, B. B. and Schaerer, P. A. (1980). Frequency of major avalanche winters. J. Glaciol., 26 (94): 4352.Google Scholar
Fitzharris, B. B., et al. (12 lead authors and 15 contributing authors). (1996). The cryosphere: changes and their impacts, Ch 7. In Watson, R. T., Zinyowera, M. C., Moss, R. H., and Dokken, D. J. (eds.), Climate change 1995: Impacts, Adaptations, and Mitigation of Climate Change: Scientific-Technical Analyses, IPCC (WMO, UNEP): Cambridge University Press, pp. 241–65.Google Scholar
Flato, G. M. (2004). Sea-ice modelling. In Bamber, J. l. and Payne, A. J. (eds.), Mass balance of the cryosphere: Observations and modelling of contemporary and future change. Cambridge, UK: Cambridge University Press, pp. 367–90.Google Scholar
Flato, G., et al. (2013). Evaluation of Climate Models. In Stocker, T. F., et al. (eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, NY: Cambridge University Press, pp. 741882.Google Scholar
Flato, G. M. and Brown, R. D. (1996). Variability and climate sensitivity of landfast Arctic sea ice. J. Geophys. Res., 101 (C11): 25, 767–77.Google Scholar
Föhn, P. M. B. (1987). The rutschblock as a practical tool for slope stability evaluation In Avalanche formation, movement and effects, IASH Publ. 162 (Symposium at Davos, 1986), pp. 223–8.Google Scholar
Föhn, P., et al. (1977). Evaluation and comparison of conventional and statistical methods of forecasting avalanche hazard. J. Glaciol., 19 (81): 375–87.Google Scholar
Forbes, J. D. (1859). Occasional papers on the theory of glaciers. Edinburgh: A. and C. Black, 278 pp.Google Scholar
Forel, F. A. (1895). Les variations périodiques des glaciers. Discours préliminaire. Extrait, Archives Sciences Phys. Nature, 34: 209–29.Google Scholar
Forsberg, R., et al. (2017). Greenland and Antarctica ice sheet mass changes and effects on global sea level. Surv. Geophys., 38: 89104, https://doi.org/10.1007/s10712-016–9398-7, 2017Google Scholar
Foster, J. L., et al. (2008). Spring snow melt timing and changes over Arctic lands. Polar Geog., 31: 145–57.Google Scholar
Foster, J. L., et al. (2009). Seasonal snow extent and snow mass in South America using SMMR and SSM/I passive microwave data (1979–2006). Remote Sensing Environ., 113: 291305.Google Scholar
Foster, G. L., Lunt, D. J., and Parrish, R. R. (2010). Mountain uplift and the glaciation of North America – a sensitivity study. Clim. Past, 6: 707–17.Google Scholar
Fountain, A. and Vecchia, A. (1999). How many stakes are required to measured the mass balance of a glacier. Geog. Ann., 81A: 563–8.Google Scholar
Fowler, A. C. and Krantz, W. B. (1994). A generalized secondary frost heave model. SIAM J. App.. Math., 54 (6): 1650–75.Google Scholar
Fox, D. (2008). Freeze-dried findings support a tale of two ancient climates. Science, 320: 1152–4.Google Scholar
Francis, J. A. and Vavrus, S. J. (2015). Evidence for a wavier jet stream in response to rapid Arctic warming. Environmental Research Letters, 10: 014005.Google Scholar
Frank, F. C. and Lee, R. (1966). Potential solar beam irradiation on slopes: tables for 30° to 50° latitude. U.S. Dept. of Agriculture. Forest Service. Research Paper RM-18, 116 pages.Google Scholar
Franssen, H. J. H. and Scherrer, S. C. (2007). Freezing of lakes on the Swiss Plateau in the period 1901–2006. Int. J. Climatol., 28 (4): 421–33.Google Scholar
Fraser, A. D. et al. (2010). High-resolution East Antarctic landfast sea-ice extent and variability from 2000 to 2008. Paper 57A008, Proceedings, Tromso Sea Ice Symposium, Int. Glaciol. Soc.Google Scholar
Frauenfeld, O. W., Zhang, T.-J., Barry, R. G., and Gilichinsky, D. (2004). Interdecadal changes in seasonal freeze and thaw depths in Russia. J. Geophys. Res., 109 (D05101): 112.Google Scholar
Frauenfeld, O. W., Zhang, T.-J., and McCreight, J. L. (2007). Northern Hemisphere freezing/ thawing index variations over the twentieth century. Int. J. Climatol., 27: 4763.Google Scholar
Frei, A. and Robinson, D. A. (1995). Evaluation of snow extent and its variability in the Atmospheric Model Intercomparison Project. J. Geophys. Res., 103 (D8): 8859–71.Google Scholar
Frei, A. and Robinson, D. A. (1999). Northern Hemisphere snow extent: regional variability 1972–1994. Int. J. Climatol., 19: 1535–60.Google Scholar
Frei, A., Miller, J. A., and Robinson, D. A. (2003). Improved simulations of snow extent in the second phase of the Atmospheric Model Intercomparison Project (AMIP-2). J. Geophys. Res., 108 (D12): 4369, doi: 10.1029/2002JD003030.Google Scholar
Frei, A., Tedesco, M., Lee, S., Foster, J., Hall, D. K., Kelly, R., and Robinson, D. A. (2012). A review of global satellite-derived snow products. Adv. Space Res., 50 (8): 1007–29.Google Scholar
French, H. M. (2007). The periglcial environment. 3rd edn. New York: Wiley, 458 pp.Google Scholar
French, H. (2008). Recent contributions to the study of past permafrost. Permafrost Periglac. Process, 19 (2): 179–94.Google Scholar
French, H. M. and Nelson, F. E. (2008). The permafrost legacy of Siemon W. Muller. In Kane, D. L. and Hinkel, K. M. (eds.), Proceedings of the Ninth International Conference on Permafrost, Fairbanks, AK: University of Alaska, Institute of Northern Engineering, pp. 475–80.Google Scholar
French, H. and Shur, Y. (2010). The principles of cryostratigraphy. Earth-Sci. Rev., 101: 190206.Google Scholar
Frezotti, M., et al. (2002). Snow dunes and glazed surfaces in Antarctica: new field and remote-sensing data. Annals Glaciol., 34: 81–8.Google Scholar
Fricker, H. A., Coleman, R., Padman, L., Scambos, T. A., Bohlander, J., and Brunt, K. M. (2009). Mapping the grounding zone of the Amery Ice Shelf, East Antarctica using InSAR, MODIS and ICESat, Antarctic Science, 21 (5): 515–32.Google Scholar
Friedman, J. H. (1985). Classification and multiple regression through projection pursuit. Technical Report LCS012, Department of Statistics, Stanford University.Google Scholar
Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. J. Amer. Stat. Assoc., 82: 249–66.Google Scholar
Fritze, H., et al. (2011). Shifts in Western North American Snowmelt Runoff Regimes for the Recent Warm Decades. J. Hydromet., https://doi.org/10.1175/2011JHM1360.1Google Scholar
Froese, D. G., et al. (2008). Ancient permafrost and a future, warmer Arctic. Science, 321: 1648.Google Scholar
Fu, C. and Yao, H. (2015). Trends of ice breakup date in south‐central Ontario. J. Geophys. Res. Atmos., 120: 9220–36.Google Scholar
Fujita, K. (2008). Effect of precipitation seasonality on climate sensitivity of glacier mass balance. Earth Planet. Sci. Lett., 276: 1419.Google Scholar
Furbish, D. J. and Andrews, J. T. (1984). The use of hypsometry to indicate long-term stability and response of valley glaciers to changes in mass transfer. J. Glaciol., 30: 199211.Google Scholar
Fyke, J., Sergienko, O., Lofverstrom, M., Price, S., and Lenaerts, J. (2018). An overview of interactions and feedbacks between ice sheets and the Earth system. Rev. Geophys., 56: 361408. https://doi.org/10.1029/2018RG000600Google Scholar
Gagliardini, O., et al. (2010). Coupling of ice-shelf melting and buttressing is a key process in ice-sheets dynamics. Geophys. Res. Lett., 27 (L14501): 5.Google Scholar
Gan, T. Y. (1996). Passive microwave snow research at the Canadian High Arctic. Canad. J. Remote Sensing, 22: 3644.CrossRefGoogle Scholar
Gan, T. Y., Barry, R., Gobena, A., and Rajagopalan, B., (2013). Changes in North American snowpacks for 1979–2007 detected from the snow water equivalent data of SMMR and SSM/I passive microwave and related climatic factors. J. Geophysic. Research-Atm., 118 (14): 7682–97, https://doi.org/10.1002/jgrd.50507Google Scholar
Gan, T. Y., Gobena, A., and Wang, Q. (2007). Precipitation of southwestern Canada: Wavelet, scaling, multifractal analysis, and teleconnection to climate anomalies. J. Geoph. Res.–Atm., 112: D10110, http://doi.org/10.1029/2006JD007157Google Scholar
Gan, T. Y., Kalinga, O., and Singh, P. R., (2009). Comparison of snow water equivalent retrieved from SSM/I passive microwave data using artificial neural network, projection pursuit & nonlinear regressions. Remote Sensing of Environment, 25 (21): 4593–615, doi: 10.1016/j.rse.2009.01.004.Google Scholar
García-Hernández, C., et al. (2017). Reforestation and land use change as drivers for a decrease of avalanche damage in mid-latitude mountains (NW Spain). Global and Planetary Change, 153: 3550, doi: 10.1016/j.gloplacha.2017.05.001.Google Scholar
Gardelle, J., Arnaud, Y., and Berthier, E. (2010). Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Global Planet. Change, 75: 4755.Google Scholar
Gardner, A. S., et al. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340: 852–7, https://doi.org/10.1126/science.1234532Google Scholar
Gascard, J.-C., Hervé le Goff, J. F. , and Weber, M. (2008). Exploring Arctic transpolar drift during dramatic sea ice retreat. Eos, 89 (3): 21–2.Google Scholar
Gascard, J. C., Zhang, J., and Rafizadeh, M. (2019). Rapid decline of Arctic sea ice volume: Causes and consequences. The Cryosphere Discuss., doi: 10.5194/tc-2019-2.Google Scholar
Gavrilova, M. K. (1973). Meteorological observations in Naled valley of Ulakhan-Taryn (Central Yakutia) In Alekseyev, V. R., et al. (eds.), Siberian naleds. USSR Academy of Sciences (1969). Draft Translation 399, Hanover, NH: US Army Cold Regions Research and Engineering Laboratory. pp. 136–57.Google Scholar
Ge, Y. and Going, G. (2009). North American snow depth and climate teleconnection patterns. J. Clim., 22: 217–33.Google Scholar
Gearheard, S., et al. (2006). “It’s not that simple”: A collaborative comparison of sea ice environments, their uses, observed changes, and adaptations in Barrow, Alaska, USA, and Clyde River, Nunavut, Canada. Ambio, 35 (4): 204–12.Google Scholar
General Secretariat of the Andean Community. (2007). The end of snowy heights? Glaciers and climate change in the Andean community. Peru, Lima: United Nations Programme for the Environment and Spanish International Cooperation Agency. 104 pp.Google Scholar
Gerdes, R. and Koeberle, C. (2007). Comparison of Arctic sea ice thickness variability in IPCC climate of the 20th Century experiments and in ocean–sea ice hindcasts. J. Geophys. Res., 112 (C4): C04S13. 12 pp.Google Scholar
Gerrard, J. A. F., Perutz, M. F., and Roch, A. (1952). Measurement of the velocity distribution along a vertical line through a glacier. Proc. Roy. Soc., London, A, 213 (1115): 546–58.Google Scholar
Gersonde, R. and Zielinski, U. (2000). The reconstruction of late Quaternary Antarctic sea-ice distribution – the use of diatoms as a sea-ice proxy. Palaeogeog., Palaeoclimatol., Palaeoecol., 162: 263–86.Google Scholar
Gidrometeoizdat, : The Avalanche Cadastre of the USSR, The Federal Service for Hydrometeorology and Environmental Monitoring of the USSR, Leningrad, USSR, 1–20, 1984–1991.Google Scholar
Gillan, B. J., Harper, J. T., and Moore, J. N. (2010). Timing of present and future snowmelt from high elevations in northwest Montana. Water Resour. Res., 46 (1): W01507. http://dx.doi.org/10.1029/2009WR007861Google Scholar
Gillespie, A. and Molnar, P. (1995). Asynchronous maximum advances of mountain and continental glaciers. Rev. Geophys., 33: 311–64.Google Scholar
Ginsburg, B. M. and Soldatova, I. I. (1997). Long-term variability of ice phenomena dates on rivers as an indicator of climate variations in transitional seasons. Soviet Met. Hydrol., 11: 73–8.Google Scholar
Giovinetteo, M. B. (1964). Distribution of diagenetic snow facies in Antarctica and in Greenland. Arctic, 17: 3240.Google Scholar
Glasby, G. P. (ed.) (1990). Antarctic sector of the Pacific. Amsterdam: Elsevier. pp. 108–16.Google Scholar
Glazyrin, G. E., Kaminyanskii, G. M., and Pertziger, F. I. (1993). Rezhim Lednika Abramova. (Regime of the Abramov glacier) (in Russian). St. Petersburg: Gidrometeoizdat. 228 pp.Google Scholar
Gleick, P. H. (1998). Water planning and management under climate change. Water Resources Update, 112: 2532.Google Scholar
Glen, J. W. (1952). Experiments on the deformation of ice. J. Glaciol., 2 (12): 111–14.Google Scholar
Glen, J. W. (1953). Rate of flow of polycrystalline ice. Nature, 172 (4381): 721–2.Google Scholar
Glen, J. W. (1958). The flow law of ice. A discussion of the assumptions made in glacier theory, their experimental foundations and consequences. Physics of the movement of the ice (Proc. Chamonix Symposium). Bull. Int. Assoc. Sci. Hydrol., 47: 7183.Google Scholar
Global Climate Observing System (GCOS). (2004). Implementation plan for global observing system for climate in support of the UNFCC. Geneva: World Meteorological Organization. WMO/TD No. 1219 (GCOS-92).Google Scholar
Global Cryosphere Watch, (2015). Snow dataset inventory, http://globalcryospherewatch.org/reference/snowinventory.php, accessed on May 19, 2016.Google Scholar
Global Snow Laboratory (GSL) (January 2008). Northern Hemisphere snow cover: largest anomaly since 1966, http://wattsupwiththat.com/2008/02/09/jan08-northern-hemisphere-snow-cover-largest-since-1966/, accessed on July 22, 2009.Google Scholar
Gloersen, P., Campbell, W. J., Cavalieri, D. J., Comiso, J. C., Parkinson, C. L., and Zwally, H. J. (1993). Arctic and Antarctic sea ice, 1978–1987: Satellite passive-microwave observations and analysis. NASA SP-511. Washington, DC: NASA. 290 pp.Google Scholar
Gobena, A. K. and Gan, T. Y. (2006). Low-frequency variability in southwestern Canadian streamflow: links to large-scale climate anomalies. Int. J. Climatol., 26: 1843–69, doi: 10.1002/joc.1336.Google Scholar
Goita, K., Walker, A. E., and Goodison, B. E. (2003). Algorithm development for the estimation of snow water equivalent in the boreal forest using passive microwave data. Int. J. Remote Sensing, 24: 1097–102.Google Scholar
Goldhar, C., Bell, T., and Wolf, T. (2014). Vulnerability to Freshwater Changes in the Inuit Settlement Region of Nunatsiavut, Labrador: A Case Study from Rigolet. Arctic, 67 (1): 7183, doi: 10.14430/arctic4365.Google Scholar
Golding, D. L. and Swanson, R. S. (1986). Snow distribution patterns in clearings and adjacent forest. Wat. Resour. Res., 22: 1931–40.Google Scholar
Goldner, A., Herold, N., and Huber, M. (2014). Antarctic glaciation caused ocean circulation changes at the Eocene–Oligocene transition. Nature, 511 (7511): 574–7, doi: 10.1038/nature13597.Google Scholar
Gong, D.-Y., Kim, S.-J., and Ho, C.-H. (2007). Arctic oscillation and ice severity in the Bohai Sea, East Asia. Int. J. Climatol., 27: 1287–302.Google Scholar
Goodison, B., et al. (2007). State and fate of the polar cryosphere, including variability of the Arctic hydrological cycle. WMO Bull., 56 (4): 284–92.Google Scholar
Goodison, B. E., Barry, R. G., and Dozier, J. (eds.). (1987). Large-Scale Effects of Seasonal Snow Cover, International Association of Hydrological Sciences, Publ. No. 166. Wallingford, Oxfordshire, UK: IAHS Press, 425 pp.Google Scholar
Goodison, B. E. and Walker, A. E. (1994). Canadian development and use of snow cover information from passive microwave satellite data. In Choudhury, B. J., Kerr, Y. H., Njoku, E. G., and Pampaloni, P. (eds.), ESA/NASA International Workshop, VSP, Utrecht, Netherlands. pp. 245–62.Google Scholar
Goodison, B. E., Walker, A. E., and Thirkettle, F. W. (1990). Determination of snow water equivalent on the Canadian Prairies using near real-time passive microwave data. In Kite, G. W. and Wankiewicz, A. (eds.), Proceedings of the Workshop on Applications of Remote Sensing in Hydrology, NHRI Symposium Series, Saskatoon, pp. 297309.Google Scholar
Goodwin, I. D. (1990). Snow accumulation and surface topography in the kata batic zone of eastern Wilkes Land. Antarctica. Antarct. Sci., 2 (3): 235–42.Google Scholar
Goor, Q., Kelman, R., and Tilmant, A. (2011). Optimal multipurpose multireservoir operation model with variable productivity of hydropower plants. J. Water Res. Plann. Manage., 137 (3): 258–67.Google Scholar
Goosse, H., et al. (2009a). Increased variability of the Arctic summer ice extent in a warmer climate, Geophys. Res. Lett., 36: L23702, doi: 10.1029/2009GL040546.Google Scholar
Goosse, H., et al. (2009b). Consistent past half-century trends in the atmosphere, the sea ice and the ocean at high southern latitudes. Clim. Dynam., 33 (7–8): 9991016.Google Scholar
Gorbunov, A. P. (2009). Consistent ice and icings of Central Asia: geography and dynamics. In Braun, L. N., et al. (eds.), Assessment of snow, glacier and water resources in Asia. (Selected papers from the Workshop in Almaty, Kazakhstan, 2006). UNESCO-IHP and the German IHP/HWRP National Committee. Koblenz: IHP/HWRP Secretariat. pp. 145–50.Google Scholar
Gordon, M., Savelyev, S., and Taylor, P. A. (2009). Measurements of blowing snow. Part II: Mass and number density profiles and saltation height at Franklin Bay, NWT, Canada. Cold Reg. Sci. Technol., 55: 7585.Google Scholar
Gough, A., et al. (2010). Sea ice on a supercooled ocean: field measurements of ice growth and structure in McMurdo Sound during winter 2009. Paper 57A098. Proceedings, Tromso Sea Ice Symposium. Int. Glaciol. Soc.Google Scholar
Gould, B., Haegeli, P., Jamieson, B., and Statham, G. (eds.), Canadian Avalanche Association, Revelstoke, BC, Canada.Google Scholar
Goulding, H. L., Prowse, T. D., and Beltaos, S. (2009). Spatial and temporal patterns of breakup and ice-jam flooding in the Mackenzie Delta, NWT. Hydrol. Process. An Int. J., 23: 2654–70.Google Scholar
Goulding, H. L., Prowse, T. D., and Bonsal, B. (2009). Hydroclimatic controls on the occurrence of breakup and ice-jam flooding in the Mackenzie Delta, NWT, Canada. J. Hydrol., 379: 251–67.Google Scholar
Gow, A. J. and Tucker, W. B. (1991). Physical and dynamical properties of sea ice in the polar oceans. CRREL Monograph 91–1. Hanover, NH: US Army Cold Regions Research and Engineering Laboratory.Google Scholar
Gow, A. J., et al. (1998). Physical and structural properties of landfast sea ice in McMurdo Sound, Antarctica. In Jeffries, M. O. (ed.), Antarctic sea ice: Physical processes, interactions and variability. Washington, DC: Amer. Geophys. Union. Antarct. Res. Ser., 74, pp.6988.Google Scholar
Granskog, M. A., Martma, T. A., and Vaikmäe, R. A. (2003). Development, structure and composition of land-fast sea ice in the northern Baltic Sea. J. Glaciol., 49 (164): 139–48.Google Scholar
Granskog, M. A., Kaartokallio, H., and Kuosa, H. (2010). Sea ice in non-polar regions. In Thomas, D. N. and Dieckmann, G. S. (eds.), Sea ice. 2nd edn. Chichester: Wiley-Blackwell. pp. 531–77.Google Scholar
Grant, K. (2010). Changes in glacier extent since the Little Ice Age and links to 20th/21st century climatic variability on Novaya Zemlya, Russian Arctic. PhD Dissertation. University of Reading, UK: Department of Geography. 480 pp.Google Scholar
Grant, K. L., Stokes, C. R., and Evans, I. S. (2010). Identification and characteristics of surge-type glaciers on Novaya Zemlya. Russian Arctic. J. Glaciol., 55 (194): 960–72.Google Scholar
Grassl, H. (1999). The cryosphere: An early indicator and global player. Polar Res., 18: 119–25.Google Scholar
Graversen, R. G., Mauritsen, T., Tjernström, M., Källen, E., and Svensson, G. (2008) Vertical structure of recent Arctic warming. Nature, 451: 53–6.Google Scholar
Graversen, R. G., Langen, P. L., and Mauritsen, T. (2014). Polar Amplification in CCSM4: Contributions from the Lapse Rate and Surface Albedo Feedbacks. Journal of Climate, 27: 4433–50.Google Scholar
Graversen, R. G. and Wang, M. H. (2009). Polar amplification in a coupled climate model with locked albedo. Climate Dynamics, 33: 629–43.Google Scholar
Gray, D. M. and Landine, P. G. (1988). An energy-budget snowmelt model for the Canadian Prairies. Canad. J. Earth Sci., 25: 1292–303.Google Scholar
Gray, D. M. and Male, D. H. (1981). Handbook of snow: Principles, processes, management and use. Toronto: Pergamon Press, 776 pp.Google Scholar
Grenfell, T. C. and Perovich, D. K. (2004). Seasonal and spatial evolution of albedo in a snow-ice-land-ocean environment. J. Geophys. Res., 109 (C01001): 18.Google Scholar
Grenfell, T. C., et al. (2010). Expedition to the Russian Arctic to survey black carbon in snow. Eos, 90 (43): 386–7.Google Scholar
Greve, R. and Hutter, K. (1995). Polythermal three-dimensional modelling of the Greenland ice sheet with varied geothermal heat flux. Annals Glaciol., 21: 812.Google Scholar
Greve, R. and Blatter, H. (2009). Dynamics of ice sheets and glaciers. New York: Springer, 287 pp.Google Scholar
Grey, D. M. and Prowse, T. (1993). Chapter 7 in Handbook of Hydrology, Editor-in-Chief, Maidment, D., McGraw Hill, ISBN 0-07-039732-5.Google Scholar
Griggs, J. A. and Bamber, J. L. (2011). Antarctic ice-shelf thickness from satellite radar altimetry. J. Glaciol., 57 (203): 485–98.Google Scholar
Griggs, J. and Bamber, J. L. (2009). Ice shelf thickness over Larsen C, Antarctica, derived from satellite Altimetry. Geophys. Res. Lett., 36: L19501, doi: 10.1029/ 2009GL039527.Google Scholar
Grinsted, A. (2013). An estimate of global glacier volume. The Cryosphere, 7: 141–51, doi: 10.5194/tc-7-141-2013, y Copernicus Publications.Google Scholar
Groh, A. and Horwath, M. (2016). The method of tailored sensitivity kernels for GRACE mass change estimates. Geophys. Res. Abstract, 18: EGU201612065.Google Scholar
Gronskaya, T. P. (2000). Ice thickness in relation to climate forcing in Russia. Verh, Int, Verin Limnol., 27: 2800–2.Google Scholar
Grove, J. (ed.). (2004). Little Ice Ages ancient and modern. 2 vols., London: Routledge. 402 pp. and 406718 pp.Google Scholar
Gruber, S. and Haeberli, W. (2009). Mountain permafrost. In Margesin, R. (ed.), Permafrost soils. Berlin: Springer Verlag. pp. 3344.Google Scholar
Gu, N., et al. (2005). Study on spatial characteristics of sea ice reserves in Liaodong Bay of China. J. Agric. Met., 61: 105–11.Google Scholar
Gudmandsen, P. (1975). Layer echoes in polar ice sheets. J. Glaciol., 15 (73): 95101.Google Scholar
Haarpaintner, J. (2006). Arctic-wide operational sea ice drift from enhanced resolution QuikScat/SeaWinds scatterometry and its validation. IEEE Trans. Geosci. Remote Sensing, 42: 1433–43.Google Scholar
Haas, C. and Druckenmiller, M. (2009). Ice thickness and roughness measurements. In Eicken, H., et al. (eds.), Field techniques for sea ice research. Fairbanks, AK: University of Alaska Press. pp. 49116.Google Scholar
Haas, C., et al. (2008). Reduced ice thickness in Arctic Transpolar Drift favors rapid ice retreat. Geophys. Res. Lett., 35: L17501.Google Scholar
Haas, C., et al. (2010). Synoptic airborne thickness surveys reveal state of Arctic sea ice cover. Geophys. Res. Lett., 37 (L09501): 5.Google Scholar
Hachem, S., Allard, M., and Duguay, C. (2008). A new permafrost map of Quebec– Labrador derived from near-surface temperature data of the Moderate Resolution Imaging Spectroradiometer (MODIS). In Kane, D. L. and Hinkel, K. M. (eds.) Ninth International Conference on Permafrost, June 29–July 3, 2008, University of Alaska Fairbanks. Proceedings, Vol. 1. Fairbanks, AK: University of Alaska, Fairbanks, Institute of Northern Engineering. pp. 591–6.Google Scholar
Haeberli, W. (1973). Die Basistemperatur der winterliche Schneedecke als moeglicher Indikator fuer die Verbreitung von Permafrost in denAlpen. Zeit. Gletscherk. Glazialgeol., 9: 221–7.Google Scholar
Haeberli, W. (1975). Untersuchungen zur Verbreitung von Permafrost zwischen Flüellapass und Piz Grialetsch (Graubunden). Mitteil. Versuchsanstalt Wasserbau, Hydrologie u, Glaziologie, ETH, Zurich. 17: 221 pp.Google Scholar
Haeberli, W. (1990). Glacier and permafrost signals of 20th-century warming. Annals Glaciol., 14: 99101.Google Scholar
Haeberli, W. and Gruber, S. (2009). Global warming and mountain permafrost. In Margesin, R. (ed.), Permafrost soils. Berlin: Springer Verlag. pp. 205–18.Google Scholar
Haeberli, W. and Hohmann, R. (2008). Climate, glaciers and permafrost in the Swiss Alps 2050: Scenarios, consequences, and recommendations. In Kane, D. L. and Hinkel, K. M. (eds.), Ninth International Conference on Permafrost, 29 June–3 July 2008, University of Alaska Fairbanks. Proceedings, Vol. 2. Fairbanks, AK: University of Alaska. pp. 607–12.Google Scholar
Haeberli, W., Cihlar, J., and Barry, R. G. (2000). Glacier monitoring within the Global Climate Observing System. Annals Glaciol., 31: 241–6.Google Scholar
Haefeli, R, (1940). Zur Mechanik aussergewohnlicher Gletscherschwankungen, Schweiz. Bauzeitung, 115 (16).Google Scholar
Haegeli, P. (2019). Avalanches in Canada: Understanding and mitigating the risks, Annual Mountain Report, Alpine Club of Canada.Google Scholar
Hägeli, P. and McClung, D. M. (2003). Avalanche characteristics of a transitional snow climate – Columbia Mountains, British Columbia, Canada. Cold Reg. Sci. Technol., 37 (3): 255–76.Google Scholar
Hagg, W., et al. (2005). A comparison of three methods of mass balance determination in the Tuyuksu Glacier Region, Tien Shan. J. Glaciol., 50: 505–10.Google Scholar
Hagg, W., et al. (2013). Glacier changes in the Big Naryn basin, Central Tian Shan. Global Planet. Change, 110: 4050, doi: 10.1016/j.gloplacha.2012.07.010.Google Scholar
Häkkinen, S., Proshutinsky, A., and Ashik, I. (2008). Sea ice drift in the Arctic since the 1950s. Geophys. Res. Lett., 35 (L19704): 5.Google Scholar
Hall, D. K. and Martinec, J. (1985). Remote sensing of snow and ice. London: Chapman and Hall. 196 pp.Google Scholar
Hall, D. K. and Riggs, G. A. (2007). Accuracy assessment of the MODIS snow products. Hydrol Processes, 21: 1534–47.Google Scholar
Hall, D. K., et al. (1995). Development of methods for mapping global snow cover using Moderate Resolution Imaging Spectroradiometer data. Remote Sens. Environ., 54: 127–40.Google Scholar
Hall, D. K., et al. (2009). Evaluation of surface and near-surface melt characteristics on the Greenland ice sheet using MODIS and QuikSCAT data. J. Geophys. Res., 114: F04006, doi: 10.1029/2009JF001287.Google Scholar
Hall, M. H. P. and Fagre, D. B. (2003). Modeled climate-induced glacier change in Glacier National Park, 1850–2100. BioScience, 53: 131–40.Google Scholar
Halliday, M. D. (1954). Ice caves of the United States. Nat, Speleol. Soc. Bull., 16: 328.Google Scholar
Hallikainen, M. T. (1989). Microwave radiometry of snow. Adv. Space Res., 9: 267–75.Google Scholar
Hallikainen, M. T. and Jolma, P. A. (1992). Comparison of algorithms for retrieval of snow water equivalent from Nimbus-7 SMMR data in Finland. IEEE Trans. Geosci. Remote Sensing, 30: 124–31.Google Scholar
Hamberg, A. (1910). Die Gletscher des Sarekgebirges und ihre Untersuchung. Sveriges geolog. Undersök., 5: 126.Google Scholar
Hambrey, M. J. and Alean, J. (2004). Glaciers. Cambridge: Cambridge University Press. 376 pp.Google Scholar
Hambrey, M. J., Larsen, B., and Ehrmann, W. U. (1989). Forty million years of Antarctic glacial history yielded by Leg 119 of the Ocean Drilling Program. Polar Record, 25: 99106.Google Scholar
Hamilton, R. A., et al. (1956). British North Greenland Expedition 1952–4. Scientific results. Geog. J., 122: 203–37.Google Scholar
Han, L., et al. (2019). A novel approach for cloud detection in scenes with snow/ice using high resolution Sentinel-2 images. Atmosphere, https://doi.org/10.3390/atmos10020044Google Scholar
Hansen et al., 2000, Global land cover classi cation at 1 km spatial resolution using a classification tree approach, International Journal of Remote Sensing 21(6–7):1331–1364, DOI: 10.1080/014311600210209.Google Scholar
Hanna, E., et al. (2005). Runoff and mass balance of the Greenland ice sheet: 1958–2003. J. Geophys. Res., 110: D13108, doi: 10.1029/2004JD005641.Google Scholar
Hannah, C. G., Dupont, F. and Dunphy, M. (2009). Polynyas and tidal currents in the Canadian Arctic Archipelago. Arctic, 62: 8395.Google Scholar
Hansen, J. E. and Lebedeff, S. (1987). Global trends of measured surface air temperature. J. Geophys. Res., 92: 13345–72.Google Scholar
Hansen, J., Ruedy, R., Sato, M., and Lo, K. (2010). Global surface temperature change. Rev. Geophys., 48: RG4004, doi: 10.1029/2010RG000345.Google Scholar
Hanson, B. and Hooke, R. LeB. (2000). Glacier calving: a numerical model of forces in thecalving speed – water depth relation. J. Glaciol., 46: 188–96.Google Scholar
Hanson, C. L., Johnson, G. L., and Rango, A. (1999). Comparison of precipitation catch between nine measuring systems. J. Hydrol. Engineering, 4: 70–5.Google Scholar
Haq, B. U. and Schutter, S. R. (2008). A chronology of Paleozoic sea-level changes. Science, 322 (5898): 64–8.Google Scholar
Haran, T., et al. (compilers). (2006), MODIS mosaic of Antarctica (MOA) image map. Boulder, CO: National Snow and Ice Data Center. Digital media.Google Scholar
Harden, D., Barnes, P., and Reimnitz, E. (1977). Distribution and character of naleds in northeastern Alaska. Arctic, 30: 2840.Google Scholar
Hardy, J. P. and Hansen-Bristow, K. J. (1990). Temporal accumulation and ablation patterns in forests representing varying stages of growth. Proc. of the 58th Western Snow Conf. Sacramento, CA: 2334.Google Scholar
Hardy, J. P., et al. (1997). Snow ablation modeling at the stand scale in a boreal jack pine forest. J. Geophys. Res., 102 (D24): 29, 397405.Google Scholar
Hardy, J. P., et al. (1998). Snow ablation modelling in a mature aspen stand of the boreal forest. Hydrol. Process., 12: 1763–78.Google Scholar
Haresign, E. C. (2004). Glacio-limnological interactions at lake-calving glaciers. Unpubl. PhD thesis, University of St Andrews, Scotland.Google Scholar
Harington, E. R. (1934). The origin of ice caves. J. Geol., 42: 433–6.Google Scholar
Harlan, R. L. and Nixon, J. F. (1978). Ground thermal regime. In Andersland, O. B. and Anderson, D. M. (eds.), Geotechnical engineering for cold regions. New York: McGraw-Hill. pp. 103–50.Google Scholar
Harris, C., et al. (2009). Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Sci. Rev., 92: 117–71.Google Scholar
Harris, S. A. (2001). Sequence of glaciations and permafrost events. In Paepe, R. and Melnikov, V. (eds.), Permafrost response on economic development, environmental security and natural resources. Dordrecht: Kluwer. pp.227–52.Google Scholar
Harris, S. A. (2002). Global heat budget, plate tectonics and climatic change. Geogr. Annal., 84A: 19.Google Scholar
Harris, S. A. (2005). Thermal history of the Arctic Ocean environs adjacent to North America during the last 3.5 Ma and a possible mechanism for the cause of the cold events (major glaciations and permafrost events). Progr. Phys. Geog., 29: 218–37.Google Scholar
Harris, S., Brouchklov, A., and Guodong, C., 2018. Geocryology: Characteristics and Use of Frozen Ground and Permafrost Landforms. Leiden, The Netherlands: CRC Press, 765 pp, ISBN: 978–1-138–05416-5.Google Scholar
Harrison, W. D, et al. (2001). On the characterization of glacier response by a single time-scale. J. Glaciol., 47 (159): 659–64.Google Scholar
Hartmann, D. L., et al. (2013). Observations: Atmosphere and Surface. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the 5th Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., et al. editors]. Cambridge University Press, NY, USA.Google Scholar
Haseloff, M. and Sergienko, O. V. (2018). The effect of buttressing on grounding line dynamics. Journal of Glaciology, 64 (245): 417–31.Google Scholar
Hastenrath, S. (1981). The glaciation of the Ecuadorian Andes. Rotterdam: A.A. Balkema. 159 pp.Google Scholar
Hastenrath, S. (2008). Recession of equatorial glaciers: a photo documentation. Madison, WI: Sundog Publishing. 22 pp.Google Scholar
Hastenrath, S. (2009). Past glaciation in the tropics. Quat. Sci. Rev., 28 (9–10): 790–8.Google Scholar
Hastenrath, S. (2010). Climatic forcing of glacier thinning on the mountains of equatorial East Africa. Int. J. Climatol., 30: 4652.Google Scholar
Hattersley-Smith, G., et al. (1955). Northern Ellesmere Island, 1953 and 1954. Arctic 8: 216.Google Scholar
Haug, F., et al. (2005). North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature, 433: 821–5.Google Scholar
Haumann, F. A., Notz, D., and Schmidt, H. (2014). Anthropogenic influence on recent circulation-driven Antarctic sea ice changes. Geophys Res Lett., 41 (23): 8429–37, https://doi.org/10.1002/2014GL061659Google Scholar
Hauser, E. and Oedl, R. (1926). Eisbildung und meteorologische Beobachtungen. In Die Eisriesenwelt in Tennengebirge (Salzburg). Speolog. Institut, Vienna. 6, pp. 77105.Google Scholar
Hay, J. E. and Fitzharris, B. B. (1988). The synoptic climatology of ablation on a New Zealand glacier. J. Climat., 8: 201–15.Google Scholar
Hay, W. W., Flögel, S., and Söding, E. (2005). Is the initiation of glaciation on Antarctica related to a change in the structure of the ocean? Global Planet. Change, 45: 2333.Google Scholar
Hays, J. D., Imbrie, J., and Shackleton, N. J. (1976). Variations in the Earth’s orbit: Pacemaker of the Ice Ages. Science, 194: 1121–31.Google ScholarPubMed
Headland, R. K. (2009). A chronology of Antarctic exploration. A synopsis of events and activities from the earliest times until the International Polar Years, 2007–09. London: B. Quaritch. 722 pp.Google Scholar
Hedstrom, N. and Pomeroy, J. W. (1998). Measurements and modelling of snow interception in the boreal forest. Hydrol. Proc., 12: 1611–25.Google Scholar
Hegyi, B. M. and Taylor, P. C. (2017). The regional influence of the Arctic Oscillation and Arctic Dipole on the wintertime Arctic surface radiation budget and sea ice growth. Geophys. Res. Lett., 44, 4341–50.Google Scholar
Heierli, J., Gumbsch, P., and Zaiser, M. (2008). Anticrack nucleation as triggering mechanism for slab avalanches. Science, 321 (5886): 240–3.Google Scholar
Heil, P. and Hibler, W. D. III. (2002). Modeling the high-frequency component of Arctic sea ice drift and deformation. J. Phys. Oceanogr., 32: 3039–57.Google Scholar
Heim, A. (1885). Handbuch der Gletscherkunde. Stuttgart: J. Engelhorn, 560 pp.Google Scholar
Held, I. M. and Soden, B. J. (2000). Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25: 441–75.Google Scholar
Hellner, H. N., et al. (2008). The ISPOL drift experiment. Deep-sea Res. (Topical studies in oceanology), 55 (8–9): 913–17.Google Scholar
Henderson, G. R. and Leathers, D. J. (2010). European snow cover extent variability and associations with atmospheric forcings. Int. J. Climatol., 30 (10): 1443–51, doi: 10. 1002/joc. 1990.Google Scholar
Henriksen, M., et al. (2003). Lake stratigraphy implies an 80,000 yr delayed melting of buried dead ice in northern Russia. J. Quat. Sci., 18: 663–79, doi: 10.1002/jqs.788.Google Scholar
Henry, H. A. L. (2008). Climate change and soil freezing dynamics: historical trends and projected changes. Climatic Change, 87: 421–34.Google Scholar
Herbert, T. D., et al. (2010). Tropical ocean temperatures over the past 3.5 million years. Science, 328 (5985): 1530–4.Google Scholar
Herbert, W. (1969). Across the top of the world. The British Trans-Arctic Expedition, Harlow. Essex: Longmans. 209 pp.Google Scholar
Hernández-Henríquez, M. A., Déry, S. J., and Derksen, C. (2015). Polar amplification and elevation-dependence in trends of Northern Hemisphere snow cover extent, 1971–2014. Environ. Res. Lett., 10: 044010, doi: 10.1088/1748-9326/10/4/044010.Google Scholar
Heron, R. and Woo, M.-K. (1994). Decay of a High Arctic lake-ice cover: observations and modelling. J. Glaciol., 40 (135): 283–92.Google Scholar
Hess, H. (1904). Die Gletscher. Braunschweig: F. Vieweg und Sohn. 426 pp.Google Scholar
Hess, H. (1935). Die Bewegung im innern des Gletschers. Zeit. Gletscherkunde, 23: 135.Google Scholar
Hewitt, K. (2009). The Karakoram anomaly? Glacier expansion and the elevation effects, Karakoram Himalaya. Mountain Res. Devel., 25L: 332–40.Google Scholar
Hibler, W. D., III. (1979). A dynamic-thermodynamic sea ice model. J. Phys. Oceanogr., 9: 815–46.Google Scholar
Hibler, W. D., III. (2004). Modelling the dynamic response of sea ice. In Bamber, J. L. and Payne, A. J. (eds.), Mass balance of the cryosphere: Observations and modelling of contemporary and future change, Cambridge: Cambridge University Press. pp. 227334.Google Scholar
Hibler, W.D., III and Flato, G. M. (1992). Sea ice models. In Trenberth, K. (ed.), Climate System Modeling, Cambridge: Cambridge University Press. pp. 413–36.Google Scholar
Hibler, W. D., III and Schulson, E. M. (2000). On modeling the anisotropic failure and flow of flawed sea ice. J. Geophys. Res., 105 (C7): 17, 10520.Google Scholar
Hicks, F. (2008). An overview of river ice problems: CRIPE07 guest editorial. Cold Regions Sci. Technol., 55: 175–85.Google Scholar
Hicks, F. and Beltaos., S. (2008). River ice. In Woo, M.-k. (ed.), Cold region atmospheric and hydrologic studies The Mackenzie GEWEX experience, Vol. 2: Hydrologic processes. Dordrecht: Springer-Verlag. pp. 281305.Google Scholar
Hicks, F., Andrishak, R., and She, Y.-T. (2007). Modeling thermal and dynamic river ice processes. Current practices in cold regions engineering. Proceedings of the 13th International Conference on Cold Regions Engineering July 23–26, 2006, Orono, Maine. doi: 10.1061/40836(210)11.Google Scholar
Hill, B., Ruffman, A., and Drinkwater, K. (2002). Historical records of the incidence of sea ice on the Scotian Shelf and the Gulf of St. Lawrence, In: Ice in the environment, Vol. 1, Squire, V. and Langhorne, P. (eds.), Proc. 16th IAHR Internat. Sympos. on Ice, Int. Assoc. Hydraulic Eng. Res., Dunedin, New Zealand. pp. 313–20.Google Scholar
Hinkel, K. M. and Nelson, F. E. (2003). Spatial and temporal patterns of active layer thickness at Circumpolar Active Layer Monitoring (CALM) sites in northern Alaska,1995–2000. J. Geophys. Res., 108 (D2): 8168, 13, doi: 10.1029/2001JD000927.Google Scholar
Hinzman, L. D., et al. (2005). Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Clim. Change, 72 (3): 251–98.Google Scholar
Hirabayashi, Y., Döll, P., and Kanae, S. (2010). Global-scale modeling of glacier mass balances for water resources assessments: Glacier mass changes between 1948 and 2006. J. Hydrol., 390: 245–56.Google Scholar
Hirabayashi, Y., Zhang, Y., Watanabe, S., Koirala, S., and Kanae, S. (2013). Projection of glacier mass changes under a high-emission climate scenario using the global glacier model HYOGA2. Hydrol. Res. Lett., 7: 611.Google Scholar
Hirashima, H., et al. (2008). Avalanche forecasting in a heavy snowfall area using the SNOWPACK Model. Cold Regions Sci. Technol., 51: 191203.Google Scholar
Hjort, J., Karjalainen, O., Aalto, J., Westermann, S., Romanovsky, V. E., Nelson, F. E., Etzelmu ̈ller, B. , and Luoto, M. (2018). Degrading Permafrost Puts Arctic Infrastructure at Risk by Mid-Century. Nature Communications, 9: 5147.Google Scholar
Hobbs, W. (1910). The ice masses on and about the Antarctic continent. Zeit. f. Gletscherk., 5: 3673, 87122.Google Scholar
Hock, R. (2003). Temperature index melt modelling in mountain areas. J. Hydrol., 282: 104–15.Google Scholar
Hock, R. (2005). Glacier melt: a review of processes and their modeling. Progr. Phys. Geog., 29: 362–91.Google Scholar
Hock, R., et al. (2009). Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys. Res. Lett., 36: L07501, doi: 10.1029/2008GL037020.Google Scholar
Hock, R., et al. (2019). High mountain areas. In Pörtner, H.-O., et al. (eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate.Google Scholar
Hock, R., Bliss, A., Marzeion, B., Giesen, R. H., Hirabayashi, Y., Huss, M., Radić, V., and Slangen, A. B. A. (2019). GlacierMIP – A model intercomparison of global-scale glacier mass-balance models & projections. J. of Glaciology, 65 (251): 453–67, doi: 10.1017/jog.2019.22.Google Scholar
Hock, R. and Holmgren, B. (1996). Some aspects of energy balance and ablation of Storglaciären, northern Sweden. Geogr. Ann., 78A: 121–31.Google Scholar
Hodgkins, G. A., James, I. C., II, and Huntington, T. G. (2002). Historical changes in lake ice-out dates as indicators of climate change in New England, 1850–2000. Int. J. Climatol., 22 (15): 1819–27.Google Scholar
Hodgkins, G., Dudley, R., and Huntington, T. (2005). Changes in the number and timing of days of ice-affected flow on northern New England rivers, 1930–2000. Clim. Change, 71: 319–40.Google Scholar
Hoelzle, M. (1992).Permafrost occurrence from BTS measurements and climatic parameters in the eastern Swiss Alps. Permafrost & Periglac. Proc., 3: 143–7.Google Scholar
Hoelzle, M., et al. (2003). Secular glacier mass balances derived from cumulative glacier length changes. Global and Planetary Change, 36: 295306.Google Scholar
Hoelzle, M., et al. (2007). The application of glacier inventory data for estimating past climate change effects on mountain glaciers: A comparison between the European Alps and the Southern Alps of New Zealand. Global Planet. Change, 56: 6982.Google Scholar
Hoffman, M. J., Fountain, A. G., and Achuff, J. M. (2007). 20th-century variations in area of cirque glaciers and glacierets, Rocky Mountain National Park, Rocky Mountains, Colorado, USA. Annals Glaciol., 46: 349–54.Google Scholar
Hoffman, P. F., et al. (1998). A neoprotezoic snowball earth. Science, 281 (5381): 1342–6.Google Scholar
Hofmann, W. and Patzelt, G. (1983). Die Berg- und Gletscherstürze von Huascaran, Cordillera Blanca, Peru. Hochgebirgsforschung 6. Innsbruck: Universitätsverlag Wagner. 110 pp.Google Scholar
Hodgkins, G. A., James, I. C., and Huntington, T. G. (2002). Historical changes in lake ice-out dates as indicators of climate change in New England, 1850–2000. International Journal of Climatology, 22: 1819–27.Google Scholar
Høgda, K. A., Storvold, R., and Lauknes, T. R. (2010). SAR imaging of glaciers. In Pellikka, P. and Rees, W. G. (eds.), Remote sensing of glaciers, London: CRC Press, Taylor and Francis. pp. 153–78.Google Scholar
Holland, P. R. (2014). The seasonality of Antarctic sea ice trends. Geophys. Res. Lett., 41: 4230–37, doi: 10.1002/2014GL060172.Google Scholar
Holland, D. M. (2001). Explaining the Weddell Polynya – a large ocean eddy shed at Maud Rise. Science, 292 (5522): 1697–700.Google Scholar
Holland, D. M., et al. (2008). Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nature Geoscience, 1: 1–6, 46.Google Scholar
Holland, M. M., Curry, J. A., and Schramm, J. L. (1997). Modeling the thermodynamics of a sea ice thickness distribution. 2. Sea ice/ocean interactions. J. Geohys. Res., 102: 23, 93107.Google Scholar
Holland, M. M., Bitz, C. M., and Tremblay, H. (2006). Future abrupt reductions in the summer Arctic sea ice. Geophys. Res. Lett., 33: L23503, doi: 10.1029/2006GL028024.Google Scholar
Holland, M. M., Serreze, M. C., and Stroeve, J. (2010). The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models. Clim. Dynam., 34: 185200.Google Scholar
Holland, P. R., Jenkins, A., and Holland, D. M. (2008). The response of ice-shelf basal melting to variation in ocean temperature. J. Clim., 21: 2558–72, doi: 10.1175/2007JCLI1909.Google Scholar
Höllemann, J., et al. (2010). Ocean-sea ice-atmosphere observations in the Laptev Sea polynya, Proceedings, Tromso Sea Ice Symposium. Int. Glaciol. Soc., Paper 57A122.Google Scholar
Holmes, G. W., Hopkins, D. M., and Foster, H. l. (1968). Pingos in central Alaska. U.S. Geol. Survey Bull., 1241-H, 40 pp.Google Scholar
Hood, E., Williams, M., and Cline, D. (1999). Sublimation from a seasonal snowpack at a continental, mid-latitude alpine site. Hydrol. Proc., 13: 1781–97.Google Scholar
Hooke, R. LeB. (1989). Englacial and subglacial hydrology: A review. Arct. Alp. Res., 21: 221–33.Google Scholar
Hooke, R. LeB. (2005). Principles of glacier mechanics. 2nd edn. Cambridge: Cambridge University Press. 248 pp.Google Scholar
Hope, G. S., Peterson, J. A., Radok, U., and Allison, I. (1976). The equatorial glaciers of New Guinea Rotterdam. A./A. Balkema. 244 pp.Google Scholar
Hopkins, M. A. and Thorndike, A. S. (2002). Linear kinematic features in Arctic sea ice. In: Ice in the environment, Vol. 1, Squire, V. and Langhorne, P. (eds.), Proc. 16th IAHR Internat. Sympos. on Ice, Int. Assoc. Hydraulic Eng. Res., Dunedin, New Zealand. pp. 466–73.Google Scholar
Hopkins, M. A. and. Tuhkuri, J. (1999). Compression of floating ice fields. J. Geophys. Res., 104 (C7): 15, 815–25.Google Scholar
Horwath, , et al. (2016). ESA Climate Change Initiative (CCI) Sea Level Budget Closure (SLBC_cci) Sea Level Budget Closure Assessment Report D3.1, Version 1.0.Google Scholar
Hotzel, I. S. and Miller, J. D. (1983). Icebergs: their physical dimensions and the presentation and application of measured data. Annals Glaciol., 4: 116–23.Google Scholar
Houghton, J. (2009). Global Warming. 4th edn. Cambridge: Cambridge University Press. 438 pp.Google Scholar
Houle, D., Moore, J. D., and Provencher, J. (2007). Ice bridges on the St. Lawrence River as an index of winter severity, from 1620 to 1910. J. Climate, 20 (4): 757–64.Google Scholar
Howell, S. E. L., et al. (2008a). Multi-year sea-ice conditions in the western Canadian Arctic Archipelago region of the Northwest Passage: 1968–2006. Atmos. – Ocean, 46: 229–42.Google Scholar
Howell, S. E. L., et al. (2008b). Changing sea ice melt parameters in the Canadian Arctic Archipelago: Implications for the future presence of multiyear ice. J. Geophys. Res., 113 (C9): C09030, doi: 10.1029/2008JC004730.Google Scholar
Howell, S. E. L., et al. (2009). Variability in ice phenology on Great Bear Lake and Great Slave Lake, Northwest Territories, Canada, from SeaWinds/QuikSCAT: 2000– 2006. Remote Sens. Environ., 113: 816–34.Google Scholar
Hu, C., et al. (2016). Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin. Nat. Commun., 7: 11721, doi: 10.1038/ncomms11721Google Scholar
Huang, L., Luo, J., Lin, Z., Niu, F., and Liu, L. (2020). Using deep learning to map retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from CubeSat images. Remote Sensing of Environment, 237: 111534.Google Scholar
Hubbard, A., et al. (2000). Glacier mass-balance determined by remote sensing and high-resolution modelling. J. Glaciol., 46 (154): 491–8.Google Scholar
Hugelius, G., et al. (2014). Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11: 6573–93.Google Scholar
Huggel, C., Caplan-Auerbach, J., and Wessels, R. (2008). Recent extreme avalanches: triggered by climate change? Eos, 89 (47): 469–70.Google Scholar
Hugel, C., et al. (2005). The (2002) rock/ice avalanche at Kolka/ Karmadon,Russian Caucasus: assessment of extraordinary avalanche formation. Natural Hazards Earth System Sci., 5: 173–87.Google Scholar
Huggel, C., et al. (2008). The 2005 Mt. Steller, Alaska, rock–ice avalanche: a large slope failure in cold permafrost. In Kane, D. L. and Hinkel, K. M. (eds.), Proceedings, the Ninth International Conference on Permafrost, Fairbanks, AK: University of Alaska, Institute of Northern Engineering. pp. 747–52.Google Scholar
Hughes, P. D. (2009). Twenty-first century glaciers and climate in the Prokletije Mountains, Albania. Arct. Antarct. Alp. Res., 41: 455–9.Google Scholar
Hughes, T. J. (1998). Ice sheets. New York: Oxford University Press. 343 pp.Google Scholar
Hulbe, C., Fahnestock, M., and Shuman, C. (2005). Ice streams stop and start: evidence from the Ross Ice Shelf, interpreted using numerical models of ice shelf flow. American Geophysical Union, Fall Meeting 2005, abstract C44A-02.Google Scholar
Hunke, E. C. and Holland, M. M. (2007). Global atmospheric forcing data for Arctic ice-ocean modelling. J. Geophys. Res., 112: C0451413.Google Scholar
Huntington, T. G., Hodgkins, G. A., and Dudley, R. W. (2003). Historical trend in river ice thickness and coherence in hydroclimatological trends in Maine. Clim. Change, 61: 217–36.Google Scholar
Huntington, T. G., et al. (2004). Changes in the proportion of precipitation occurring as snow in New England (1949–2000). J. Clim., 16: 2626–36.Google Scholar
Huppert, H. E. (1980). The physical processes involved in the melting of icebergs. Ann. Glaciol., 1: 97101.Google Scholar
Huss, M. (2012). Extrapolating glacier mass balance to the mountain-range scale: the European Alps 1900–2100. Cryosph., 6: 713–27, doi: 10.5194/tc-6-713-2012.Google Scholar
Huss, M., et al. (2008). Modelling runoff from highly glacierized alpine drainage basins in a changing climate. Hydrol. Process., 22: 3888–902.Google Scholar
Huss, M., et al. (2010). 100-year mass changes in the Swiss Alps linked to the Atlantic Multidecadal Oscillation. Geophys. Res. Lett., 37 (10): L10501Google Scholar
Huss, M. and Farinotti, D. (2012). Distributed ice thickness and volume of all glaciers around the globe. J. Geophy. Res. Atmos., 117 (F4): F04010, doi: 10.1029/2012JF002523.Google Scholar
Huss, M. and Hock, R. (2018). Global-scale hydrological response to future glacier massef loss. Nature Climate Change, https://doi.org/10.1038/s41558-017–0049-xGoogle Scholar
Husseiny, A. A. (ed.). (1978). Iceberg utilization. Proceedings of the First International Conference on Iceberg Utilization for Fresh water Production, Weather Modification, and Other Applications. Vol. 1. Elmsford, NY: Pergamon Press.Google Scholar
Hutchings, J. K., Heil, P., Steer, A., and Hibler, W. D., III (2012). Small-scale spatial variability of sea ice deformation in the western Weddell Sea during early summer. J. Geophys. Res., 117: C01002, doi: 10.1029/2011JC006961.Google Scholar
Hutton, J. (1795). The theory of the Earth, with proofs and illustrations. Vol. 2. London: Caddell and Davies. p. 218.Google Scholar
Huybers, P. and Molnar, P. (2007). Tropical cooling and the onset of North American glaciation. Clim. Past, 3: 549–57.Google Scholar
Huybrechts, P. (1992). The Antarctic ice sheet and environmental change: a three-dimensional modelling study. Berichte Polarforsch., 99: 241.Google Scholar
Huybrechts, P., Payne, A. J., and EISMINT Intercomparison Group. (1996). The EISMINT benchmarks for testing ice-sheet models. Ann. Glaciol., 23: 112.Google Scholar
Huybrechts, P., et al. (2000). Balance velocities and measured properties of the Antarctic ice sheet from a new compilation of gridded data for modeling. Ann. Glaciol., 30: 5260.Google Scholar
IAHR Working Group on River Ice Hydraulics (1986). River ice jams; a state of the art report. Proceedings International Ice Symposim, Iowa City, USA. III: 561–94Google Scholar
IceSat-2 (2018). Measuring the Height of Earth’s Ice from Space, NASA. NP-2018–07-231-GSFC.Google Scholar
IMBIE (2018). Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558: 219, https://doi.org/10.1038/s41586-018–0179-yGoogle Scholar
Immerzeel, W. W., van Beek, L. P. H., and Bierkens, M. F. P. (2010). Climate change will affect the Asian water towers. Science, 328: 1382–5.Google Scholar
Ingólfsson, O. (2004). Quaternary glacial and climatic history of Antarctica. In Ehlers, J. and Gibbard, P. L. (eds.), Quaternary glaciations – extent and chronology. Part III. Dordecht, Netherlands: Elsevier. pp. 344.Google Scholar
Intergovernmental Panel on Climate Change (2007). The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (eds.), Cambridge, UK: Cambridge University Press.Google Scholar
Ireland, S. (1792). Picturesque views of the River Thames, from its source in Gloucestershire to the Nore. London: T. and J. Egerton. 2 vols. 209 and 258 pp.Google Scholar
IPCC (2019). Summary for Policymakers. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [Pörtner, H.-O., Roberts, D., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N. (eds.)], Springer Int. Publishing, Cham., Switzerland.Google Scholar
IPCC, (2013). SPM in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC [Stocker, T. F., D. Qin, G.-K. Platter, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, United Kingdom.Google Scholar
IPCC, (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R. K. Pachauri and L. A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.Google Scholar
IPCC, I. P. O. C., (2014). Fifth Assessment Report–AR5. Disponível em: www.ipcc.ch/report/ar5/. Acesso em, 20.Google Scholar
Ivana, K., et al., 2007, An Operational Iceberg Deterioration Model, Proceedings of the 16th (2007) International Offshore and Polar Engineering Conference, Paper 2007-JSC-409, 2007-07-01Google Scholar
Ives, J. D. (1985). Glacial lake outburst floods and risk engineering in the Himalaya, Occas. Paper No. 5, International Center for Integrated Mountain Development, Nepal: Kathmandu.Google Scholar
Ives, J. D. (1986). Glacial lake outburst floods and risk engineering in the Himalaya: a review of the Langmoche disaster, Khumbu Himal, August 4, 1985. Occas. Paper No, 10., International Center for Integrated Mountain Development, Nepal: Kathmandu:Google Scholar
Ives, J. D. (2007). Skaftafell in Iceland: A thousand years of change. Rwyjjavik: Ormstunga. 256 pp.Google Scholar
Ives, J. D., Shrestha, R. B., and Mool, P. K. (2010). Formation of glacial lakes in the Hindu Kush-Himalayas and GLOF risk assessment. Kathmandu, Nepal: International Centre for Integrated Mountain Development. 66 pp.Google Scholar
Ivy-Ochs, S., et al. (2009). Latest pleistocene and holocene glacier variations in the European Alps. Quat. Sci. Rev., doi: 10.1016/j.quascirev.2009.03.009.Google Scholar
Jacka, T. H. and Giles, A. B. (2007). Antarctic iceberg distribution and dissolution from ship-based observations. J. Glaciol., 53 (182): 341–56.Google Scholar
Jacob, T., Wahr, J., Pfeffer, W. T., and Swenson, S. (2012). Recent contributions of glaciers and ice caps to sea level rise. Nature, 482: 514–8. doi: 10.1038/nature10847.Google Scholar
Jacobs, J. D., Barry, R. G., and Weaver, R. L. (1975). Fast ice characteristics, with special reference to the eastern Canadian Arctic. Polar Record, 17: 521–36.Google Scholar
Jacobs, S. S., Helmer, H. H., Doake, C. S. M., Jenkins, A., and Frolich, R. M. (1992). Melting of ice shelves and the mass balance of Antarctica. J. Glaciol., 38: 375–87.Google Scholar
Jacobs, S. S., et al., 2011, Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nature Geosci. 4, 519–523.Google Scholar
Jamard, A. L., Garcia, S., and Bélanger, L. (2002). L’enquête permanente sur les avalanches (EPA). Statistique descriptive générale des événemnets et des sites. DESS Ingiénérie Mathématiques Option statistique. Grenoble, France: Université Joseph Fourier. 111 pp [Available online at www.avalanches.fr/].Google Scholar
Jamieson, B., Campbell, C., and Jones, A. (2008). Verification of Canadian avalanche bulletins including spatial and temporal scale effects. Cold Reg. Sci. Technol., 51: 204–13.Google Scholar
Jamieson, B. and Geldsetzer, T. (1996). Avalanche accidents in Canada, 1984–1996, Vol. 4. Ottawa: National Research Council. 202 pp.Google Scholar
Janowicz, J. R. (2010). Observed trends in the river ice regimes of northwest Canada. Hydrol. Res., 41: 462–70, https://doi.org/10.2166/nh.2010.145Google Scholar
Janowicz, J. R. and Hinzman, L. (2017). In Sesser, A. L., Rockhill, A. P., Magness, D. R., Reid, D., DeLapp, J., Burton, P., Schroff, E., Barber, V., and Markon, C. (eds.), Drivers of landscape change in the northwest boreal region of North America: Implications on policy and land management. U.S. Geological Survey Circular.Google Scholar
Jansson, P., Hock, R., and Schneider, T. (2003). The concept of glacier storage: A review. J. Hydrol., 282: 116–29.Google Scholar
Jasek, M. J. (1999). 1998 breakup and flood on the Yukon River at Dawson – Did El Nin˜o and climate change play a role? In Shen, H. T. (ed.), Ice in surface waters, Rotterdam: Balkema. pp. 761–8.Google Scholar
Jastrow, R. and Rampino, M. (2008). Origins of life in the universe. Cambridge: Cambridge University Press. 444 pp.Google Scholar
Jeffries, M. O. (1992). Arctic ice shelves and ice islands: Origin, growth and disintegration, physical characteristics, structural-stratigraphic variability, and dynamics. Rev. Geophys., 30: 245–67.Google Scholar
Jeffries, M. O. (2002). Ellesmere Island ice shelves and ice islands. In Williams, R. S. and Ferrigno, J. G. (eds.), Satellite image atlas of glaciers of the world: Glaciers of North America, Washington, DC: United States Geological Survey. pp. J147–64.Google Scholar
Jeffries, M. O., Morris, K., and Liston, G. E. (1995). A method to determine lake depth and water availability on the North Slope of Alaska with spaceborne imaging radar and numerical ice growth modeling. Arctic, 48: 367–74.Google Scholar
Jenkins, A., et al. (2010). Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nature Geosci., 3: 468–72.Google Scholar
Jenness, J. L. (1949). Permafrost in Canada. Arctic, 2: 1327.Google Scholar
Jensen, O. P., et al. (2007). Spatial analysis of ice phenology trends across the Laurentian Great Lakes region during a recent warming period. Limnol. Oceanog., 52 (5): 2013–26.Google Scholar
Jenssen, D. (1977). A three-dimensional polar ice sheet model. J. Glaciol., 18 (80): 373–89.Google Scholar
Jezek, K. C. (2003). Observing the Antarctic ice sheet using the Radarsat-1 synthetic aperture radar. Polar Geog., 27: 197209.Google Scholar
Jezek, K. C. (1999). Glaciological properties of the Antarctic ice sheet from RADARSAT-1 synthetic aperture radar imagery. Annals Glaciol., 29: 286–90.Google Scholar
Jezek, K. C. (2008). The RADARSAT-1 Antarctic mapping project. BPRC Rep. No. 22. Columbus, OH: Byrd Polar Res. Center, Ohio State University. 64 pp.Google Scholar
Jiang, Y.-D., et al. (2008). Long-term changes in ice phenology of the Yellow River in the past decades. J. Climate, 21 (18): 4879–86.Google Scholar
Jin, J., et al. (1999). Comparative analyses of physically based snowmelt models for climate simulations. J. Climate, 12: 2643–57.Google Scholar
Jing, Z., et al. (2006). Mass balance and recession of Urumqi glacier No. 1, Tien Shan, China, over the last 45 years. Annals Glaciol., 43: 214–7.Google Scholar
Jiskoot, H., Boyle, P., and Murray, T. (1998). The incidence of glacier surging in Svalbard: evidence from multivariate statistics. Computers & Geosci., 24: 387–99.Google Scholar
Johannessen, O. M., Bobylev, L., Shalina, E. V., and Sandven, S. (2020). Sea Ice in the Arctic, Past, Present and Future, 575 pp., Springer Polar Sciences, ISBN 978–3-030–21301-5.Google Scholar
Johannessen, O. M., et al. (2004). Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus, 56A: 328–41.Google Scholar
Johannessen, O. M., et al. (2007). Remote sensing of sea ice in the Northern Sea Route: studies and applications. Chichester, UK: Springer, Praxis Publishing. 472 pp.Google Scholar
Jóhannesson, T., Raymond, C. F., and Waddington, E. D. (1989). A simple method for determining the response time of glaciers. In Oerlemans, J. (ed.), Glacier fluctuations and climate change, Dordrecht: Kluwer. pp. 407–17.Google Scholar
Johanesson, T., et al. (1995). Degree-day glacier mass-balance modelling with applications to glaciers in Iceland, Norway and Greenland. J. Glaciol., 41 (138): 345–58.Google Scholar
Johnson, B. C., Jamieson, J. B., and Stewart, E. R. (2004). Seismic measurement of fracture speed in a weak snowpack layer. Cold Reg. Sci. Technol., 4: 41–5.Google Scholar
Johnson, M., et al. (2007). A comparison of Arctic Ocean sea ice concentration among the coordinated AOMIP model experiments. J. Geophys. Res., 112 (C04S11L): 16.Google Scholar
Johnston, M. B., Masterson, D., and Wright, B. (2009). Multi-year ice thickness: knowns and unknowns. Proceedings 20th POAC Conference, Paper POAC09–120. Lulea, Swededn: Lulea University of Technology.Google Scholar
Jomelli, V., et al. (2009). Fluctuations of glaciers in the tropical Andes over the last millennium and palaeoclimatic implications: A review. Palaeogeog., Palaeoclimatol., Palaeoecol., 281: 269–82.Google Scholar
Jones, A., et al. (eds.). (2010). Soil atlas of the northern circumpolar region. European Commission: Office for Official Publications of the European Communities. 144 pp.Google Scholar
Jones, G. S., Stott, P. A., and Christidis, N. (2013). Attribution of observed historical near-surface temperature variations to anthropogenic and natural causes using CMIP5 simulations. J. Geophys. Res. Atmos., 118: 4001–24, doi: 10.1002/jgrd.50239.Google Scholar
Jones, B. M., et al. (2008). Modern erosion rates and loss of coastal features and sites, Beaufort Sea coastline, Alaska. Arctic, 61: 361–72.Google Scholar
Jones, H. G. (2008). From Commission to Association: the transition of the International Commission on Snow and Ice (ICSI) to the International Association of Cryospheric Sciences (IACS). Annals Glaciol., 48: 15.Google Scholar
Jones, M. K. W., Pollard, W. H., and Jones, B. M. (2019). Rapid initialization of retrogressive thaw slumps in the Canadian High Arctic and their response to climate and terrain factors. Environmental Research Letters, 14: 055006.Google Scholar
Jones, P. D., Raper, S. C. B., and Wigley, T. M. L. (1986a). Southern Hemisphere surface air temperature variations: 1851–1984. J. Appl. Meteorol., 25: 1213–30.Google Scholar
Jones, P. D., et al. (1986b). Northern Hemisphere surface air temperature variations: 1851– 1984. J. Clim. Appl. Meteorol., 25: 161–79.Google Scholar
Jordan, R. (1991). A one-dimensional temperature model for a snow cover: Technical documentation for SNTHERM 89. CRREL Special Report 91–16. Hanover, NH: U.S. Army Cold Regions Research and Engineering Laboratory. 49 pp.Google Scholar
Jordan, R., Andreas, E., and Makshtas, A. (1999). Heat budget of snow covered sea ice at North Pole 4. J. Geophysical Res., 104 (C4): 7785–806.Google Scholar
Jorgenson, M. T. and Kreig, R. (1988). A model for mapping permafrost distribution based on landscape component maps and climatic variables. In Sennesset, K. (ed.), Permafrost. Proceedings of the fifth international conference on permafrost. Trondheim: Tapir. Vol.1, pp. 176–82.Google Scholar
Jorgenson, M. T., Shur, Y. L., and Pullman, E. R. (2006), Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett., 33: L02503, doi: 10.1029/2005GL024960.Google Scholar
Joughin, I., Abdalati, W., and Fahnestock, M. (2004). Large fluctuations in speed on Greenland’s Jakobshavn Isbrae glacier. Nature, 432: 608–10.Google Scholar
Joughin, I. and Tulaczyk, S. (2002). Positive mass balance of the Ross ice streams. West Antarctica Science, 295 (5554): 476–80.Google Scholar
Joughin, I., et al. (1999). Ice flow of Humboldt, Petermann, and Ryder Gletscher, northern Greenland. J. Glaciol., 45 (150): 231–41.Google Scholar
Joughin, I., et al. (2006). Integrating satellite observations with modelling: basal shear stress of the Filcher-Ronne ice streams, Antarctica. Phil. Trans. Roy. Soc., A, 364: 1795–814.Google Scholar
Joughin, I., et al. (2008). Continued evolution of Jakobshavn Isbrae following its rapid speedup. J.Geophys. Res., 113 (F04006): 14.Google Scholar
Juen, I., Kaser, G., and Georges, C. (2007).Modeling observed and future runoff from a glacierized tropical catchment (Cordillera Blanca, Perú). Global Planet. Change, 59: 3748.Google Scholar
Juliussen, H., et al. (2010). NORPERM, the Norwegian Permafrost Database – a TSP NORWAY IPY legacy. Earth Syst. Sci. Data, 2: 235–46.Google Scholar
Kääb, A. (2002). Monitoring high-mountain terrain deformation from digital aerial imagery and ASTER data. J. Photogramm. Remote Sens., 57: 3952.Google Scholar
Kääb, A. (2008). Glacier volume changes using ASTER satellite stereo and ICESat GLAS laser altimetry: A test study on Edgeøya, eastern Svalbard. IEEE Trans. Geosci, Remote Sensing, 46 (10): 2823–30.Google Scholar
Kaenzig, R. (2015). Can glacial retreat lead to migration? A critical discussion of the impact of glacier shrinkage upon population mobility in the Bolivian Andes. Population and Environment, 36 (4): 480–96, doi: 10.1007/s11111-3 014–0226-z.Google Scholar
Kalinin, V. M. and Yakupov, V. S. (1994). Permafrost thickness along meridional profile from East Siberian Sea to Sea of Okhotsk. ICAM-94 Proceedings: Permafrost and Engineering Geology: 320–2.Google Scholar
Kamb, B. (2001). Basal zone of the West Antarctic ice streams and its role in lubrication of their rapid motion. In Alley, R. B. and Bindschadler, R. A. (eds.), The West Antarctic Ice Sheet, Washington, DC: Am. Geophys. Union. pp. 157–99Google Scholar
Kamb, B. and LaChapelle, E. (1964). Direct observation of the mechanism of glacier sliding over bedrock. J. Glaciol., 5 (38): 159–72.Google Scholar
Kamniansky, G. M. and Pertziger, F. L. (1996). Optimization of mountain glacier mass balance measurements. Zeit. Gletscherk. Glazial geol., 32: 167–75.Google Scholar
Kanaev, L. A., Sezin, V. M., and Tsarev, B. K. (1987). Principles of avalanche danger forecast in the USSR. Proceedings of 2nd All-USSR Avalanche Meeting. Leningrad: Gidrometeoizdat, pp. 3746.Google Scholar
Kane, D. (1981). Physical mechanics of aufeis growth. Canad. J. Civil Engin., 8: 186–95.Google Scholar
Kang, E.-S., et al. (2008). Glacial runoff and its modeling. In Shi, Y.-F. (ed.), Glaciers and related environments in China, Beijing: Science Press. pp. 261316.Google Scholar
Kapnick, S. and Hall, A. (2012). Causes of recent changes in western North American snowpack. Clim. Dyn., 38: 1885–99, doi: 10.1007/s00382-011-1089-y.Google Scholar
Kapsch, M.-L., Graversen, R. G., and Tjernström, M. (2013). Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nature Climate Change, 3: 744, doi: 10.1038/nclimate1884.Google Scholar
Kargel, J. S., Leonard, G., Bishop, M. P., Kääb, A., and Raup, B. H. (eds.) (2014). Global land ice measurements from space. Springer-Praxis.Google Scholar
Kaser, G., Fountain, A., and Jansson, P. (2003). A manual for monitoring the mass balance of mountain glaciers with particular attention to low latitude characteristics. Technical documents in hydrology No. 59. Paris: UNESCO. 137 pp.Google Scholar
Kaser, G., et al. (2004). Modern glacier retreat on Kilimanjaro as evidence of climate change: Observations and facts. Int. J. Climatol., 24: 329–39.Google Scholar
Kaser, G., et al. (2006). Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophys. Res. Lett., 33 (19): L19501, doi: 10.1029/2006GL027511.Google Scholar
Kaser, G. and Osmaston, H. (2002). Tropical glacviets. Cambridge: Cambridge University Press. 207 pp.Google Scholar
Kashiwase, H., Ohshima, K. I., Nihashi, S., and Eicken, H. (2017). Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone. Scientific Reports, 7: 8170.Google Scholar
Kasser, P. (1973). Influence of changes in the glacierized area on summer run-off in the Porte du Scex drainage basin of the Rhône Symposium on the hydrology of glaciers. Int. Assoc. Sci. Hydrol., Publ., 95: 221–5.Google Scholar
Katsuyama, Y., Inatsu, M., Nakamura, K., and Matoba, S. (2017). Global warming response of snowpack at mountain range in northern Japan estimated using multiple dynamically downscaled data. Cold Regions Science and Technology, 136: 6271, doi: 10.1016/j.coldregions.2017.01.006.Google Scholar
Kattelmann, R. and Elder, K. (1991). Hydrologic characteristics and water balance of an alpine basin in the Sierra Nevada. Water Resour. Res., 27: 1553–62.Google Scholar
Kaufman, D., et al. (2009). Recent warming reverses long-term Arctic cooling. Science, 325 (5945): 1236–39, doi: 10.1126/science.1173983.Google Scholar
Kauker, F., et al. (2009). Adjoint analysis of the 2007 all time Arctic sea-ice minimum. Geophys. Res. Lett., 36: LL03707, doi: 10.1029/2008GL036323.Google Scholar
Kavanaugh, J. L., et al. (2009a). Dynamics and mass balance of Taylor Glacier, Antarctica: 1. Geometry and surface velocities J. Geophys. Res., 114 (F4): F04010, doi: 10.1029/2009JF001309.Google Scholar
Kavanaugh, J. L., et al. (2009b). Dynamics and mass balance of Taylor Glacier, Antarctica: 3. State of mass balance. J. Geophys. Res., 114 (F4): F04012.Google Scholar
Kay, J. E., Holland, M. M., and Jahn, A. (2011). Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophys. Res. Lett., 38: L15708, doi: 10.1029/2011GL048008.Google Scholar
Kayastha, R. B. (2001). Study of glacier ablation in the Nepalese Himalayas by the energy balance model and positive degree-day method. PhD Thesis. Graduate School of Science, Nagoya University, 95 ppGoogle Scholar
Kazaryan, P. (2005). Lena river. In Nuttall, M. (ed.), Encyclopedia of the Arctic. London: Routledge. 2380 pp.Google Scholar
Kazutaka, T., Hiroyuki, E., and Fumihiko, N. (2001). Observation of sea ice in the Sea of Okhotsk by using the thin/thick ice detecting algorithm. Seppyo, 63: 2134.Google Scholar
Kendra, J. R., Sarabandi, S., and Ulaby, F. T. (1998). Radar measurements of snow: experiment and analysis. IEEE Trans. Geosci. Remote Sens., 36 (3): 864–79.Google Scholar
Kennedy, M., Mrofka, D., and von der Borch, C. (2008). Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. Nature, 453: 642–5.Google Scholar
Kennett, D. J., et al. (2009). Nanodiamonds in the Younger Dryas boundary sediment layer. Science, 323: 94.Google Scholar
Kennett, J. P. (1977). Cenozoic evolution of Antarctic glaciation, the circum-Antarctic ocean, and their impact on global palaeoceanography. J. Geophys. Res., 82: 3843–60.Google Scholar
Kerkhoven, E. and Gan, T. Y. (2011). Differences and sensitivities in potential hydrologic impact of climate change to regional-scale Athabasca and Fraser River basins of the leeward and windward sides of the Canadian Rocky Mountain respectively. Clim. Chang., 106 (4): 583607, https://doi.org/10.1007/s10584-010–9958-7Google Scholar
Kern, S. (2009). Wintertime Antarctic coastal polynya area: 1992–2008. Geophys. Res. Lett., 36: L14501, doi: 10.1029/2009GL038062.Google Scholar
Kern, S., Kaleshcke, L., and Spreen, G. (2010). Climatology of the Nordic (Irminger, Greenland, Barents, Kara and White/Pechora) Seas ice cover based on 85 GHz satellite microwave radiometry: 1992–2008. Tellus, 62A: 411–34.Google Scholar
Kerr, R. A. (2009). Arctic summer sea ice could vanish soon but not suddenly. Science, 323 (5922): 1655.Google Scholar
Kershaw, G. P. and McCulloch, J. (2007). Midwinter snowpack variation across the Arctic treeline, Churchill, Manitoba, Canada. Arct. Ant. Alp. Res., 39: 915.Google Scholar
Ketchum, H. G. and Hildenbrand, R. N. (1977). Unusual iceberg sightings. Report of the International Ice Patrol Services in the North Atlantic Ocean. Appendix D. Bull. 63, CG-188–32. Dept. of Transportation, Coast Guard.Google Scholar
Key, J. R. and McLaren, A. S. (1989). Periodicities and keel spacing in the under-ice draft of the Canada Basin recorded by the USS Queenfish, August 1970. Cold Regions Sci. Technol., 16: 110.Google Scholar
Key, J., Drinkwater, M., and Ukito, J. (2007). A cryosphere theme report for the IGOS Partnership. Geneva: World Meteorological Organization, WMO/TD No. 1405, 100 pp.Google Scholar
Keylock, C. (1997). Snow avalanches. Progr. Phys. Geog., 21: 481500.Google Scholar
Khalsa, S. J. S., Dyurgerov, M., Khromova, T., Raup, B., and Barry, R. G. (2004). Space-based mapping of glacier changes using ASTER and GIS tools. IEEE Trans. Geosciences Remote Sensing, 42 (10): 2177–83.Google Scholar
Khan, S. A., et al. (2010). Spread of ice mass loss into northwest Greenland observed by GRACE and GPS. Geophys. Res. Lett., 37: L06501.Google Scholar
Khazendar, A., Rignot, E., and Larour, E. (2007). Larsen B Ice Shelf rheology preceding its disintegration inferred by a control method. Geophys. Res. Lett., 34: L19503, doi: 10.1029/2007GL030980.Google Scholar
Khazendar, A., Rignot, E., and Larour, E. (2009). Roles of marine ice, rheology, and fracture in the flow and stability of the Brunt/Stancomb-Wills Ice Shelf. J. Geophys. Res., 114: F04007, doi: 10.1029/2008JF001124.Google Scholar
Khon, V. C., et al. (2010). Perspectives of Northern Sea Route and Northwest Passage in the twenty-first century. Clim. Change, 100: 757–68.Google Scholar
Kivinen, S. and Rasmus, S. (2015). Observed cold season changes in a Fennoscandian fell area over the past three decades. Ambio, 44: 214–25, doi: 10.1007/s13280-014-0541-8.Google Scholar
Khromova, T. E., Dyurgerov, M. B., and Barry, R. G. (2003). Late-twentieth century changes in glacier extent in the Ak-Shirak Range, Central Asia, determined from historical data and ASTER imagery. Geophys. Res. Lett., 30 (16): 1863, pp. HLS 2–1 to 2–5, doi: 10.1029/2003GL017233.Google Scholar
Khromova, T. E., Osipova, G. B., Tsvetkov, D. G., Dyurgerov, M. D., and Barry, R. G. (2006). Changes in glacier extent in the eastern Pamir, Central Asia, determined from historical data and ASTER imagery. Remote Sensing of Environment, 102: 2432.Google Scholar
Kieffer, H., Kargel, J., Barry, R. G., et al. (2000). New eyes in the sky measure glaciers and ice sheets. EOS, 81 (24): 265, 270–1.Google Scholar
Kienzle, S. W. (2008). A new temperature based method to separate rain and snow. Hydrol. Process., 22 (26): 5067–85.Google Scholar
King, C. A. M. and Ives, J. D. (1956). Glaciological observations on some of the outlet glaciers of southwest Vatnajökull, Iceland, 1954. Pt II: Ogives. J. Glaciol., 2 (18): 563–9.Google Scholar
King, C. A. M. and Lewis, W. V. (1961). A tentative theory of ogive formation. J. Glaciol., 3 (29): 915–39.Google Scholar
King, J. C., et al. (2008). Snow-atmosphere energy and mass balance. In Armstrong, R. L. and Brun, E. (eds.), Snow and climate: physical processes, surface energy exchange and modeling, Cambridge, UK: Cambridge University Press. pp. 70124.Google Scholar
Kingdon-Ward, F. (1949). Burma’s icy mountains. London: Jonathon Cape. 287 pp.Google Scholar
Kinnard, C., et al. (2008). A changing Arctic seasonal ice zone – Observations from 1870–2003 and possible oceanographic consequences. Geophys. Res. Lett., 35 (L02507): 5.Google Scholar
Kinnard, C., et. al. (2011). Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature, 479 (7374): 509–12, doi: 10.1038/nature10581.Google Scholar
Kirschvink, J. L. (1992). Late Proterozoic low-latitude global glaciation: The snowball Earth. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic biosphere: A multidisciplinary study, Cambridge: Cambridge University Press. pp. 51–2.Google Scholar
Kissler, F. (1934). Eisgrenzen und Eisverschiebungen in der Arktis zwischen 50° W und 105° E in 34-jährigen Zeitraum 1898–1931. Gerlands Beitr. Geophys., 42: 1255.Google Scholar
Klavins, M., Briede, A., and Rodinov, V. (2009). Long term changes in ice and discharge regime of rivers in the Baltic region in relation to climatic variability. Clim. Change, 95: 485–98.Google Scholar
Klebelsberg, R. von. (1948/49). Handbuch der Gletscherkunde und Glazialgeologie, 2 vols. Vienna: Springer. 403 pp. and 602 pp.Google Scholar
Klein, A. G. and Kincaid, J. L. (2006). Retreat of glaciers on Puncak Jaya, Irian Jaya, determined from 2000 and 2002 IKONOS satellite images. J. Glaciol., 52 (176): 6579.Google Scholar
Klene, A. E., et al. (2001). The N-factor in natural landscapes: Variability of air and soil-surface temperatures, Kuparuk river basin, Alaska, USA. Arct. Antarct. Alp. Res., 33: 140–8.Google Scholar
Knight, P. G. (1999). Glaciers. London: Routledge. 261 pp.Google Scholar
Knowland, K. E., Gyakum, J. R., and Lin, C. A. (2010). A study of the meteorological conditions associated with anomalous early and late openings of a Northwest Territories winter road. Arctic, 63: 227–39.Google Scholar
Koboltschnig, G. R., et al. (2009). Glaciermelt of a small basin contributing to runoff under the extreme climate conditions in the summer of 2003. Hydrol. Proc., 23 (7): 1010–8.Google Scholar
Kobayashi, T. (1961). The growth of snow crystals at low supersaturations. Phil. Mag., 6 (71): 1363–70.Google Scholar
Koch, J., Menounos, B., and Clague, J. J. (2009). Glacier change in Garibaldi Provincial Park, southern Coast Mountains, British Columbia, since the Little Ice Age. Global Planet. Change, 66 (3–4): 161–78.Google Scholar
Koch, L. (1945). The East Greenland ice. Medd. Grønland (Coenhagen), 130 (3): 374 pp.Google Scholar
Kocin, P. J. and Uccellini, L. W. (2004). A snowfall impact scale derived from Northeast snowfall distributions. Bull. Amer. Met. Soc., 85: 177–94.Google Scholar
Koenig, S. L., Greenaway, E. R., and Dunbar, M. (1952). Arctic ice islands. Arctic, 5: 6895.Google Scholar
Koerner, R. M. (1970). Weather and ice observations of the British trans-Arctic expedition 1968–69. Weather, 25: 218–28.Google Scholar
Koerner, R. M. (1973). The mass balance of the sea ice of the Arctic Ocean. J. Glaciol., 12: 173–85.Google Scholar
König, M., Winther, J.-G., and Isaksson, E. (2001). Measuring snow and glacier ice properties from satellite. Rev. Geophys., 39: 127.Google Scholar
König Beatty, C. and Holland, D. M. (2010). Modeling landfast sea ice by adding tensile strength. J. Phys. Oceanog., 40: 185–98.Google Scholar
Kohonen, T., Oja, E., Simula, O., and Kangas, J. (1996). Engineering application of the self-organizing map. Proc. IEEE, 84 (10): 1358–83.Google Scholar
Koivusalo, H. J. and Burges, S. (1996). Use of 1-dimensional snow cover model to analyze measured snow depth and snow temperature data from southern Finland, Water Resources Series, Tech. Rept. 150. Seattle: University of Washington. 109 pp.Google Scholar
Kontar, Y. Y., et al. (2018). Advancing spring flood risk in the Arctic through interdisciplinary research and stakeholders collaboration, Chapter 25. In Beer, T., et al. (eds.), Global change and future Earth: The geoscience perspective, Cambridge: Cambridge University Press. 430 pp. ISBN-13 : 978-1107171596.Google Scholar
Kopp, P. E., et al. (2009). Probabilistic assessment of sea level during the last inter-glacial stage. Nature, 462: 863–7.Google Scholar
Köppen, W. (1881). Über mehrjährige Perioden der Witterung – III. Mehrjährige Änderungen der Temperatur 1841 bis 1875 in den Tropen der nördlichen und südlichen gemässigten Zone, an den Jahresmitteln. untersucht. Zeitschrift der Österreichischen Gesellschaft für Meteorologie, Bd XVI, 141–50.Google Scholar
Korona, J., et al. (2009). SPIRIT. SPOT 5 stereoscopic survey of polar ice: Reference images and topographies during the fourth International Polar Year (2007–2009). ISPRS. J. Photogramm. Remote Sens, 64: 204–12.Google Scholar
Kotlarski, S., et al. (2008). Representing glaciers in a regional climate model. Clim. Dynam., 34: 2746.Google Scholar
Kotlarski, S., Jacob, D., Podzun, R., and Paul, F., 2008, Representing glaciers in a regional climate model, Climate Dynamics, 34(1):27–46, DOI: 10.1007/s00382-009-0685-6Google Scholar
Kotlyakov, V. M. and Lebedeva, I. M. (1974). Nieve and ice penitentes, their way of formation and indicative significance. Zeit. f. Gletscherk. Glazialgeol., 10: 111–27.Google Scholar
Kotlyakov, V. M., Rototaeva, O. V., and Nosenko, G. (2004). The September 2002 Kolka glacier catastrophe In North Ossetia, Russian Federation: Evidence and analysis. Mt. Res. Dev., 24: 7883.Google Scholar
Kotlyakov, V. M. (ed. In chief) (1997). World Atlas of snow and ice resources. Moscow: Institute of Geography, Russian Academy of Sciences. Vol. 1, Atlas, 392 pp.; Vol. 2, Snow and ice phenomena and processes, 372 pp.; Vol. 3, Legends and explanations for all the maps in English, 144 pp.Google Scholar
Kouraev, A. V., et al. (2004). Sea ice cover in the Caspian and Aral Seas from historical and satellite data. J. Marine Systems, 47: L 89100.Google Scholar
Kovacs, A. (1975). A study of multi-year pressure ridges and shore ice pile-up. Calgary, Alberta: Arctic Petroleum Operators Association (APOA) Project, 89: 45.Google Scholar
Koyama, T. and Stroeve, J. (2019). Greenland monthly precipitation analysis from Arctic System Reanalysis (ASR):2000–2012. Polar Sc., 19: 112, doi.org/10.1016/j.polar.2018.09.001.Google Scholar
Krabill, W., et al. (2000). Greenland ice sheet: high-elevation balance and peripheral thinning. Science, 289: 428–9.Google Scholar
Krabill, W. B., et al. (2004). Greenland ice sheet: increased coastal thinning. Geophys. Res. Lett., 31: L24402.Google Scholar
Krasting, J. P., et al. (2013). Future changes in northern hemisphere snowfall. J. Climate, AMS, 26: 7813–28, doi.org/10.1175/JCLI-D-12–00832.1.Google Scholar
Kratz, T. K., et al. (2000). Patterns in the interannual variability of lake freeze and thaw dates. Verh. Int. Verein. Limnol., 27: 2796–9.Google Scholar
Krawczynski, M. J., et al. (2009). Constraints on the lake volume required for hydro-fracture through ice sheets. Geophys. Res. Lett., 36: L10501, doi: 10.1029/ 2008GL036765.Google Scholar
Kristensen, M. (1983). Iceberg calving and deterioration in Antarctica. Progress Phys. Geog., 7: 313–28.Google Scholar
Kristensen, M., Squire, V. A., and Moore, S. C. (1982), Tabular icebergs in ocean waves. Nature, 297 (5868): 669–71.Google Scholar
Kristoffersen, Y., et al. (2004). Seabed erosion on the Lomonosov Ridge, central Arctic Ocean: A tale of deep draft icebergs in the Eurasia Basin and the influence of Atlantic water inflow on iceberg motion? Paleoceanog., 19: PA3006, doi: 10.1029/2003PA000985.Google Scholar
Krupnik, I., et al. (eds.) (2010). SIKU: Knowing our ice. Documenting Inuit sea ice knowledge and use. New York: Springer. 300 pp.Google Scholar
Kudryavtsev, V. A., et al. (1974). Fundamentals of frost forecasting in geological engineering investigations. Draft Translation 606. Hanover, NH: US Army, Cold Regions Research and Engineering Laboratory. 489 pp.Google Scholar
Kuhn, B. F. 1787 (1788). Versuch ueber den Mechanismus der Gletscher. A. Hopfner’s Magazine Naturkunde Helvetiens (Zurich). 1: 119–36 and 3, 427–3: Odell and Davies, pp. 343–51 and 384–93. (1956 Facsimile reprint: University of Illinois Press, Urbana).Google Scholar
Kuhn, M., Dreiseitl, E., Hofinger, S., Markl, G., Span, N., and Kaser, G. (1999). Measurements and models of the mass balance of Hintereisferner. Geografiska Annaler, 81A: 541–54.Google Scholar
Kuijpers, A. and Werner, F. (2007). Extremely deep-draft iceberg scouring in the glacial North Atlantic Ocean. Geo-Mar. Lett., 27: 383–9.Google Scholar
Kukla, G. and Gavin, J. (1981). Summer ice and carbon dioxide. Science, 214 (4520): 497503.Google Scholar
Kulkarni, A. V., et al. (2007). Glacial retreat in Himalayas using Indian remote sensing satellite data. Current Sci., 92: 6974.Google Scholar
Kulkarni, A. V. and Karyakarte, Y. (2014). Observed changes in Himalayan glaciers. Current Sci., 106 (2): 237–44, www.jstor.org/stable/24099804.Google Scholar
Kunz, M., King, M. A., Mills, J. P., Miller, P. E., Fox, A. J., Vaughan, D. G., et al. (2012). Multi-decadal glacier surface lowering in the Antarctic Peninsula. Geophys. Res. Lett., 39: L19502, doi: 10.1029/2012GL052823.Google Scholar
Kurtakoti, P., Veneziani, M., Stössel, A., and Weijer, W. (2018). Preconditioning and formation of maud rise polynyas in a high-resolution earth system model. J. Clim., 31: 9659–78.Google Scholar
Kutuzov, S. and Shahgedanova, M. (2009). Glacier retreat and climatic variability in the eastern Terske – Alatoo, inner Tien Shan between the middle of the 19th century and beginning of the 21st century. Global Planet. Change, 69: 5970.Google Scholar
Kuusisto, E. and Elo, A. R. (2000). Lake and river ice variables as climate indicators in northern Europe. Verh. Int. Ver. Limnol., 27: 2761–4.Google Scholar
Kuz ’min, P. P. (1960). Formirovanie snezhnogo pokrova i metody opredeleniya snegozapaso v.Leningrad: Gidrometeoizdat (Transl. Snow cover and snow reserves. Jerusalem: Israel Program for Scientific Translation. 1963). 139 pp.Google Scholar
Kuzmichenok, V. A. (1989). Tekhnologiya i vozmozhnosty aerotopogrophicheskogo kar- togrphirovaniaizmeneniy lednikov (na primere oledenenya khrebta Akshiirak) (Methods and opportunities of the aero topographic cartography in context of glaciers changes (e.g. Akshiirak range glaciers)). Moscow: Inst. of Geography, RAS. Data Glaciol. Studies 67: 80–7 (in Russian).Google Scholar
Kwok, R. (2004). Annual cycles of multiyear sea ice coverage of the Arctic Ocean: 1999–2003. J. Geophys. Res., 109: C11004.Google Scholar
Kwok, R. (2009). Outflow of Arctic Ocean sea ice into the Greenland and Barents seas: 1979–2007. J. Climate, 27 (9): 2438–57.Google Scholar
Kwok, R., et al. (1995). Determination of the age distribution of sea ice from Lagrangian observations of ice motion. IEEE Trans. Geosci. Remote Sensing, 33: 392400.Google Scholar
Kwok, R., et al. (2007). Ice, Cloud, and land Elevation Satellite (ICESat) over Arctic sea ice: Retrieval of freeboard. J. Geohys. Res., 112: C12013, 19.Google Scholar
Kwok, R., et al. (2009). Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J. Geophys. Res., 114: C07005.Google Scholar
Kwok, R., et al. (2010). Large sea ice outflow into the Nares Strait in 2007. Geophys. Res. Lett., 37: L03502, doi: 10.1029/2009GL041872.Google Scholar
Kwok, R. and Cunningham, G. F. (2002). Seasonal sea ice area and volume production of the Arctic Ocean: November 1996 through April 1997. J. Geophys. Res., 107: 8038, doi: 10.1029/2000JC000469.Google Scholar
Kwok, R. and Cunningham, G. F. (2008). ICESat over Arctic sea ice: Estimation of snow depth and ice thickness. J. Geophys. Res., 113 (C08010): 17, 1025–30, doi: 10.1029/2008JC004753.CrossRefGoogle Scholar
Kwok, R. and Cunningham, G. F. (2015). Variability of Arctic sea ice thickness and volume from CryoSat-2. Phil. Trans. R. Soc. A, 373: 20140157.Google Scholar
Kwok, R. and Rothrock, D. A. (2009). Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett., 36: L15501, doi: 10.1029/2009GL039035.Google Scholar
Kwok, R. (2018). Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018). Environ. Res. Lett., 13: 105005.Google Scholar
Kwok, R., Pedersen, L. F., and Gudmandsen, P. (2010). Large sea-ice outflow into the Nares Strait in 2007. Paper 57A081. Proceedings, Tromo Sea Ice Symposium. Int. Glaciol. Soc.Google Scholar
Kwok, R., Pang, S. S., and Kacimi, S. (2017). Sea ice drift in the Southern Ocean: Regional patterns, variability, and trends. Elem. Sci. Anth., 5: 32, https://doi.org/10.1525/elementa.226Google Scholar
Kwok, R., Spreen, G., and Pang, G. (2013). Arctic sea ice circulation and drift speed: Decadal trends and ocean currents. J. Geophys. Res Oceans, 118: 2408–25.Google Scholar
Labadie, J. W. (2004). Optimal operation of multireservoir systems: State-of-the-art review. J Water Resour. Plan. Manage., 130 (2): 93111.Google Scholar
LaChapelle, E. R. (1965). Avalanche forecasting – a modern synthesis. U.S. Forest Service, www.avalanche.org/~moonstone/forecasting/avalanche%20forecasting-a%20modern%20synthesis.htmGoogle Scholar
La Chapelle, E. (1966). Avalanche forecasting a modern synthesis. International symposium on scientific aspects of snow and ice. IASH, Publ. No. 69: 350–6.Google Scholar
Lacroix, M., et al. (2005). River ice trends in Canada, Proc. 13th Workshop on the Hydraulics of Ice-covered Rivers, 2005. Canadian Geophysical Union, Committee on River Ice Processes and the Environment. pp. 4154.Google Scholar
Lacroix, P., et al. (2012). Monitoring of snow avalanches using a seismic array: Location, speed estimation, and relationships to meteorological variables. J Geophys. Res., 1171: F01034, doi: 10.1029/2011JF002106.Google Scholar
Laine, V. (2008). Antarctic ice sheet and sea ice regional albedo and temperature change, 1981–2000, from AVHRR Polar Pathfinder data. Remote Sensing Environ., 112 (3): 646–67.Google Scholar
Lambrecht, A. and Kuhn, M. (2007). Glacier changes in the Austrian Alps during the last three decades derived from the new Austrian Glacier Inventory. Annals Glaciol., 46: 177–84.Google Scholar
Lambrecht, A. and Mayer, C. (2009). Temporal variability of the non-steady contribution from glaciers to water discharge in western Austria. J. Hydrol., 376: 353–61.Google Scholar
Lambert, F., et al. (2008). Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature, 452: 616–19.Google Scholar
Landis, J. and Koch, G. (1977). The measurement categorical data. Biometrics, 33: 159–74.Google Scholar
Landy, J., Ehn, J., Shields, M., and Barber, D. (2014). Surface and melt pond evolution on landfast first‐year sea ice in the Canadian Arctic Archipelago. J Geophys Res Oceans, 119 (5): 3054–75.Google Scholar
Langlois, A., et al. (2009). Simulation of snow water equivalent using thermodynamic snow models in Quebec, Canada. J. Hydrometeorology, 10 (6), doi: 10.1175/2009JHM1154.1.Google Scholar
Langway, C. C. Jr. (2008). The history of early polar ice cores. Cold Reg. Sci. Technol., 52: 101–17.Google Scholar
Lantuit, H. and Pollard, W. H. (2008). Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada. Geomorphology, 95: 84102.Google Scholar
Lantuit, H., et al. (2008). Sensitivity of coastal erosion to ground ice contents: An Arctic-wide study based on the ACD classification of Arctic coasts. In Kane, D. L. and Hinkel, K. M. (eds.), Proceedings of the Ninth International Conference on Permafrost, Fairbanks, AK: University of Alaska. pp. 1025–30.Google Scholar
Larsen, E., et al. (2006). Late Pleistocene glacial and lake history of northwestern Russia. Boreas, 35: 394424.Google Scholar
Larsen, H. C., et al. (1994). Seven million years of glaciation in Greenland. Science, 264 (5161): 952–5.Google Scholar
Lassen, K. and Thejll, P. (2005). Multi-decadal variation of the East Greenland sea-ice extent, AD 1500–2000. Sci. Rep. 05–02, Danish Meteorological Institute. Denmark: Copenhagen. 13 pp.Google Scholar
Laternser, M. and Schneebeli, M. (2003). Long-term snow climate trends of the Swiss Alps (1931–99). Int. J. Climatol., 23 (7): 733–50.Google Scholar
Latifovic, R. and Poulio, D. (2007). Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record. Rem. Sens. Environ., 106: 492507.Google Scholar
Laumann, T. and Reeh, N. (1994). Sensitivity to climate change of the mass balance of glaciers in southern Norway. J. Glaciol., 39 (133): 656–65.Google Scholar
Lawler, D. M. (1988). Environmental limits of needle ice: a global survey. Arct. Alp. Res., 20: 137–59.Google Scholar
Lawler, D. M. (1989). Some observations on needle ice. Weather, 44 (10): 406–9.Google Scholar
Lawrence, D. M. and Slater, A. G. (2005). A projection of severe near-surface permafrost degradation during the 21st century. Geophys. Res. Lett., 32: L24401, doi: 10.1029/2005GL025080.Google Scholar
Lawrence, D. M. and Slater, A. G. (2006). Reply to comment by C. R. Burn and F. E. Nelson on “A projection of near-surface permafrost degradation during the 21st century.” Geophys. Res. Lett., 33: L21504, doi: 10.1029/2006GL027955. 7: 153–8.Google Scholar
Lawrence, D. M. and Slater, A. G. (2010). The contribution of snow condition trends to future ground climate. Clim. Dyn., 34: 969–81, doi: 10.1007/500382–009–0537–4.Google Scholar
Lawrence, D. M., et al. (2008). Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophys. Res. Lett., 35 (11): L11506, 15.Google Scholar
Lawrence, D. M., et al. (2008). Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and inclusion of soil organic matter. J. Geophys. Res., 113: F02011, doi: 10.1029/2007JF000883.Google Scholar
Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen, R., Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks, S., Krishfield, R., Kurtz, N., Farrell, S., and Davidson, M. (2013). CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett., 40: 732–7, doi: 10.1002/grl.50193.Google Scholar
Lazar, B. and Williams, M. (2008). Climate change in western ski areas: Potential changes in the timing of wet avalanches and snow quality for the Aspen ski area in the years 2030 and 2100. Cold Regions Sci. Tech., 51: 219–28, doi: 10.1016/j.coldregions.2007.03.015.Google Scholar
Lazzara, M. A., et al. (1999). On the recent calving of icebergs from the Ross Ice Shelf. Polar Geog., 23: 201–12.Google Scholar
Lebedev, V. V. (1938). Rost l’do v arkticheskikh rekakh i moriakh v zavisimosti ot otritsatel’nykh temperatur vozdukha (The growth of Arctic river and sea ice in dependence on negative air temperatures). Problemy Arktikii, 5: 925.Google Scholar
Le Brocq, A. M., et al. (2008). Subglacial topography inferred from ice surface terrain analysis reveals a large un-surveyed basin below sea level in East Antarctica. Geophys. Res. Lett., 35: L16503, 16, doi: 10.1029/2008GL034728.Google Scholar
Leclercq, P. W., Oerlemans, J., and Cogley, J. G. (2011). Estimating the glacier contribution to sea-level rise for the period 1800–2005. Surv. Geophys., 32: 519–35.Google Scholar
LeDoux, C. M., Hulbe, C. L., Forbes, M., Scambos, T., and Alley, K. (2017). Structural provinces of Ross Ice Shelf, Antarctica. Annals of Glaciology, 58 (75): 111, doi: 10.1017/aog.2017.24.Google Scholar
Ledu, D., et al. (2010). Holocene sea ice history and climate variability along the main axis of the Northwest Passage, Canadian Arctic. Paleoceanogr, 25: PA2213, 21.Google Scholar
Legates, D. R. and Bogart, T. A. (2009). Estimating the proportion of monthly precipitation that falls in solid form. J. Hydromet., 10 (5): 1299–306.Google Scholar
Legeais, J. F., et al. (2018). An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative. Earth Syst. Sci. Data, 10: 281301, https://doi.org/10.5194/essd-10–281-2018.Google Scholar
Legget, R. F. (1954). Permafrost research. Arctic, 7: 153–8.Google Scholar
Legget, R. F. (1966). Permafrost in North America. In Proceedings, Permafrost International Conference. Washington, DC: National Research Council. pp. 27.Google Scholar
Le Hir, G., et al. (2010). Toward the snowball earth deglaciation. Clim. Dynam., 35: 285–97.Google Scholar
Lemelin, H., Dawson, J., and Stewart, E. (2012). Last chance tourism: Adapting tourism opportunities in a changing world. London, UK: Routledge.Google Scholar
Lemieux, J.-F., Buehner, M., Pedersen, L. T., and Carrieres, T. (2017). Sea ice analysis and forecasting towards an increased reliance on automated prediction systems. Cambridge, UK: Cambridge University Press. 219 pp, ISBN: 9781108417426, 1108417426.Google Scholar
Lemke, P., et al. (2007). The cryosphere. In Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S. D., et al. (eds.)]. Cambridge, UK: Cambridge University Press. pp. 337–83.Google Scholar
Lemmen, D. S., Evans, D. J. A., and England, J. (1988). Discussion of “Glaciers and the morphology and structure of the Milne Ice Shelf, Ellesmere Island, N.W.T., Canada” by Martin O. Jeffries. Arct. Alp. Res., 20: 366–71.Google Scholar
Lenhning, M., et al. (2002). A physical SNOWPACK model for the Swiss avalanche warning. Part II. Snow microstructure. Cold Reg. Sci. Technol., 35: 147–67.Google Scholar
Leppäranta, M. (2005). The drift of sea ice. Berlin: Springer. 266 pp.Google Scholar
Le Treut, H., Somerville, R., et al. (2007). Historical overview of climate change. In Solomon, S. D., et al. (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge: Cambridge University Press. pp. 93127.Google Scholar
Lewis, A. R., et al. (2008). Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proc. Nat. Acad. Sci., 105(21): 10, 676–80.Google Scholar
Lewis, E. L. and Perkin, R. G. (1986). Ice pumps and their rates. J. Geophys. Res., 91: 11,756–62.Google Scholar
Lewis, C. F. M. and Teller, J. T. (2007). North American late-Quaternary meltwater and Floods to the ocean: Evidence and impact – Introduction. Palaeogeog., Palaeoclimatol., Palaeoecol., 246: 17.Google Scholar
Lewis, W. M. Jr. (2010). Global primary production of lakes. 19th Baldi Memorial Lecture, Inland Waters, 1: 1, 128, doi: 10.5268/IW-1.1.384.Google Scholar
Lewis, W. V. (1949). Glacial movement by rotational slipping. Geograf. Annal., 31: 146–58.Google Scholar
Lewkowicz, A. G. and Way, R. G. (2019). Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nature Communications, 10: 1329.Google Scholar
L’Heureux, M. L., Kumar, A., Bell, G. D., Halpert, M. S., and Higgins, R. W. (2008). Role of the Pacific-North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophysical Research Letters, 35: L20701, doi:10.1029/2008GL035205.Google Scholar
Li, B., et al. (2006). Glacier change over the past 4 decades in the middle Chinese Tien Shan. J. Glaciol., 52: 425–32.Google Scholar
Liang, L., Li, X., and Zheng, F. (2019). Spatio-temporal analysis of ice sheet snowmelt in Antarctica and Greenland using microwave radiometer data. Remote Sensing, 11(16): 1838, https://doi.org/10.3390/rs11161838.Google Scholar
Lieven, H., et al. (2019). Snow depth variability in the Northern Hemisphere mountains observed from space. Nat. Commun., 10: 4629. https://doi.org/10.1038/s41467-019–12566-yGoogle Scholar
Likens, G. E. (2000). Along-term record of ice cover for Mirror Lake, New Hampshire: effects of global warming? Verh. Int. Verein Limnol., 27: 2765–9.Google Scholar
Lin, C.-H., et al. (2008). Glaciers and their distribution in China. In Shi, Y.-F. (ed.), Glaciers and related environments in China, Beijing: Science Press. pp. 1694.Google Scholar
Lind, D. and Sanders, S. P. (2004). The physics of skiing: Skiing at the triple point. New York: Springer. 266 pp.Google Scholar
Lindenschmidt, Karl-Erich, et al. (2011). Characterizing river ice along the Lower Red River using RADARSAT-2 imagery. In Proceedings of the 16th Workshop on River Ice, Winnipeg, MB, September 18–22, 2011. pp. 198213.Google Scholar
Lindsay, D. G. (ed.) (1982). Sea Ice Atlas of Arctic Canada, 1961–1968; Sea Ice Atlas of Arctic Canada, 1969–1974; Sea Ice Atlas of Arctic Canada 1975–1979, Energy, Mines and Resources, Canada. 213 pp., 219 pp., 139 pp.Google Scholar
Lindsay, R. (2010). New unified sea ice thickness climate data record. EOS, 91(44): 405–6.Google Scholar
Lindsay, R. W., et al. (2009). Arctic sea ice retreat in 2007 follows thinning trend. J. Clim., 22: 165–75.Google Scholar
Lindsay, R. and Schweiger, A. (2015). Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere, 9: 269–83.Google Scholar
Lingle, C. S. and Fatland, D. R. (2003). Does englacial water storage drive temperate glacier surges? Ann. Glaciol., 36: 1420.Google Scholar
Lisiecki, L. E. and Raymo, M. E. (2005). A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanogr. Paleoclimatol, 20: PA1003. https://doi.org/10.1029/2004PA001071Google Scholar
Lisitsyna, O. M. and Romanovskii, N. N. (1998). Dynamics of permafrost in northern Eurasia during the last 20,000 years. In Proceedings of the Seventh International Permafrost Conference, Yellowknife, Canada, June 23–27, pp.675–81.Google Scholar
Liston, G. E. (2004). Representing subgrid snow cover heterogeneities in regional and global models. J. Climate, 17: 1381–97.Google Scholar
Liston, G. E. and Elder, K. (2006). A distributed snow-evolution modeling system (SnowModel). J. Hydromet., 7: 1259–76.Google Scholar
Liston, G. E. and Hall, D. K. (1995a). An energy-balance model of lake-ice evolution. J. Glaciol., 41 (138): 373–82.Google Scholar
Liston, G. E. and Hall, D. K. (1995b). Sensitivity of lake freeze-ip and breakup to climate change: A physically based modeling study. Annals Glaciol., 21: 387–93.Google Scholar
Liston, G. E. and Hiemstra, C. A. (2008). A simple data assimilation system for complex snow distributions (SnowAssim). J. Hydromet., 9: 9891004.Google Scholar
Liston, G. E. and Hiemstra, C. (2011). The changing cryosphere: Pan-Arctic snow trends (1979–2009). Journal of Climate, 24: 5691–712, doi:10.1175/jcli-d-11-00081.1.Google Scholar
Liston, G. E., et al. (2007). Simulating complex snow distributions in windy environments using SnowTran-3D. J. Glaciol., 53(181): 241–56.Google Scholar
Liston, G. E., et al. (2007). Instruments and methods, simulating complex snow distributions in windy environments using SnowTran-3D. J. of Glaciology, 53 (181): 241–56, doi: 10.3189/172756507782202865.Google Scholar
Liston, G. E. and Sturm, M. (1998). A snow-transport model for complex terrain. J. Glaciol., 44 (148): 498516.Google Scholar
Little, C. M., Gnanadesikan, A., and Hallberg, R. (2008). Large-scale oceanographic constraints on the distribution of melting and freezing under ice shelves. J. Phys. Oceanog., 38: 2242–55.Google Scholar
Little, C., Gnanadesikan, A., and Oppenheimer, M. (2009). How ice shelf morphology controls basal melting. J. Geohys. Res., 114: C12007, 14.Google Scholar
Liu, C.-H., et al. (2008). Glaciers and their distribution in China. In Shi, Y.-F. (ed.), Collection of the studies on glaciology, climate and environmental changes in China, Beijing: Meteorological Press. pp. 170241.Google Scholar
Liu, H.-X., Wang, L., and Jezek, K. C. (2006). Spatiotemporal variations of snowmelt in Antarctica derived from satellite scanning multichannel microwave radiometer and Special Sensor Microwave Imager data (1978–2004). J. Geophys. Res., 111 (F1): F01003, doi:10.1029/2005JF000318.Google Scholar
Liu, J.-P. and Curry, J. A. (2010). Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice. Proc. Nat. Acad. Sci., 107: 1488–93, doi: 10.1073/pnas.1003336107.Google Scholar
Liu, J. P., Curry, J. A., and Hu, Y. Y. (2004). Recent Arctic sea ice variability: Connections to the Arctic Oscillation and the ENSO. Geophys. Res. Lett., 31: L09211, doi:10.1029/2004GL019858.Google Scholar
Liu, J., Li, Z., Huang, Z., and Tian, B. (2014). Hemispheric-scale comparison of monthly passive microwave snow water equivalent products. J. of Applied Remote Sensing, 8 (1): 084688, https://doi.org/10.1117/1.JRS.8.084688.Google Scholar
Liu, L., Zhang, T.-J., and Wahr, J. (2010). InSAR measurements of surface deformation over permafrost on the North Slope of Alaska. J. Geophys. Res., 115: F03023, doi:10.1029/2009JF001547.Google Scholar
Liu, S.-Y., et al. (2008). Mass and energy balance of glaciers. In Shi, Y.-F. (ed.), Glaciers and related environments in China, Beijing: Science Press. pp. 131–71.Google Scholar
Liu, X.-L., Yang, Z.-P., and Xie, T. (2006). Development and conservation of glacier tourist resources – A case study of Bogda Glacier Park. Chinese Geog. Soc., 16: 365–70.Google Scholar
Livingatone, D. M. (1997). Breakup dates of Alpine lakes as proxy data for local and regional mean surface air temperature. Clim. Change, 37: 407–39.Google Scholar
Lliboutry, L. (1954). The origin of penitentes. J. Glaciol., 2 (15): 331–8.Google Scholar
Lliboutry, L. (1965). Traité de glaciologie. Tome H: Glaciers, variations du climat, sols gels. Paris: Masson et Cie.Google Scholar
Lliboutry, L. (1968). General theory of subglacial cavitation and sliding of temperate glaciers. J. Glaciol., 7 (49): 2158.Google Scholar
Lliboutry, L. (1975). La catastrophe du Yungay (Pérou). Proceedings of Snow and Ice Symposium, Moscow, 1971. IAHS publication, 104: 353–63.Google Scholar
Lliboutry, L. (1979). Local friction laws for glaciers: a critical review and new openings. J. Glaciol., 23: 6795.Google Scholar
Loewe, F. (1935). Das Klima des grönlandischen Inlandeises (The climate of Greenland’s inland ice). In Koeppen, W. and Geiger, R. (eds.), Handbuch der Klimatologie, Vol. 2, Part K, Klima des kanadischen Archipels und Grönland, Berlin: Borntraeger. pp. K67K101.Google Scholar
Loewe, F. (1936). The Greenland Ice Cap as seen by a meteorologist. Quart. J. Roy. Met. Soc., 62(266): 359–78.Google Scholar
Lopatin, I. (1876). Some facts about icy layers in eastern Siberia. Izvestia Akad. Nauk Supplement, 29: 431 (In Russian).Google Scholar
Lopez, L. S., Hewitt, B. A., and Sharma, S. (2019). Reaching a breaking point: How is climate change influencing the timing of ice breakup in lakes across the northern hemisphere? Limnol. Oceanogr., 64(6): 2621–31, ASLO, doi.org/10.1002/lno.11239.Google Scholar
Lopez-Moreno, J. I., et al. (2008). Sensitivity of the snow energy balance to climatic changes: Prediction of snowpack in the Pyrenees in the 21st century. Climate Res., 36: 203–17.Google Scholar
Loriaux, T. and Casassa, G. (2013). Evolution of glacial lakes from the Northern Patagonia Icefield and terrestrial water storage in a sea level rise context, Global Planet. Change, 102: 3340.Google Scholar
Lourens, L. J., et al. (2010). Linear and non-linear response of late Neogene glacial cycles to obliquity forcing and implications for the Milankovitch theory. Quat. Sci. Rev., 29: 352–65.Google Scholar
Louis, J. F. (1979). A parametric model of vertical eddy fluxes in the atmosphere. Boundary Layer Meteorol., 66: 281301.Google Scholar
Lucchita, B. K. and Ferguson, H. M. (1986). Antarctica: Measuring glacier velocity from satellite images. Science, 234(4779): 1105–8.Google Scholar
Lucchita, B. K. and Rosanova, C. E. (1998). Retreat of northern margins of George VI and Wilkins ice shelves. Ann. Glaciol., 27: 41–6.Google Scholar
Lucchita, B. K., Rosanova, C. E., and Mullins, K. F. (1995). Velocities of Pine Island Glacier, West Antarctica, from ERS-1 SAR images. Ann. Glaciol., 21: 277–83.Google Scholar
Lüdecke, C. (1995). Die deutsche Polarforschung seit der Jahrhundertwende und der Einfluss Erich von Drygalski. Polar Berichte, 158: 340 pp + Appx. 72 pp.Google Scholar
Lukovich, J. V. and Barber, D. G. (2007). On the spatiotemporal behavior of sea ice concentration anomalies in the Northern Hemisphere. J. Geophys. Res., 112(D13): D13117, 12, doi: 10.1029/2006JD007836.Google Scholar
Lunardini, V. J. (1978). Theory of n-factors and correlation of data. In Permafrost. Proceedings of the third international conference on permafrost. Ottawa: National Research Council of Canada. Vol. 1, pp. 40–6.Google Scholar
Lunardini, V. J. (1995). Permafrost formation time. CRREL Report 95–8. Hanover, NH: US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory. 44 pp.Google Scholar
Lundquist, J. (2004). Glacial history of Sweden. In Ehlers, J. and Gibbard, P. L. (eds.), Quaternary glaciations – extent and chronology, New York: Elsevier. pp. 402–12.Google Scholar
Lundquist, J., et al. (2013). Lower forest density enhances snow retention in regions with warmer winters: A global framework developed from plot-scale observations and modeling. Water Resources Res., 49: 115, doi: 10.1002/wrcr.20504.Google Scholar
Lundy, C., et al. (2001). A statistical validation of the SNOWPACK model in a Montana climate. Cold Reg. Sci. Technol., 33: 237–46.Google Scholar
Lunt, D. J., et al. (2008). Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. Nature, 454: 1102–6.Google Scholar
Lunt, D. J., et al. (2009). The Arctic cryosphere in the Mid-Pliocene and the future. Phil Trans. R. Soc. A, 367: 4967.Google Scholar
Luo, D., Wu, Q., Jin, H., Marchenko, S. S., , L. Z., and Gao, S. (2016). Recent changes in the active layer thickness across the northern hemisphere. Environ. Earth Sci., 75: 555.Google Scholar
Luojus, K., et al. (2010). Investigating the feasibility of the GlobSnow snow water equivalent data climate research purposes. Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International (4851–4853), doi:10.1109/IGARSS.2010.5741987.Google Scholar
Luthcke, S. B. , et al. (2006). Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 314: 1286–9, doi.org/10.1126/science.1130776, 2006.Google Scholar
Luthcke, S. B., Arendt, A. A., Rowlands, D. D., McCarthy, J. J., and Larsen, C. F. (2008). Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. J. Glaciol., 54: 767–77, doi:10.3189/002214308787779933.Google Scholar
Luthcke, S. B., et al. (2013). Antarctica, Greenland and Gulf of Alaska landice evolution from an iterated GRACE global mascon solution. J. Glaciol., 59: 613–31.Google Scholar
Lüthi, D., et al. (2008). High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453: 379–82.Google Scholar
Lüthi, M. P., Bauder, A., and Funk, M. (2010). Volume change reconstruction of Swiss glaciers from length change data. J. Geophys. Res., 115(F4): F04022.Google Scholar
Lyon, S. W., et al. (2009). Estimation of permafrost thawing rates in a sub-arctic catchment using recession flow analysis. Hydrol. Earth Syst. Sci., 13: 595604.Google Scholar
Lyon, W. (1961). Ocean and sea-ice research in the Arctic Ocean via submarine. Trans. New York Acad. Sci., Series II, 23(8): 662–74.Google Scholar
Lythe, M. B., Vaughan, D. G., and the BEDMAP Consortium. (2001). BEDMAP: A new ice thickness and subglacial topographic model of Antarctica. J. Geophys. Res., 106(B6): 11,33551.Google Scholar
Ma, N., Yasunari, T., and Fukushima, Y. (2002). Modeling of river ice breakup date and thickness in the Lena River. Ice in the environment, Vol. 1, Squire, V. and Langhorne, P. (eds.), Proc. 16th IAHR Internat. Sympos. on Ice, Int. Assoc. Hydraulic Eng. Rea., Dunedin, New Zealand, pp. 22–6.Google Scholar
MacAyeal, D. R. (1993). A low-order model of growth/purge oscillations of the Laurentide Ice Sheet. Paleoceanog., 8: 767–73.Google Scholar
MacAyeal, D.R. 1984. Thermohaline circulation below the Ross Ice Shelf: A consequence of tidally induced vertical mixing and basal melting. J. Geophys. Res., 89(C1): 597–606.Google Scholar
Macdonald, F. A., et al. (2010). Calibrating the Cryogenian. Science, 327 (5970): 1241–3.Google Scholar
Machatschek, F. (1914). Die Depression der eiszeitlichen Schneegrenze. Zeit. f. Gletscherk., 7: 104–28.Google Scholar
Macias Fauria, M. et al. (2009). Unprecedented low twentieth century winter sea ice extent in the western Nordic Seas since A.D. 1200. Climate Dynam., 34: 781–95, doi:10.1007/500382–009–0610–2.Google Scholar
Mackay, J. R. (1962). The pingos of the Pleistocene Mackenzie Delta area. Geogr. Bull., 18: 2163.Google Scholar
Mackay, J. R. (1972). The world of underground ice. Annals Assoc. Amer. Geogr., 62: 122.Google Scholar
Mackay, J. R. (1973). A frost tube for the determination of freezing in the active layer above permafrost. Canad. Geotech. J., 10: 392–6.Google Scholar
Mackay, J. R. (1986a). Frost mounds. In French, H. M. (ed.), Focus: Permafrost geomorphology, Canad. Geographer 30: 363–4.Google Scholar
Mackay, J. R. (1986b). Growth of Ibyuk pingo, western Arctic coast, Canada and some implications for environmental reconstruction. Quatern. Res., 26: 6880.Google Scholar
Mackay, J. R. (1993). Air temperature, snow cover, creep of frozen ground, and the time of ice-wedge cracking, western Arctic coast. Canad. J. Earth Sci., 30: 1720–9.Google Scholar
Mackay, J. R. and Dallimore, S. R. (1992). Massive ice of the Tuktoyaktuk area, western Arctic coast, Canada. Canad. J. Earth Sci., 29 (6): 1235–49.Google Scholar
Mackintosh, N. A. and Herdman, H. F. P. (1940). Distribution of the pack ice in the Southern Ocean. Discovery Rep., 19: 285–96, plates 69–95.Google Scholar
Magono, C. and Lee, C. W. (1966). Meteorological classification of natural snow crystals. Journal of the Faculty of Science, Hokkaido University. Series 7, Geophysics, Vol. II (4): 321–55Google Scholar
Magnuson, J. D. (2000a). Lake and river ice as a powerful indicator of past and present climates. Veh, Int, Verein Limnol., 27: 2749–56.Google Scholar
Magnuson, J. D., et al. (2000b). Historical trends in lake and river ice cover in the Northern Hemisphere. Science, 289(5485): 1743–6.Google Scholar
Mahaffy, M. W. (1976). A three-dimensional numerical model of ice sheets: Test on the Barnes ice cap, Northwest Territories. J. Geophys. Res., 81(6): 1059–66.Google Scholar
Mahoney, A. (2010). Life with ice: The importance of sea ice to Arctic communities. Paper 57A207. Proceedings, Tromso Sea Ice Symposium. Int. Glaciol. Soc.Google Scholar
Mahoney, A. R., Barry, R. G., Smolyanitsky, V., and Fetterer, F. (2008). Observed sea ice extent in the Russian Arctic, (1933–2006). J. Geophys. Res. (Oceans), 113: C11005, 11, doi:10.1029/2008JC004830.Google Scholar
Mahoney, A. and Gearheard, S. (2008). Handbook for community-based sea ice monitoring. NSIDC Special Report 14. Boulder, CO: National Snow and Ice Data Center. 34 pp.Google Scholar
Mahoney, A., et al. (2007a). Alaska landfast sea ice: Links with bathymetry and atmospheric circulation. J. Geophys. Res., 112: C02001, doi:10.1029/2006JC003559.Google Scholar
Mahoney, A. R., Eicken, H., and Shapiro, L. (2007b). How fast is landfast sea ice? A study of the attachment and detachment of nearshore ice at Barrow, Alaska. Cold Regions Sci. Technol., 47: 233–55.Google Scholar
Mair, D. W. F. , Burgess, D. O. , and Sharp, M. J. (2005). Thirty-seven year mass balance of Devon Island ice cap, Nunavut, Canada, determined by shallow ice coring and melt modeling. J. Geophys. Res., 110: F01011, doi:10.1029/2003JF000099.Google Scholar
Mair, D., Burgess, D., Sharp, M., Dowdeswell, J. A., Benham, T., Marshall, S., et al. (2009). Mass balance of the Prince of Wales Icefield, Ellesmere Island, Nunavut, Canada. J. Geophys. Res., 114: F02011, doi:10.1029/2008JF001082.Google Scholar
Male, D. H. and Granger, R. J. (1981). Snow surface energy exchange. Water Resour. Res., 17 (3): 609–27.Google Scholar
Malkova, G. V. (2008). The last twenty-five years of changes in permafrost temperature in the European Russian Arctic. In Kane, D. L. and Hinkel, K. M. (eds.), Ninth International Conference on Permafrost, 29 June–3 July 2008, vol. 2, Fairbanks, AK: University of Alaska. pp. 1119–25.Google Scholar
Malmgren, F. (1927). On the properties of sea ice. In Sverdrup, H. (ed.), Scientific results of the Norwegian North Polar Expedition “Maud,” 1918–1925, vol. 1 (5), Bergen: Geofysisk Institutt. pp. 67.Google Scholar
Mangerud, J., et al. (2008). Glaciers in the Polar Urals, Russia, were not much larger during the last global glacial maximum than today. Quat. Sci. Rev., 27 (9–10): 1047–57.Google Scholar
Mangor, K., and Zorn, R. (1983). Iceberg conditions offshore Greenland. Iceberg Res. (Scot Polar Res. Inst. Cambridge), 4: 420.Google Scholar
Mankin, J. S. and Diffenbaugh, N. S. (2015). Influence of temperature and precipitation variability on near-term snow trends. Clim. Dynam., 45 (3–4): 1099–116, doi:10.1007/s00382-014-2357-4.Google Scholar
Mann, M. E., et al. (2009). Global significance and dynamical origins of the Little Ice Age and Medieval climate anomaly. Science, 326: 1256–61.Google Scholar
Marchenko, S. S., Gorbunov, A. P., and Romanovsky, V. E. (2007). Permafrost warming in the Tein Shan mountains, Central Asia. Global Planet. Change, 56: 311–27.Google Scholar
MARGO Project Members. (2009). Constraints on the magnitudes and patterns of cooling at the last glacial maximum. Nat. Geosci., 2: 127–32.Google Scholar
Markham, C. R. and Mill, H. R. (1901). In Murray, G. (Ed): The Antarctic manual for the use of the expedition of 1901. London, Royal Geographical Society. pp. xivxvi.Google Scholar
Marko, J. R., et al. (1994). Iceberg severity off eastern North America: Its relationship to sea ice variability and climate change. J. Climate, 7 (9): 1335–51.Google Scholar
Marks, D. (1988). Climate, energy exchange, and snowmelt in Emerald Lake Watershed, Sierra Nevada. PhD Thesis, University of California at Santa Barbara.Google Scholar
Markus, T. and Cavalieri, D. (2000). An enhancement of the NASA Team sea ice algorithm. IEEE Trans. Geosci. Remote Sensing, 38: 1387–98.Google Scholar
Markus, T., Stroeve, J. C., and Miller, J. (2009). Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J. Geophys. Res., 114 (C12): C12024.Google Scholar
Mars, J. C. and Houseknecht, D. W. (2007). Quantitative remote sensing study indicates doubling of coastal erosion rate in past 50 yr along a segment of the Arctic coast of Alaska. Geology, 35 (7): 583–6.Google Scholar
Marsh, P. and Prowse, T. D. (1987). Water temperature and heat flux at the base of river ice covers. Cold Reg, Sci. Technol., 14: 3350.Google Scholar
Martin, M. A., et al. (2011). The Potsdam Parallel Ice Sheet Model (PISM-PIK)-Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet. The Cryosphere, 5: 727–40.Google Scholar
Martin, S. (1981). Frazil ice in rivers and oceans. Annual Rev. Fluid Mechan., 13: 379–97.Google Scholar
Martin, S. , et al. (2010). Kinematic and seismic analysis of giant tabular iceberg breakup at Cape Adare, Antarctica. J. Geophys. Res., 115: B06311, 17, doi:10.1029/2009JB006700.Google Scholar
Martin, Y. and Gerdes, R. (2007). Sea ice drift variability in Arctic Ocean model intercomparison project models and observations. J Geophys. Res., 112 (C4): C04S10, 13.Google Scholar
Martinec, J. (1980). Limitations in hydrological interpretations of the snow coverage. Nordic Hydrol., 11: 209–20.Google Scholar
Martinec, J. and Rango, A. (1986). Parameter values for snowmelt runoff modelling. J. Hydrol., 84: 197219.Google Scholar
Martinec, J., Rango, A., and Roberts, R. (1998). Snowmelt Runoff Model (SRM) user’s manual. In Baumgartner, M. F. and Apfl, G. M. (eds.), Geographica Bernensia Ser. P, no. 35. Berne: University of Berne.Google Scholar
Martín-Español, et al. (2016). Spatial and temporal Antarctic Ice Sheet mass trends, glacio-isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data. J. Geophys. Res.-Earth Surf., 121: 182200.Google Scholar
Martinelli, M. (1986). A test of the avalanche runout equations developed by the Norwegian Geotechnical Institute. Cold Reg. Sci. Technol., 13: 1933.Google Scholar
Martinson, D. and Pitman, W. (2007). The Arctic as a trigger for glacier terminations. Clim. Change, 80: 253–63.Google Scholar
Marty, C. (2008). Regime shift of snow days in Switzerland. Geophys. Res. Lett., 35 (12): L12501, 15.Google Scholar
Marty, C., Schlögl, S., Bavay, M., and Lehning, M. (2017). How much can we save? Impact of different emission scenarios on future snow cover in the Alps. The Cryosphere, 11: 517–29, https://doi.org/10.5194/tc-11–517-2017.Google Scholar
Marty, C., Tilg, A.-M., and Jonas, T. (2017). Recent evidence of large-scale receding snow water equivalents in the European Alps. J. Hydrometeorol., 18: 1021–31, doi:10.1175/JHM-D-16-0188.1.Google Scholar
Marzeion, B., Jarosch, A. H., and Hofer, M. (2012). Past and future sea-level change from the surface mass balance of glaciers. Cryosphere, 6: 1295–322.Google Scholar
Marzeion, B., et al. (2014). Attribution of global glacier mass loss to anthropogenic and natural causes. Science, 345: 919–20.Google Scholar
Marzeion, B., et al. (2018). Limited influence of climate change mitigation on short-term glacier mass loss. Nat. Clim. Change, 8: 305–8, https://doi.org/10.1038/s41558-018–0093-1.Google Scholar
Masiokas, M. H., et al. (2009). Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeog., Palaeoclimatol., Palaeoecol., 281: 242–68.Google Scholar
Maslanik, J. A. and Barry, R. G. (1989). Short-term interactions between atmospheric synoptic conditions and sea ice behavior in the Arctic. Annals Glaciol., 12: 113–17.Google Scholar
Maslanik, J. A. and Barry, R. G. (1990). Remote sensing in Antarctica and the Southern Ocean: Applications and development. Antarctic Sciences, 2: 105–21.Google Scholar
Maslanik, J. A., Key, J. R., and Barry, R. G. (1989). Merging AVHRR and SMMR data for remote sensing of ice and cloud in polar regions. Internat. J. Rem. Sens., 10: 1,6916.Google Scholar
Maslanik, J. A., Serreze, M. C., and Barry, R. G. (1996). Recent decreases in Arctic summer ice cover and linkages to atmospheric circulation anomalies. Geophys. Res. Lett., 23(13): 1,67780.Google Scholar
Maslanik, J. A., et al. (1995). Remotely-sensed and simulated variability of Arctic sea-ice concentrations in response to atmospheric synoptic systems. Int. J. Remote Sensing, 16(17): 3,32542.Google Scholar
Maslanik, J., et al. (2007a). On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophys. Res. Lett., 34: L03711, doi:10.1029/2006GL028269.Google Scholar
Maslanik, J. A., et al. (2007b). A younger, thinner Arctic ice cover – increased potential for rapid, extensive ice loss, Geophys. Res. Lett., 34: L24501, doi:10.1029/2007GL032043.Google Scholar
Maslin, M. A., et al. (2006). The progressive intensification of northern hemisphere glaciation as seen from the North Pacific. Internat. J. Earth Sci., 85: 452–65.Google Scholar
Mason, B. J. (1994). The shapes of snow crystals – fitness for purpose? Quart. J. Roy. Met. Soc., 120: 849–60.Google Scholar
Massom, R. A. (2009). Principal uses of remote sensing in sea ice research. In Eicken, H., et al. (eds.), Field techniques for sea ice research, Fairbanks, AK: University of Alaska Press. pp. 405–66.Google Scholar
Massom, R. A., et al. (2018). Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell, Nature, Macmillan Publishers, 383, Vol. 558, https://doi.org/10.1038/s41586-018–0212-1Google Scholar
Masson-Delmotte, V., et al. (2010). EPICA Dome C record of glacial and interglacial intensities. Quat. Sci. Rev., 29: 113–28.Google Scholar
Matsuo, S. and Miyake, Y. (1966). Gas composition in ice samples from Antarctica. J. Geophys. Res., 71 (22): 5235–41.Google Scholar
Matthes, F. E. (1934). Ablation of snow-fields at high altitude by radiant solar heat. Trans. Amer. Geophys. Union, 15: 380–5.Google Scholar
Matthes, F. F. (1939). Report of the committee on glaciers. Trans. Amer. Geophys. Union, 20: 518035.Google Scholar
Matthews, J. A. and Briffa, K. R. (2005). The “Little Ice Age”: Re-evaluation of an evolving concept. Geograf. Annal., A, 87: 1736.Google Scholar
Matti, B., Dahlke, H. E., Dieppois, B., Lawler, D. M., and Lyon, S. W. (2017). Flood seasonality across Scandinavia-Evidence of a shifting hydrograph? Hydrol. Process., 31: 4354–70, doi:10.1002/hyp.11365.Google Scholar
Mätzler, C. (1994). Passive microwave signatures of landscapes in winter. Meteorol. Atmos. Phys., 54: 241–60.Google Scholar
Mätzler, C., Schanda, E., and Wood, W. (1982). Toward the definition of optimum sensor specifications for microwave remote sensing of snow. IEEE Trans. Geosci. Remote Sensing, GE-20: 5766.Google Scholar
Maurer, J. (2007). Atlas of the Cryosphere. Boulder, CO, USA: National Snow and Ice Data Center, Digital media.99: 141–53.Google Scholar
Maurer, J. M., Schaefer, J. M., Rupper, S. , and Corley, A. (2019). Acceleration of ice loss across the Himalayas over the past 40 years. Sci. Adv., 5 (6): eaav7266, doi: 10.1126/sciadv.aav7266.Google Scholar
Mauritsen, T. (2016). Greenhouse warming unleashed. Nat. Geosci., 9: 271–2.Google Scholar
Mayer, C. (2010). The early history of remote sensing of glaciers. In Pellikka, P. and Rees, W. R. (eds.), Remote sensing of glaciers, London: CRC Press, Taylor and Francis. pp. 6780.Google Scholar
Mayewski, P. A., et al. (2009). State of the Antarctic and Southern Ocean climate system (SASOCS). Rev. Geophys., 47: RG1003, 38.Google Scholar
Maykut, G. A. (1982). Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res., 87: 7971–84.Google Scholar
Maykut, G. (1985). The ice environment. In Horner, R. (ed.), Sea ice biota, Boca Raton, FL: CRC Press. pp. 2182.Google Scholar
Maykut, G. A. (1986). The surface heat and mass balance. In Untersteiner, N. (ed.), The geophysics of sea ice, New York: Plenum Press. pp. 395462.Google Scholar
Maykut, G. A. and Untersteiner, N. (1971). Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res., 76: 1550–75.Google Scholar
Mazhitova, G. G. (2008). Soil temperature regimes in the discontinuous permafrost zone in the East European Russian Arctic. Eurasian Soil Science, 41: 4862.Google Scholar
McCabe, G. J. and Wolock, D. M. (2010). Long-term variability in Northern Hemisphere snow cover and associations with warmer winters. Climatic Change, 99: 141–53.Google Scholar
McCall, J. G. (1952). The internal structure of a cirque glacier. J. Glaciol., 2: 122–30.Google Scholar
McClung, D. M. (1981). Fracture mechanical models of dry slab avalanche release. J. Geophys. Res., 86 (B11): 10783–90.Google Scholar
McClung, D. M. (1987). Mechanics of snow slab failure from a geotechnical perspective. Avalanche formation, movement and effects, IAHS Publ., 162: 475508.Google Scholar
McClung, D. M. (2002). The elements of applied avalanche forecasting, Part II: The physical issues and the rules of applied avalanche forecasting. Nat. Hazards, 26: 131–46.Google Scholar
McClung, D. M. (2008). Risk-based land use planning in snow avalanche terrain. In Locat, J., Perret, D., Turmel, D., Demers, D., and Leroueil, S. (eds.), Proceedings of the 4th Canadian Conference on Geohazards : From Causes to Management, Québec: Presse de l’Université Laval, 594 p.Google Scholar
McClung, D. M. (2009). Dimensions of dry snow slab avalanches from field measurements. J. Geophys. Res., 114: F01006, doi:10.1029/2007JF000941.Google Scholar
McClung, D. M. and Lied, K. (1987). Statistical and geometric definitions of snow avalanche runout. Cold Reg. Sci. Technol., 13: 107–19.Google Scholar
McClung, D. M. and Mears, A. I. (1991). Extreme value prediction of snow avalanche runout. Cold Reg. Sci. Technol., 19: 163–75.Google Scholar
McClung, D. M. and Schaerer, P. A. (2006). The Avalanche Handbook, 3rd edn., Seattle, WA: The Mountaineers Books. 342 pp.Google Scholar
McKay, C. P., et al. (1985). Thickness of ice on perennially frozen lake. Nature, 313: 561–2.Google Scholar
McKnight, D. M., et al. (2008). High-latitude rivers and streams. In Vincent, W. F. and Laybourn-Parry, J. (eds.), Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems, Oxford: Oxford University Press. pp. 83102.Google Scholar
McLaren, A. S. (1989). The under-ice thickness distribution of the Arctic Basin as recorded in 1958 and 1970. J. Geophys. Res., 94 (C4): 4971–83.Google Scholar
McLaren, A. S., Barry, R. G., and Bourke, R. H. (1990). Could Arctic ice be thinning? Nature, 345 (6278): 762.Google Scholar
McLaren, A. S., Serreze, M. C., and Barry, R. G. (1987). Seasonal variations of sea ice motion in the Canada Basin and their implications. Geophys. Res. Lett., 14: 1,1236.Google Scholar
McNamara, J. P., Kane, D. L., and Hinzman, L. D. (1999). An analysis of an Arctic channel network using a digital elevation model. Geomorphol., 29 (3–4): 339–53.Google Scholar
Mears, A. I. (1976). Guidelines and methods for detailed snow avalanche hazard investigations in Colorado. Bulletin No. 38. Denver, CO: Colorado Geological Survey.Google Scholar
Meehl, G. A., et al. (1997). Intercomparison makes for a better climate model. EOS, 78: 445–6.Google Scholar
Meehl, G. A., Stocker, T. F., et al. (2007): Global climate projections. In: Solomon, S., et al. (eds.). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press., UK Chapter 10.Google Scholar
Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., et al. (2007). Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge, United Kingdom and New York, NY, USA.Google Scholar
Meier, M. F. (1962). Proposed definitions for glacier mass budget terms. J. Glaciol., 4 (33): 252–61.Google Scholar
Meier, M. F. (1969). Glaciers and water supply. J. Amer Water Works Assoc., 61: 812.Google Scholar
Meier, M. F. and Bahr, D. B. (1996). Counting glaciers: Use of scaling methods to estimate the number and size distribution of the glaciers of the world. In Colbeck, S. C. (ed.), Glaciers, ice sheets and volcanoes. A tribute to Mark F. Meier, Hanover, NH: US Army CRREL Special Rep. 96–27. pp. 8994.Google Scholar
Meier, M. F. and Post, A. (1962). Recent variations in mass net budgets of glaciers in western North America. IAHS, 58: 6377.Google Scholar
Meier, M. F. and Post, A. (1969). What are glacier surges? Can. J. Earth Sci., 6 (4): 807–17.Google Scholar
Meier, M. F. and Post, A. (1987). Fast tidewater glaciers. J. Geophys. Res., 92 (B9): 9051–8.Google Scholar
Meier, M. F., et al. (2007). Glaciers dominate eustatic sea-level rise in the 21st century. Science, 317 (5841): 1064–7.Google Scholar
Meister, R. (2002). Avalanches: Warning, rescue and prevention. Avalanche News, 62: 3744.Google Scholar
Mekis, . and Hopkinson, R. (2004). Derivation of an improved snow water equivalent adjustment factor map for application on snowfall ruler measurements in Canada. Proceedings, 14th Conference on Climatology, Seattle, WA, January 12–15, Paper 7.12, 5 pp.Google Scholar
Mekis, E. and Vincent, L. A. (2011). An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmosphere-Ocean, 49 (2): 163–77, https://doi.org/10.1080/07055900.2011.583910.Google Scholar
Mekis, E. and Brown, R. (2010). Derivation of an adjustment factor map for the estimation of the water equivalent of snowfall from ruler measurements in Canada. Atmos. Ocean, 48 (4): 284–93.Google Scholar
Melling, H. (2002). Sea ice of the northern Canadian Arctic Archipelago. J. Geophys. Res., 107 (C11): 3181, 21.Google Scholar
Melling, H. and Lewis, E. L. (1982). Shelf drainage flows in the Beaufort Sea and their effect on the Arctic Ocean pycnocline. Deep-sea Res., 29(8A): 967–85.Google Scholar
Melni’kov, P. A. and Street, R. B., et al. (1993). Terrestrial components of the Cryosphere. In Tegart, W. J. McG. and Sheldon, G. W. (eds.), Climate Change 1992. The Supplementary Report to IPCC Impacts Assessment. Australian Government. Publication Service, Canberra, pp. 94102.Google Scholar
Menard, P. et al. (2002). Simulation of ice phenology on a large lake in the Mackenzie River Basin (1960–2000). Proc. 59th Eastern Snow Conference, Stowe, VT. pp. 312.Google Scholar
Ménard, P., et al. (2002). Sensitivity of Great Slave Lake ice phenology to climate change. Ice in the environment, Vol. 3, Squire, V. and Langhorne, P. (eds.), Proc. 16th IAHR Internat. Sympos. on Ice, Int. Assoc. Hydraulic Eng. Res., Dunedin, New Zealand. pp 5763.Google Scholar
Mercer, J. H. (1978).West Antarctic ice sheet and CO2 greenhouse effect: A threat of disaster. Nature, 271: 321–5.Google Scholar
Mermoz, S., Allain-Bailhache, S., Bernier, M., Pottier, E., Van Der Sanden, J., and Chokmani, K. (2014). Retrieval of river ice thickness From C-Band PolSAR Data. IEEE Trans. on Geosci. and Remote Sensing, 52 (6): 3052–62.Google Scholar
Mernild, S. H., et al. (2008). Jökulhlaup observed at Greenland ice sheet. EOS, 89 (35): 321–2.Google Scholar
Mernild, S. H., et al. (2008). Surface melt area and water balance modeling on the Greenland ice sheet 1995–2005. J. Hydromet., 9: 1191–211.Google Scholar
Mernild, S. H., et al. (2009). Record 2007 Greenland Ice Sheet surface melt extent and runoff. EOS, 90 (2): 1314.Google Scholar
Mernild, S. H., et al. (2010). Greenland Ice Sheet surface mass-balance modeling in a 131-yr perspective, 1950–2080. J. Hydromet., 11: 325.Google Scholar
Mesinger, F., et al. (2006). North American regional reanalysis. Bull. Amer. Met. Soc., 87: 343–60.Google Scholar
Metcalfe, R. A. and Buttle, J. M. (1995). Controls of canopy structure on snowmelt rates in the boreal forest. Proc. of the 52nd Eastern Snow Conf., Toronto, Ont.: 249–57.Google Scholar
Meyers, S. R. and Hinnov, L. A. (2010). Northern Hemisphere glaciation and the evolution of Plio-Pleistocene climate noise. Paleoceanog., 25: PA3207, 11, doi:10.1029/2009PA001834.Google Scholar
Michel, B. (1971). Winter regime of rivers and lakes. US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Monograph. III-B1a, 139pp.Google Scholar
Microwave. (2007). Proceedings of international works on earth observation small satellites for remote sensing applications, EOSS 2007, 20–23 November 2007, Kuala Lumpur, Malaysia.Google Scholar
Middendorff, A. T. (1844). Bericht über den Schergin-Schacht zu Jakutsk. Annal. Phys. Chem., 62: 404–15.Google Scholar
Mikolajewicz, U., et al. (2005). Simulating Arctic sea ice variability with a coupled regional atmosphere-ocean-sea ice model. Met. Zeit., 14: 793800.Google Scholar
Milankovitch, M. (1920). Théorie mathématique des phénomènes thermiques produits par la radiation solaire. Paris: Gauthier-Villars.Google Scholar
Milburn, D. (2008). The ice cycle on Canadian rivers. In Beltaos, S. (ed.), River ice breakup, Highlands Ranch, CO: Water Resources Publ. pp. 2149.Google Scholar
Miles, M. W. and Barry, R. G. (1991). Large-scale characteristics of fractures in multi year Arctic pack ice. In Axelsson, K. B. E. and Fransson, L. A. (eds.), 10th International Conference on Port and Ocean Engineering, under Arctic Conditions (POAC 89) Vol. 1, Lulea, Sweden: University of Technology, pp. 103–12.Google Scholar
Miles, M. W. and Barry, R. G. (1998). A 5-year satellite climatology of winter sea ice leads in the western Arctic. J. Geophys. Res., 103(C10): 21,723–34.Google Scholar
Milillo, P., Rignot, E., Rizzoli, P., Scheuchl, B., Mouginot, J. , Bueso-Bello, J., and Prats-Iraola, P. (2019). Heterogeneous retreat and ice melt of Thwaites Glacier, West Antarctica. Science Advances, 5(1): eaau3433, doi: 10.1126/sciadv.aau3433.Google Scholar
Millar, D. H. M. (1981). Radio-echo layering in polar ice sheets and past volcanic activity. Nature, 292: 441–3.Google Scholar
Miller, G. H., Bradley, R. S., and Andrews, J. T. (1975). The glaciation kevel and lowest equilibrium line altitude in the High Canadian Arctic: Maps and climatic interpretation. Arct. Alp. Res., 7: 155.Google Scholar
Miller, G. H., et al. (2010). Abrupt onset and intensification of the Little Ice Age around the northern North Atlantic: A role for volcanic forcing? Program and abstracts. American Polar Society meeting, May 13–14, 2010. Boulder, CO: Institute of Arctic and Alpine Research. 19 pp.Google Scholar
Miller, J. D. and Hotzel, I. S. (1984). Iceberg flux estimation in the Labrador Sea. In Lunardini, V. J. (ed.), Proceedings, 3rd International Offshore Mechanics and Arctic Engineering Symposium, Vol. 3, 246–52, United States of America.Google Scholar
Miller, P. E., et al. (2009). Assessment of glacier volume change using ASTER-based surface matching of historical photography. IEEE Trans. Geosci. Remote Sensing, 47(7): 1971–9.Google Scholar
Millerd, F. (2007). Global climate change and Great Lakes international shipping, Transportation Research Board Special Report 291. Washington, DC. 28 pp.Google Scholar
Millerd, F. (2011). The potential impact of climate change on Great Lakes international shipping. Climatic Change, 104: 629–52.Google Scholar
Min, S.-K., et al. (2008). Human influence on Arctic sea ice detectable from early 1990s onwards. Geophys. Res. Lett., 35: L21701, 6.Google Scholar
Ming, J., et al. (2009). Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos. Atmos. Res., 92: 114–23.Google Scholar
Mirrless, S. T. A. (1932). Meteorological results of the British Arctic Air Route Expedition. 1930–31. Geophysical Memoir 7. London: Meteorological Office.Google Scholar
Mitchell, J. M. Jr. (1963). On the world-wide pattern of secular temperature change, In: Changes of Climate. Proceedings of the Rome Symposium Organized by UNESCO and the World Meteorological Organization, 1961. Arid Zone Research Series No. 20, UNESCO, Paris, pp. 161181.Google Scholar
Mitchell, K. A. and Tiedje, T. (2010). Growth and fluctuations of suncups on alpine snowpacks. J. Geophys. Res., 115 (F4): F04039, 10.Google Scholar
Mitchell, T. D. and Jones, P. D. (2005). An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25: 693712.Google Scholar
Mock, C. J. and Birkeland, K. W. (2000). Snow avalanche climatology of the western United States mountain ranges. Bull. Amer. Met. Soc., 81 (10): 2367–92.Google Scholar
Mock, C. J., Carter, K. C., and Birkeland, K. W. (2017). Some perspectives on avalanche climatology. Annals of the American Association of Geographers, 107 (2): 299308, doi:10.1080/24694452.2016.1203285.Google Scholar
Moeser, D., Stähli, M., and Jonas, T. (2015), Improved snow interception modeling using canopy parameters derived from airborne LiDAR data. Water Resources Research, https://doi.org/10.1002/2014WR016724.Google Scholar
Möller, M. and Schneider, C. (2010). Calibration of glacier volume-area relations from surface extent and application to future glacier change. J. Glaciol., 56 (195): 3340.Google Scholar
Molnia, B. F. (2007). Late nineteenth to early twenty-first century behavior of Alaskan glaciers as indicators of changing regional climate. Global Planet. Change, 56: 2356.Google Scholar
Mool, P., Bajracharya, S. R., and Joshi, S. P. (2001). Inventory of glaciers, glacial lakes and glacial lake outburst floods: Monitoring and early warning systems in the Hindu Kush-Himalayan region – Nepal. Kathmandu, Nepal: ICIMOD. 198 pp + Appendices.Google Scholar
Moon, T. and Joughin, I. (2008). Changes in ice front position on Greenland’s outlet glaciers from 1992 to 2007. J. Geophys. Res., 113: F02022, doi:10.1029/2007JF000927.Google Scholar
Moore, R. D., et al. (2009). Glacier change in western North America: Influences on hydrology, geomorphic hazards and water quality. Hydrol. Processes, 23: 4261.Google Scholar
Morales Arnao, B. (1966). The Huascarán avalanche in the Santa Valley, Pe68: ru, In Co95: 3180lbeck, S. C. (ed.) International symposium on the scientific aspects of snow and ice avalanches, Wallingford, UK: Davos 1965. IAHS Publication 69, pp. 304–15.Google Scholar
Morales Maqueda, M. A., Willmott, A. J., and Biggs, N.R.T. (2004). Polynya dynamics: A review of observations and modeling, Rev. Geophys., 42: RG1004. doi:10.1029/2002RG000116.Google Scholar
Moran, K., et al. (2006). The cenozoic palaeoenvironment of the Arctic Ocean. Nature, 441 (7093): 601–5.Google Scholar
Morassutti, M. P. and LeDrew, E. F. (1995). Albedo and depth of melt ponds on sea-ice. Int. J. Climatol., 16: 817–38.Google Scholar
Morice, C. P. , Kennedy, J. J., Rayner, N. A., and Jones, P. D., (2012). Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 dataset. J. Geophy. Res, 117: D08101, doi:10.1029/2011JD017187Google Scholar
Morris, E. M. (1989). Turbulent transfer over snow and ice. J. Hydrol., 105: 205–23, doi:10.1016/0022–1694(89)90105–4.Google Scholar
Morris, E. and Vaughan, D. (2003). Spatial and temporal variation of surface temperature on the Antarctic Peninsula. In Domack, E., et al. (eds.), Antarctic Peninsula climate variability: Historical and paleoenvironmental perspectives, Washington, DC: American Geophysical Union. pp. 61–8.Google Scholar
Morris, J. N., Poole, A. J., and Klein, A. G. (2006). Retreat of tropical glaciers in Colombia and Venezuela from 1984 to 2004 as measured from ASTER and Landsat images. Proc. 63rd Eastern Snow Conf., 181–91.Google Scholar
Mosimann, L., et al. (1993). Ice crystal observations and the degree of riming in winter precipitation. Water, Air and Soil Pollution, 68: 2942.Google Scholar
Moskalev, Yu D. (1997). Snow avalanche dynamics and snow avalanche accounts. Proceedings, SANIGMI, 36 (117): 232.Google Scholar
Mosley-Thompson, E., et al. (1999). Late 20th century increase in South Pole snow accumulation. J. Geophys. Res., 104 (D4): 3877–86.Google Scholar
Moss, R. H., et al. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463: 747–56, doi:10.1038/nature08823.Google Scholar
Mote, P. W. and Kaser, G. (2007). The shrinking glaciers of Kilimanharo: Can global warming be blamed? Amer. Sci., 95: 318–25.Google Scholar
Mote, P. W., et al. (2005). Declining mountain snowpack in western North America. Bull. Amer. Met. Soc., 86: 3949.Google Scholar
Mote, T. L. (2008). On the role of snow cover in depressing air temperature. J. Appl. Met. Clim., 47: 2008–22.Google Scholar
Mote, T. L. and Anderson, M. R. (1995). Variations in snowpack melt on the Greenland ice sheet based on passive microwave measurements. J. Glaciol., 17: 5160.Google Scholar
Mothes, H. (1926). Dickenmessung von Gletschereis mit seismischen Methoden. Geol. Rundschau, 27: 397400.Google Scholar
Mothes, H. (1929). Neue Ergebnisse der Eisseismik. Zeit. Geophys., 5: 120–44.Google Scholar
Motyka, R. J., Fahnestock, M., and Truffer, M. (2010). Volume change of Jakosbshavn Isbrae, West Greenland: 1985–1997–2007. J. Glaciol., 56 (198): 635–46.Google Scholar
Mouginot, J. et al. (2014). Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett., 41: 1576–84.Google Scholar
Mudryk, L., Kushner, P., Derksen, C., and Thackeray, C. (2017). Snow cover response to temperature in observational and 20 climate model ensembles. Geophys. Res. Lett., 44: 919–26, doi:10.1002/2016GL071789.Google Scholar
Mountain, D. G. (1980). On predicting iceberg drift. Cold Reg. Sci. Technol., 1: 273–82.Google Scholar
Mueller, D. R., Vincent, W. F., and Jeffries, M. O. (2003). Breakup of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophys. Res. Lett., 30 (20): 2031.Google Scholar
Muhammad, P., Duguay, C., and Kang, K. K. (2016). Monitoring ice breakup on the Mackenzie River using MODIS data. Cryosphere, 10: 569–84, https://doi.org/10.5194/tc-10–569-2016.Google Scholar
Mullan, D., et al. (2017). Climate change and the long-term viability of the World’s busiest heavy haul ice road. Theoretical and Applied Climatology, 129 (3): 1089–108, doi:10.1007/s00704-016-1830-x.Google Scholar
Muller, D. E., Copland, L., and Stern, D. (2008). Examining Arctic ice shelves prior to the 2008 breakup. EOS, 89(49): 502–3.Google Scholar
Müller, F. (1959). Eight months of glacier and soil research in the Everest region. Mountain World, 1958/59: 191208.Google Scholar
Müller, F. (1962). Zonation in the accumulation area of the glaciers of Axel Heiberg Island. J. Glaciol., 4: 302–13.Google Scholar
Müller, F., Ohmura, A., and Braithwaite, R. (1977). The North Water project (Canadian Greenland Arctic). Geogr. Helv., 2: 111–17.Google Scholar
Müller, J., et al. (2009). Variability of sea-ice conditions in the Fram Strait over the past 30,000 years. Nat. Geosci,, 2: 772–6, doi:10.1038/ngeo665.Google Scholar
Muller, S. W. (1947). Permafrost or permanently frozen ground and related engineering problems. Ann Arbor, MI: J. W. Edwards. 231 pp.Google Scholar
Muller, S. W. (French, H. M. and Nelson, F. E., eds.) (2008). Frozen in time: Permafrost and Engineering Problems. Reston, VA: Amer. Soc. Civil Engineers. 280 pp.Google Scholar
Murphy, J. (1909). The ice question as it affects Canadian water power with special reference to frazil and Anchor ice. Proc. Tarans. Roy. Soc, Can. 3rd Ser. Sec. III: 143–77.Google Scholar
Murton, J. B. (2009). Global warming and thermokarst. In Margesin, R. (ed.), Permafrost soils, soil biology, vol. 16, Berlin: Springer. pp. 185203, doi.org/10.1007/978–3-540–69371-0_13.Google Scholar
Murton, J. B. and French, H. M. (1994). Cryostructures in permafrost, Tuktoyatuk coastlands, western Arctic, Canada. Canad. J. Earth Sci., 31: 737–47.Google Scholar
Murton, J. B., et al. (2010). Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature, 440: 740–3.Google Scholar
Muskett, R. R., et al. (2008). Surging, accelerating surface lowering and volume reduction of the Malaspina Glacier system, Alaska, USA, and Yukon, Canada, from 1972 to 2006. J. Glaciol., 54 (188): 788800.Google Scholar
Muttoni, G., et al. (2003). Onset of major Pleistocene glaciations in the Alps. Geology, 31 (11): 989–92.Google Scholar
Myel ’ nikov, I. A. (1995). The Weddell ice drift station in Antarctica. Oceanol., 35 (2): 286–8.Google Scholar
Mysak, L. A., R. G. Ingram, J. Wang, and A. van der Baaren, 1996: The anomalous sea-ice extent in Hudson bay, Baffin bay and the Labrador sea during three simultaneous NAO and ENSO episodes. Atmosphere-Ocean, 34, 313–343.Google Scholar
Mysak, L. A. (2008). Glacial inceptions: Past and future. Atmos. – Ocean, 46: 317–41.Google Scholar
Naaim, M., et al. (2016). Impact of climate warming on avalanche activity in French Alps and increase of proportion of wet snow avalanches. Houille Blanche, 59 (6): 1220, doi:10.1051/lhb/2016055.Google Scholar
Naaim, M., Durand, Y., Eckert, N., and Chambon, G. (2013). Dense avalanche friction coefficients: Influence of physical properties of snow. J. Glaciol., 59 (216): 771–82, doi:10.3189/2013JoG12J205.Google Scholar
Narama, C., et al. (2006). Recent changes of glacier coverage in the western Terskey–Alatoo range, Kyrgyz Republic, using Corona and Landsat. Annals Glaciol., 43: 223–9.Google Scholar
Narama, C., et al. (2010). Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (~1970), Landsat (~2000), and ALOS (~2007) satellite data. Planet. Global Change, 71: 4254.Google Scholar
Narod, B. B., Clarke, G. K. C., and Prager, B. T. (1988). Airborne UHF radar sounding of glaciers and ice shelves, northern Ellesmere Island, Arctic Canada. Canad. J. Earth Sci., 25: 95105.Google Scholar
Naruse, R., et al. (1995). Recent variations of calving glaciers in Patagonia, South America, revealed by ground surveys, satellite-data analyses and numerical experiments. Annals Glaciol., 21: 297303.Google Scholar
NASA (National Aeronautics and Space Administration). 2016. Arctic sea ice melt. https://neptune.gsfc.nasa.gov/csb/index.php?section=54.Google Scholar
Nash, T., et al. (2007). A record of Antarctic climate and ice sheet history recovered. EOS, 88 (50): 557–5.Google Scholar
Nash, T., et al. (2009). Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature, 458: 322–9.Google Scholar
National Research Council. (1990). Snow avalanche hazards and mitigation in the United States, Commission on Engineering and Technical Systems, Panel on Snow Avalanches. Washington, DC: National Academy Press. 96 pp.Google Scholar
National Research Council. (2010). Advancing the science of climate change. Washington, DC: National Academy Press. 528 pp.Google Scholar
National Research Council (NRC). (2011). Climate Stabilization Targets: Emissions, concentrations, and impacts over decades to millennia, 190 pages, by Committee on Stabilization Targets for Atmospheric Greenhouse Gas Concentrations of NRC, National Academy Press, USA.Google Scholar
Nazintsev, Y. L. (1964). The heat balance of the surface of the multiyear ice cover in the central Arctic (In Russian). Trudy Arkt. Antarkt. NauchnoIssled. Inst., 267: 110–26.Google Scholar
Nelson, F. E. (1986). Permafrost in central Canada: Applications of a climate-based predictive model. Annals Assoc. Amer. Geogr., 76 (4): 550–69.Google Scholar
Nelson, F. E. and Anisimov, O. A. (1993). Permafrost zonation in Russia under anthropogenic climatic change. Permafrost Periglacial Process, 4: 137–48.Google Scholar
Nelson, F. E., Hinkel, K. M., and Paetzold, R. (1997). An active layer thermal regime at Barrow, Alaska. CMDL Summary Report 24, 1996–1997. Boulder, CO: NOAA/ESRL.Google Scholar
Nelson, F. E. and Outcalt, S. I. (1983). A frost-index number for spatial prediction of ground-frost zones. In Permafrost – Fourth international conference proceedings, vol. 1. Washington, DC: National Academy Press. pp. 907–11.Google Scholar
Nelson, F. E. and Outcalt, S. I. (1987). A computational method for prediction and regionalization of permafrost. Arct. Alp. Res., 19: 279–88.Google Scholar
Nelson, F. E., et al. (2008). Decadal results from the Circumpolar Active Layer Monitoring (CALM) program. In Kane, D. L. and Hinkel, K. M. (eds.), Ninth international conference on permafrost, Fairbanks, AK: Institute of Northern Engineering, University of Alaska Fairbanks. pp. 1273–80.Google Scholar
Nerem, R. S., et al. (2018). Climate Change Driven Accelerated Sea Level Rise Detected In The Altimeter Era. Proc. Natl. Acad. Sci. USA, 115: 2022–5, https://doi.org/10.1073/pnas.1717312115, 2018.Google Scholar
Nesje, A. (2009). Latest Pleistocene and Holocene alpine glacier fluctuations in Scandinavia. Quatern. Sci. Rev., 28 (21–22): 2119–36.Google Scholar
Nesje, A. and Dahl, S. O. (2000). Glaciers and environmental change. London: Hodder Education. 203 pp.Google Scholar
Newell, J. P. (1993). Exceptionally large icebergs and ice islands in Eastern Canadian Waters: A review of sightings from 1900 to present. Arctic, 46 (3): 205–11.Google Scholar
Newton, B. W., Prowse, T. D., and de Rham, L. P. (2017). Hydro-climatic drivers of mid-winter breakup of river ice in western Canada and Alaska. Hydrol. Res., 48: 945–56, https://doi.org/10.2166/nh.2016.358.Google Scholar
Nezhikhovskiy, R. A. (1964). Coefficients of roughness of bottom surface on slush-ice cover. Soviet Hydrol., 2: 127–50.Google Scholar
Nghiem, S. V. and Tsai, W.-Y. (2001). Global snow monitoring with Ku-band scatterometer. IEEE Trans. Geosci. Remote Sens., 39 (10): 2118–34.Google Scholar
Nghiem, S., et al. (2001). Detection of snowmelt regions on the Greenland ice sheet using diurnal backscatter change. J. Glaciol., 47: 539–47, doi:10.3189/172756501781831738.Google Scholar
Nghiem, S. V., et al. (2007). Rapid reduction of Arctic perennial sea ice. Geophys. Res. Lett., 34: 16.Google Scholar
Nguyen, T.-N. , et al. (2009). Estimating the extent of near-surface permafrost using remote sensing, Mackenzie Delta, Northwest Territories. Permafrost Periglac.Process, 20 (2): 141–53.Google Scholar
Nicholls, K. W., et al. (2009). Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: A review. Rev. Geophys., 47: RG3003, 23.Google Scholar
Nick, F. M., van der Veen, C. J., and Oerlemans, J. (2007). Controls on advance of tidewater glaciers: Results from numerical modeling applied to Columbia Glacier. J. Geophys. Res., 112: G03S24.Google Scholar
Nick, F. M., et al. (2009). Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat. Geosci., 2: 110–14.Google Scholar
Nick, F. M., et al. (2013). Future sea-level rise from Greenland’s main outlet glaciers in a warming climate. Nature, 497: 235–8, doi:10.1038/nature12068.Google Scholar
Nicolsky, D. and Romanovsky, V. (2018). Modeling long-term permafrost degradation. J. of Geophys. Res.: Earth Surface, 123: 1756–71, doi.org/10.1029/2018JF004655.Google Scholar
Nicolussi, K. (1990). Bilddokumente zur Geschichte des Vernagtferners im 17 Jahrhundert. Zeit. Gletscherk. Glazialgeolog, 26: 97119.Google Scholar
Niederer, P., et al. (2007). Tracing glacier wastage in the northern Tien Shan (Kyrgyzstan/ Central Asia) over the last 40 years. Clim. Change, 86: 227–34.Google Scholar
Ning, Li, et al. (2009). Using remote sensing to estimate sea ice thickness in the Bohai Sea, China based on ice type. Int. J. Rem. Sensing., 30 (17): 4539–52.Google Scholar
Nitta, T., et al. (2014). Representing variability in subgrid snow cover and snow depth in a global land model: Offline validation. J. Climat., 27(9): 3318–30. doi: 10.1175/JCLI-D-13-00310.1.Google Scholar
Niu, G.-Y., et al. (2007). Retrieving snow mass from GRACE terrestrial water storage change with a land surface model. Geophys. Res. Lett., 34: L15704, doi:10.1029/2007GL030413.Google Scholar
Niu, G. Y. and Yang, Z. I. (2003). The versatile integrator of surface atmospheric processes – Part 2: Evaluation of three topography-based runoff schemes. Global Planet. Change, 38: 191208.Google Scholar
Niu, G. Y. and Yang, Z. L. (2004). Effects of vegetation canopy processes on snow surface energy and mass balances. J. Geophys.Res. Atmospheres, 109: D23111.Google Scholar
Nolan, M., et al. (1995). Ice-thickness measurements of Taku Glacier, Alaska, USA, and their relevance to its recent behavior. J. Glaciol., 41 (139): 541–53.Google Scholar
Nolin, A. W., Fetterer, F. M., and Scambos, T. A. (2002). Surface roughness characterizations of sea ice and ice sheets: Case studies with MISR data. IEEE Trans. Geosci. Remote Sens., 40 (7): 1605–15.Google Scholar
Nolin, A. W., et al. (2001). Cryospheric applications of MISR data. IEEE Internat. Geosci. Remote Sensing Symposium (IGARRS) 2001. Proceedings, 3: 1219–21.Google Scholar
Notz, D. and Stroeve, J. (2016). Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 354 (6313): 747–50, doi:10.1126/science.aag2345.Google Scholar
Notz, D. and Worster, M. G. (2009). Desalination processes of sea ice revisited. J. Geophys. Res., 114: C05006, 10.Google Scholar
Nötzli, J., Naegeli, B., and Vonder Mühll, D. (eds.). (2009). PERMOS. Permafrost in Switzerland. 2004/2005 and 2006/2007. Glaciol. Rep. (Permafrost) no.6/7. Cryospheric Commission, Swiss Acad. Sci., Zurich: University of Zurich, Dept. of Geography. 100 pp.Google Scholar
Nummelin, A., Ilicak, M., Li, C., and Smedsrud, L. H. (2016). Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover. J. Geophys. Research-Oceans, 121: 617–37. doi: 10.1002/2015JC011156.Google Scholar
Nuth, C., et al. (2010). Svalbard glacier elevation changes and contribution to sea level rise. J. Geophys. Res., 115: F01008, doi:10.1029/2008JF001223.Google Scholar
Nutt, D. C. (1966). The drift of ice iceland WH-5. Arctic, 16: 204–6.Google Scholar
NWS. (1992). Airborne gamma radiation snow survey program and satellite hydrology program: User’s guide version 4.0. Minneapolis, MN: Office of Hydrology, National Weather Service, NOAA. 54 pp.Google Scholar
Nye, J. F. (1953). The flow law of ice from measurements in glacier tunnels, laboratory experiments and the Jungfraufirn borehole experiment. Proc. Roy. Soc. London. A, 219 (1139): 477–89.Google Scholar
Nye, J. F. (1958). A theory of wave formation in glaciers. International Association of Scientific Hydrology Publ. 47 (Symposium at Chamonix 1958 – Physics of the movement of the ice), pp. 139–54.Google Scholar
Nye, J. F. (1960). The response of glaciers and ice-sheets to seasonal and climatic changes. Proc. Roy. Soc. London. A, 256 (1287): 559–84.Google Scholar
Nye, J. F. (1961). The influence of climatic variations on glaciers. IASH, General Assembly Helsinki, IASH Publ., 54: 397404.Google Scholar
Nye, J. F. (1987). On the theory of the advance and retreat of glaciers. Geophys. J. Roy. Astron. Soc., 7: 431–56.Google Scholar
Oberleitner, F., Thaler, K., and Spötl, C. (2009). Glacio-meteorological investigations in an alpine ice cave (Eisriesenwelt, Austria). Abstract.Google Scholar
Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H., Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller, B., and Kholodov, A. (2019). Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth Sci. Rev., 193: 299316.Google Scholar
Obyazov, V. A. and Smakhtin, V. K. (2014). Ice regime of Transbaikalian rivers under changing climate. Water Resour., 41: 225–31, doi.org/10.1134/S0097807814030130.Google Scholar
O’Connor, F. M., et al. (2010). Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review. Rev. Geophys., 48: RG4005, 33.Google Scholar
Oedl, R. (1922). Die grosse Eishölle im Tennengebirge (Salzburg). (Eisriesenwelt). Vermessung.17/18: 63–83. Ber. Bundeshöhlenkommission, 3: 530.Google Scholar
Oerlemans, J. (1989). Glacier fluctuations and climatic change. Dordrecht: Kluwer. 417 pp.Google Scholar
Oerlemans, J. (1991). A model for the surface balance of ice masses.Pt.1: Alpine glaciers. Zeit. Gletscherk. Glazialgeol., 27/28: 6383.Google Scholar
Oerlemans, J. (1997). A flowline model for Nigardsbreen, Norway: Projection of future glacier length based on dynamic calibration with the historic record. Annals Glaciol., 24: 382–9.Google Scholar
Oerlemans, J. (2005). Extracting a climate signal from 169 glacier records. Science, 308: 675–7.Google Scholar
Oerlemans, J. and van der Veen, C. J. (1984). Ice sheets and climate. Dordreche: D. Reidel Publ. Co. 217 pp.Google Scholar
Oerlemans, J., et al. (1998). Modelling the response of glaciers to climatic warming. Clim. Dynam., 14: 267–74.Google Scholar
Ogi, M., Yamazaki, K., and Wallace, J. M. (2010). Influence of winter and summer surface wind anomalies on summer Arctic sea ice extent. Geophys. Res. Lett., 37: L07701, doi:10.1029/2009GL042356.Google Scholar
Ogi, M., et al. (2008). Summer retreat of Arctic sea ice: Role of summer winds. Geophys. Res. Lett., 35: L24701, 5.Google Scholar
Ogilvie, A. E. J. (1984). The past climate and sea-ice record from Iceland, part 1: Data to AD 1780. Clim. Change, 6: 131–52.Google Scholar
Ogilvie, A. E. and Jonsson, T. (2001). “Little Ice Age” research: A perspective from Iceland. Clim. Change, 48: 952.Google Scholar
Ohata, T., Furukawa, T., and Higuchi, K. (1994). Glacioclimatological study of perennial ice in the Fuji Ice Cave, Japan. Part 1: Seasonal variation and mechanism of maintenance. Arct. Alp. Res., 26: 227–37.Google Scholar
Ohmura, A. (1987). Heat budget of the climate system between the Last Glacial Maximum and the present. Bull. Dept. Geogr., Univ. Tokyo, 19: 21–8.Google Scholar
Ohmura, A. (2001). Physical basis for the temperature-based melt-index method. J. appl. Met., 40 (4): 753–61.Google Scholar
Ohmura, A. (2009). Completing the world glacier inventory. Annals Glaciol., 50 (53): 144–8.Google Scholar
Ohshima, K. I. and Riser, S. C. (2010). Mapping and interannual variations of sea ice thickness in the Okhotsk Sea inferred from ocean salinity profile in spring. Paper 57A140. Proceedings, Tromso Sea Ice Symposium. Int. Glaciol. Soc. www.igsoc.org/symposia/previous.htmlGoogle Scholar
Ohshima, K. I., et al. (2006). Interannual variability of sea ice area in the Sea of Okhotsk: Importance of sea heat flux in fall. J. Met. Soc. Japan, 79: 123–9.Google Scholar
Oller, P., Fischer, J. T., and Muntán, E. (2020). The Historic Avalanche that Destroyed the Village of Àrreu in 1803, Catalan Pyrenees. Geosciences, 10(5): 169, https://doi.org/10.3390/geosciences10050169Google Scholar
Olonscheck, D., Mauritsen, T., and Notz, D. (2019). Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations. Nat. Geosci, 12(6). doi:10.1038/s41561-019-0363-1.Google Scholar
Olyphant, G. A. and Isard, S. A. (1988). The role of advection in the energy balance of late-lying snowfields: Niwot Ridge, Front Range, Colorado. Water Resour. Res., 24 (11): L1962–8.Google Scholar
Onarheim, I. H., Eldevik, T., Smedsrud, L. H., and Stroeve, J. C. (2018). Seasonal and regional manifestation of Arctic sea ice loss. J. of Clim., 31: 4917–32.Google Scholar
O’Neill, B. C., et al. (2014). A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change, 122: 387400. https://doi.org/10.1007/s10584-013-0905-2Google Scholar
O’Neill, B. C., et al. (2017). IPCC reasons for concern regarding climate change risks. Nat. Clim. Change, 7 (1): 2837, doi:10.1038/nclimate3179.Google Scholar
Onstott, R. G. (1992). SAR and scatterometer signatures of sea ice. In Carsey, F. D. (ed.), Microwave remote sensing of sea Ice, Washington, DC: American Geophysical Union. pp. 73104.Google Scholar
Orheim, O. (1980). Physical characteristics and life expectancy of tabular Antarctic icebergs. Ann. Glaciol., 1: 1118.Google Scholar
Orheim, O. (1987). Icebergs in the Southern Ocean. Annals Glaciol., 9: 241–2.Google Scholar
Osmaston, H. (2005). Estimation of glacier equilibrium line altitude by the area x altitude, area x altitude balance ratio, and the area-altitude balance index methods and their validation. Quat. Int., 138 (9): 2231.Google Scholar
Osokin, I. M. (1973). Zonation and regime of naleds in Trans-Baikal region. Proceedings of the Second International Conference on Permafrost. USSR Contribution. Washington, DC. pp. 391–6.Google Scholar
Osterkamp, T. E. (1975). Frazil ice nucleation mechanisms. Report UAGR-230. Fairbanks: University of Alaska.Google Scholar
Osterkamp, T. E. (2001). Sub-sea permafrost. In Steele, J. H., Thorpe, S. A., and Turekian, K. K., (eds.), Encyclopedia of ocean sciences, San Diego: Academic Press. pp. 2902–12.Google Scholar
Osterkamp, T. E. (2008). Thermal state of permafrost in Alaska during the fourth quarter of the twentieth century. In Kane, D. L. and Hinkel, K. M. (eds.), Ninth International Conference on Permafrost, June 29–July 3, 2008, University of Alaska Fairbanks. Proceedings, vol. 2, Fairbanks, AK: University of Alaska. pp. 1333–7.Google Scholar
Osterkamp, T. E., et al. (2000). Observations of thermokarst and its impact on boreal forest in Alaska. Arct. Antarct. Alp. Res., 32: 303–15.Google Scholar
Østrem, G. (1964). Ice-cored moraines in Scandinavia. Geograf. Annal., 46: 282337.Google Scholar
Østrem, G. (1966). The height of the glaciation limit in southern British Columbia and Alberta. Geograf. Annal., A, 48: 126–38.Google Scholar
Østrem, G. (1972). Height of the glaciation level in northern British Columbia and southeastern Alaska. Geograf. Annal., A, 54: 7684.Google Scholar
Østrem, G. and Brugman, M. (1991). Glacier mass-balance measurement. A manual for field and office work. NHRI Sci. Rep. No, 4, Saskatoon, Sas,: National Hydrology Research Institute. 224 pp.Google Scholar
Østreng, W. (2006). The International Northern Sea Route Programme (INSROP): Applicable lessons learned. Polar Record, 42: 7181.Google Scholar
Otiemo, F. and Bromwich, D. H. (2009). Contribution of atmospheric circulation to Inception of the Laurentide Ice Sheet at 116 kyr BP. J. Climate, 22(1): 3957.Google Scholar
Outcalt, S. I. and MacPhail, D. D. (1965). A survey of neoglaciation in the front range of Colorado. Study Series in Earth Sciences, No. 4. Boulder, CO: University of Colorado Press. 124 pp.Google Scholar
Overland, J., et al. (2009). International Arctic Sea Ice monitoring program continues into second summer. EOS, Transactions, AGU, 90 (37): 321–2.Google Scholar
Overland, J. E. and Wang, M. (2005). The Arctic climate paradox: The recent decrease of the Arctic Oscillation. Geophy. Res. Lett., 32: L06701, https://doi.org/10.1029/2004GL021752Google Scholar
Paillard, D. (2001). Glacial cycles: Towards a new paradigm. Rev. Geophys. 39: 325–46.Google Scholar
Palacios, D. and Vázquez-Selem, L. (1996). Geomorphic effects of the retreat of Jamapa Glacier, Pico de Orizaba volcano (Mexico). Geogr. Annal. A, 78: 1934.Google Scholar
Pálsson, S. (Williams. R. S., Jr and Sigurðsson. O., eds.) (2004). Icelandic ice mountains: draft of a physical, geographical, and historical description of icelandic ice mountains on the basis of a journey to the most prominent of them in 1792–1794. Reykjavik: Icelandic Literary Society. 183 pp.Google Scholar
Parajka, J., et al. (2010). A regional snow-line method for estimating snow cover from MODIS during cloud cover. J. Hydrol., 38: 203–12.Google Scholar
Park, H., Yabuki, H., and Ohata, T. (2012). Analysis of satellite and model datasets for variability and trends in Arctic snow extent and depth, 1948–2006. Polar Science, 6 (1): 2337.Google Scholar
Parkinson, C. L. (2006). Earth’s cryosphere: Current state and recent changes. Ann. Rev. Environment Resour., 31: 3360.Google Scholar
Parkinson, C. L. and Cavalieri, D. J. (2008). Arctic sea ice variability and trends, 1979– 2006. J. Geophys. Res., 113: C07003, 128.Google Scholar
Parkinson, C. L. and Cavalieri, D. J. (2009). Sea Ice. In Williams, R. S. and Ferrigno, J. (eds.) Satellite Image Atlas of Glaciers of the World. U.S. Geological Survey Professional Paper, 1386-A.Google Scholar
Parkinson, C. L., et al. (1987). Antarctic sea ice, 1973–1976: Satellite passive-microwave observations. SP 489. Washington, DC: NASA. 296 pp.Google Scholar
Parkinson, C. L., et al. (1999a). Arctic sea ice extents, areas, and trends, 1978–1996. J. Geophys. Res., 104(C9): 20,83756.Google Scholar
Parkinson, C., Comiso, J., and Zwally, H. J. (1999). Nimbus-5 ESMR daily polar gridded brightness temperatures. Boulder, CO: National Snow and Ice Data Center. Digital media.Google Scholar
Parkinson, C. and Washington, W. M. Jr. (1979). A large-scale numerical model of sea ice. J Geophys. Res., 84: 311–37.Google Scholar
Parlee, B. and Furgal, C. (2012). Well-being and environmental change in the Arctic: A synthesis of selected research from Canada’s International Polar Year program. Climatic Change, 115(1): 1334.Google Scholar
Parmerter, R. R. and Coon, M. D. (1973). On the mechanics of pressure ridge formation in sea ice. Offshore Technology Conference, 1973, Houston, Texas. Paper No. 1810-MS: 10 pp.Google Scholar
Partington, K. C. (1998). Discrimination of glacier facies using multi-temporal SAR data. J. Glaciol., 44(146): 4253.Google Scholar
Paterson, W. S. B. (1994). The physics of glaciers, 3rd ed. Oxford: Pergamon Press. 480 pp.Google Scholar
Paul, F. (2000). Evaluation of different methods for glacier mapping using Landsat TM, Proceedings, EARSeL-SIG Workshop, Land ice and snow, Dresden. pp. 239–45.Google Scholar
Paul, F., et al. (2007). Alpinewide distributed glacier mass balance modelling. In Orlove, B., et al. (eds.), Darkening peaks: Glacier retreat, science and society, Berkeley, CA: University of California Press. pp. 111–25.Google Scholar
Paul, F., et al. (2009). Recommendations for the compilation of glacier inventory data from digital sources. Annals Glaciol., 50 (54): 119–26.Google Scholar
Paul, F. and Svoboda, F. (2009). A new glacier inventory on southern Baffin Island, Canada, from ASTER data II: Data analysis, glacier change and applications. Annals Glaciol., 50 (53): 2231.Google Scholar
Paulcke, W. (1938). Praktische Schnee- und Lawinenkunde. Berlin: J. Springer, Verstandliche Wissenschaft, vol. 38. 217 pp.Google Scholar
Pavelsky, T. M. and Smith, L. C. (2004). Spatial and temporal patterns in Arctic river ice breakup observed with MODIS and AVHRR time series. Rem. Sensing Environ., 93: 328–38.Google Scholar
Payne, A. J., et al. (2000). Results from the EISMINT model intercomparison: The effects of thermomechanical coupling. J. Glaciol., 46 (153): 227–38.Google Scholar
Pease, C. H. (1987). The size of wind-driven coastal polynyas. J. Geophys.Res., 92: 7049–59.Google Scholar
Pedersen, C. A., et al. (2010). A new sea ice albedo scheme including melt ponds for ECHAM5 general circulation model. J. Geophys. Res., 114: D08101, 15.Google Scholar
Pedro, J. B., et al. (2016). Southern Ocean deep convection as a driver of Antarctic warming events. Geophys. Res. Lett., 43: 2192–9.Google Scholar
Pellikka, P. and Rees, W. G. (eds.) (2010). Remote sensing of glaciers. London: CRC Press, Taylor and Feancis. 330 pp.Google Scholar
Peltier, W. R. (1994). Ice Age paleotopography. Science, 265: 195201.Google Scholar
Peltier, W. R. (2004). Global glacial isostasy and the surface of the Ice-Age Earth, 2004, The ICE-5G(VM2) model and GRACE. Ann. Rev. Earth Planet. Sci., 32: 111–49.Google Scholar
Pelto, M. S. (2016). State of the Climate in 2015. Bull. Am. Meteor. Soc., 97 (8): S23S24.Google Scholar
Pelto, M. S. and Hedlund, C. (2001). Terminus behavior and response time of North Cascade Glaciers, Washington, USA. J. Glaciol., 47 (158): 497506.Google Scholar
Pelto, M. S. and Warren, C. R. (1991). Relationship between tidewater glacier calving velocity and water depth at the calving front. Annals Glaciol., 15: 115–18.Google Scholar
Pelto, M. S., Beedle, M., and Miller, M. M. (2009). Mass balance measurements on the Taku glacier, Juneau Icefield, Alaska 1946–2008, www.nichols.edu/departments/gla-cier/taku.html.Google Scholar
Pelto, M. S., et al. (2008). The equilibrium flow and mass balance of the Taku Glacier, Alaska 1950–2006. The Cryosphere, 2 (2): 147–57.Google Scholar
Pepe, A. and Calo, F., (2017). A Review of Interferometric Synthetic Aperture RADAR (InSAR) Multi-Track Approaches for the Retrieval of Earth’s Surface Displacements. Appl. Sci., 7: 1264, MDPI, doi:10.3390/app7121264Google Scholar
Perla, R. I. (1980). Avalanche release, motion, and impact. In Colbeck, S. C. (ed.), Dynamics of snow and ice masses, New York: Academic Press. pp. 397462.Google Scholar
Perla, R. I., Cheng, T. T., and McClung, D. M. (1980). A two-parameter model of snow avalanche motion. J. Glaciol., 26: 197207.Google Scholar
Perovich, D. K., et al. (2002). Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys Res., 107 (C10): 8044, 13.Google Scholar
Perovich, D. K., Light, B., Eicken, H., Jones, K. F., Runciman, K., and Nghiem, S. V. (2007). Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback. Geophys. Res. Lett., 34: L19505, doi:10.1029/2007GL031480.Google Scholar
Perovich, D. K., et al. (2008). Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett., 35: L11501, 4.Google Scholar
Perovich, D. K., et al. (2009a). Transpolar observations of the morphological properties of Arctic sea ice. J. Geophys. Res., 114: C00A04, doi:10.1029/2008JC004892.Google Scholar
Perovich, D. K., et al. (2009b). Sea ice cover. Arctic Report Card 2009, www.arctic.noaa.gov/reportcard/.Google Scholar
Perovich, D., et al. (2018). Arctic Report Card: Update for 2018, effects of persistent Arctic warming continue to mount, Arctic Program, NOAA, USA.Google Scholar
Perovich, D. K. and Richter-Menge, J. A. (2009). Loss of sea ice in the Arctic. Ann. Rev. Marine Sci., 1: 417–41.Google Scholar
Perry, A. H. and Symons, L. (eds.). (1991). Highway Meteorology. E and F N Spon, London. 209 pp.Google Scholar
Perutz, M. F. (1953). The flow of glaciers. Nature, 172 (621): 929–31.Google Scholar
Perutz, M. F. and Seligman, G. (1939). A crystallographic investigation of glacier structure and the mechanism of glacier flow. Proc. Roy. Soc. London, Ser. A, 172: 335–60.Google Scholar
Pessina, S. and Kasten-Coors, S. (2011). “In-Flight Characterization of CRYOSAT-2 Reaction Control System,” Proceedings of the 22nd International Symposium on Space Flight Dynamics, February 28–March 4, 2011, Sao Jose dos Campos, SP, Brazil, URL: www.issfd22.inpe.br/S7-Attitude.Dynamics.1-AD1/S7_P4_ISSFD22_PF_041.pdfGoogle Scholar
Peterson, B. J., et al. (2002). Increasing river discharge to the Arctic Ocean. Science, 293: 2171–3.Google Scholar
Petrov, V. G. (1930). Naledy na Amursko-Yakutskoi magistral. (Icings on the Amur-Yakustk highway). Izd. Akad. Nauk, SSSR, Nauchno-Issled. Leningrad: Avtomobil. Dorozhno. Inst. 177 pp + atlas 37 pp.Google Scholar
Petrovic, J. J. (2003). Mechanical properties of ice and snow. J, Materials Sci., 38: 16.Google Scholar
Petryk, S. (1995). Numerical modeling. In Beltaos, S. (ed.), River ice jams, Highlands Ranch, CO: Water Resources Publications. pp. 147–72.Google Scholar
Petty, A. A., Stroeve, J. C., Holland, P. R., Boisvert, L. N., Bliss, A. C., Kimura, N., and Meier, W. N. (2018). The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows. The Cryosphere, 12: 433–52.Google Scholar
Pfeffer, W. T. (2003). Tidewater glaciers move at their own pace. Nature, 426: 602.Google Scholar
Pfeffer, W. T. (2007). A simple mechanism for irreversible tidewater glacier retreat. J. Geophys. Res., 112: F03S25, 12.Google Scholar
Pfeffer, W. T., Harper, J. T., and O ’Neel, S. (2008). Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science, 321: 1340–2.Google Scholar
Pielmeier, C. and Scchneebelli, M. (2003). Developments in the stratigraphy of snow. Surveys Geophys., 24: 389416.Google Scholar
Pierce, D. W., et al. (2008). Attribution of declining western U.S. snowpack to human effects. J. Climate, 21: 6425–44.Google Scholar
Pirazzinni, R. (2009). Challenges in snow and ice albedo parameterizations. Geophysica, 45 (1–2): 4162, Geophysical Society of Finland, Helsinki.Google Scholar
Pithan, F. and Mauritsen, T. (2014). Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. Lett., 7: 181–4, doi: 10.1038/NGEO2071.Google Scholar
Plafker, G. and Ericksen, G. E. (1978). Nevados Huascaran avalanches, Peru. In Voight, B. (ed.), Rockslides and avalanches, New York: Elsevier Scientific. pp. 277314.Google Scholar
Plewes, L. A. and Hubbard, B. (2001). A review of the use of radio-echo sounding in glaciology. Progr. Phys. Geog., 25: 203–36.Google Scholar
Plug, L. J. and West, J. J. (2009). Thaw lake expansion in a two-dimensional coupled model of heat transfer, thaw subsidence, and mass movement. J. Geophys. Res., 114: F01002, doi:10.1029é2006JF000740.Google Scholar
Podyakanov, S. A. (1903). Naledy vostochnoi Sibiri i prichiny ikh voznikoveniya (Icings of eastern Siberia and their origins). Izv. Vsesoyuz.Geogr. Obshch, 39: 305–37.Google Scholar
The Polar Pathfinder Group (Maiden, M., et al.) (1997). The Polar Pathfinders: Data Products and Science Plans. Part II. EOS Electronic Supplement, 96149e.Google Scholar
Pollard, D. (2010). A retrospective look at coupled ice sheet–climate modeling. Climatic change, 100 (1): 173–94.Google Scholar
Pollard, D. and DeConto, R. M. (2009). Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature, 458: 329–33.Google Scholar
Pollard, W. H. and Couture, N. J. (2008). Massive ground ice in the Eureka Sound Lowlands, Canadian High Arctic. In Kane, D. L. and Hinkel, K. M. (eds.), Proceedings, Ninth International Conference on Permafrost, Fairbanks, AK: University of Alaska, Institute of Northern Engineering. pp. 1433–8.Google Scholar
Pollard, W. H. and French, H. M. (1980). A first approximation of the volume of ground ice, Richards Island, Pleistocene Mackemzie delta, Northwest Territories, Canada. Canad. Geotech. J., 17: 509–16.Google Scholar
Polyak, L., et al. (2010). History of sea ice in the Arctic. Quat. Sci. Rev, doi:10.1016/j.quascirev.2010.02.010Google Scholar
Polyakov, I. and Johnson, M. A. (2000). Arctic decadal and inter-decadal variability. Geophys. Res. Lett., 27: 4097–100.Google Scholar
Pomeroy, J. W. (2000). Pririe and Arctic areal snow cover mass balance using a blowing snow model. J. Geophys. Res., 105(D21): 26,619–34.Google Scholar
Pomeroy, J. W. (2009). Centre for Hydrology, University of Saskatchewan.Google Scholar
Pomeroy, J. W. and Gray, D. M. (1990). Saltation of snow. Water Resour. Res., 26 (7): 1583–94.Google Scholar
Pomeroy, J. W., Gray, D. M., and Landine, P. G. (1993). The Proirie blowing snow model: Characteristics, validation, operation. J. Hydrol., 144: 165–92.Google Scholar
Pomeroy, J. W. and Schmidt, R. A. (1993). The use of fractal geometry in modeling intercepted snow accumulation and sublimation. Proc. Joint Eastern and Western Snow Conf., Quebec City, P. Q: 110, 50th Eastern and 61st Western Snow Conference.Google Scholar
Pomeroy, J. W., et al. (1998). Coupled modelling of forest snow interception and sublimation. Hydrol. Proc., 12: 2317–37.Google Scholar
Porter, S. C. (2000). Snowline depression in the tropics during the last glaciation. Quart. Sci. Rev., 20 (10): 1067–91.Google Scholar
Portis, D. H., et al. (2001). Seasonality of the North Atlantic oscillation. J. Climate, 14: 2069–78.Google Scholar
Post, A. (1969). Distribution of surging glaciers in western North America. J. Glaciol., 8 (53): 229–40.Google Scholar
Post, A. (1975). Preliminary hydrography and historical terminal changes of Columbia Glacier. US Geological Survey, Hydrologic Investigations Atlas HA-559.Google Scholar
Post, A. (2005). EPIC. Austin Post collection (Images online), https://archive.gi.alaska.edu/austin-post-collection.Google Scholar
Post, A. and LaChapelle, E. R. (2000). Glacier ice (2nd ed.). Seattle, WA: University of Washington Press.Google Scholar
Post, A. and Meier, M. F. (1980). A preliminary inventory of Alaskan glaciers. World Glacier Inventory. Proceedings of the Riederalp Workshop, September 1978. IAHS Publ., No.126, pp. 45–7.Google Scholar
Post, A. and Motyka, R. (1995). Taku and Le Conte Glaciers, Alaska: Calving speed control of late-Holocene asynchronous advances and retreats. Phys. Geogr., 16: 5982.Google Scholar
Pour, H. K., et al. (2017). Improvement of lake ice thickness retrieval from MODIS satellite data using a thermodynamic model. IEEE Trans. on Geosci. and Remote Sensing, 99: 110, doi:10.1109/TGRS.2017.2718533.Google Scholar
Preußer, A., Heinemann, G., Willmes, S., and Paul, S., (2016). Circumpolar polynya regions and ice production in the Arctic: results from MODIS thermal infrared imagery from 2002/2003 to 2014/2015 with a regional focus on the Laptev Sea. Cryosphere, 10: 3021–42, www.the-cryosphere.net/10/3021/2016/, doi:10.5194/tc-10-3021-2016.Google Scholar
Price, A. G. (1988). Prediction of snowmelt rates in a deciduous forest. J. Hydrol., 101: 145–57.Google Scholar
Price, A. G. and Dunne, T. (1976). Energy balance computations of snowmelt in a sub-Arctic area. Water Resour. Res., 12: 686–94, doi:10.1029/WR012i004p00686.Google Scholar
Priscu, J. C., et al. (2008). Antarctic subglacial water: Origin, evolution, and ecology. In Vincent, W. F. and Laybourn-Parry, J. (eds.), Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems, Oxford: Oxford University Press. pp. 119–35.Google Scholar
Pritchard, H. (2009). State of the cryosphere: Glaciers and ice sheets. E-Book. Special Publ, 60. Washington, DC, AGU.Google Scholar
Pritchard, H. D., et al. (2009). Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461: 971–5, doi:10.1038/nature08471.Google Scholar
Pritchard, H. D., et al. (2012). Antarctic ice-sheet loss driven by basal melting of ice shelves, Nature, Macmillan Publishers, Vol 484, 26, doi:10.1038/nature10968.Google Scholar
Pritchard, R. S. (ed.) (1980). Sea ice processes and models. Seattle, WA: University of Washington Press. 474 pp.Google Scholar
Pritchard, R. S., Coon, M., McPhee, M. G., and Leavitt, E. (1977). Winter ice dynamics in the nearshore Beaufort Sea. AIDJEX Bull.37. Seattle, WA: Applied Physics Lab, University of Washington. 3793 pp.Google Scholar
Prowse, T. D. (2000). River-ice ecology. Saskatoon, Canada: Environment Canada. 64 pp.Google Scholar
Prowse, T. D. (2005). River-ice hydrology. In Anderson, M. G. (ed.), Encyclopedia of hydrological sciences, New York: John Wiley & Sons. Vol. 4. pp. 2657–78.Google Scholar
Prowse, T. D. and Beltaos, S. (2002). Climatic control of river-ice hydrology: A review. Hydrol. Proc., 16(4): 805–22.Google Scholar
Prowse, T. D. and Bonsal, B. R. (2004). Historical trends in river-ice breakup: A review. Nordic Hydrol., 35: 281–93.Google Scholar
Prowse, T. D., et al. (2002). Trends in river-ice breakup and related controls. In Squire, V. and Langhorne, P. (eds.), Proc. 16th IAHR International Symposium on Ice. New Zealand: Department of Physics, University of Otago, Dunedin, 3, pp. 6471.Google Scholar
Prowse, T. D., et al. (2007). River-ice breakup/freeze-up: a review of climatic drivers, historical trends and future predictions. Ann. Glaciol., 46: 443–51.Google Scholar
Prowse, T. D., Shrestha, R., Bonsal, B., and Dibike, Y. (2010). Changing spring air-temperature gradients along large northern rivers: Implications for severity of river-ice floods. Geophys. Res. Lett., 37: L19706, doi:10.1029/2010GL044878.Google Scholar
Pugh, H. L. D. and Price, W. I. J. (1954). Snow drifting and the use of snow fences. Polar Rec., 7: 423.Google Scholar
Pulliainen, J., Koskinen, J., and Hallikainen, M. (2001). Compensation of forest canopy effects in the estimation of snow covered area from SAR data. IEEE Geosci. Remote Sens. Symp., 2: 813–15, doi:10.1109/IGARSS.2001.976645.Google Scholar
Punsalmaa, B. and Nyamsuren, B. (2002). Climate change impacts on ice regime of the rivers in Mongolia. In: Ice in the environment, Vol. 1, Squire, V. and Langhorne, P. (eds.). Proc. 16th IAHR Internat. Sympos. on Ice, Int. Assoc. Hydraulic Eng. Rea., Dunedin, New Zealand. pp. 122–6.Google Scholar
Purdie, H. (2013). Glacier retreat and tourism: Insights from New Zealand. Moun. Res. and Dev., 33(4): 463–72, https://doi.org/10.1659/MRD-JOURNAL-D-12–00073.1.Google Scholar
Purves, R., et al. (2003). Nearest neighbours for avalanche forecasting in Scotland – development. verification and optimisation of a model. Cold Reg. Sci. Technol., 37: 343–55.Google Scholar
Putkonen, J. (2008). What dictates the occurrence of zero curtain effect? In Kane, D. L. and Hinkel, K. M. (eds.), Ninth International Conference on Permafrost, 29 June–3 July 2008, University of Alaska Fairbanks. Proceedings, Vol. 2. Fairbanks, AK: University of Alaska, pp. 1451–55.Google Scholar
Pyles, R. D., Weare, B. C., and Pawu, K. T. (2000). The UCD advanced canopy-atmosphere-soil algorithm: Comparisons with observations from different climate and vegetation regimes. Quart. J. Roy. Met. Soc., 126 (569): 2951–80, doi:10.1002/qj.49712656917.Google Scholar
Qin, D.-H. (1999). Map of glaciers resources in the Himalayas. Beijing: Science Press.Google Scholar
Qin, D.-H. (2002). Glacier inventory of China (maps). Xi‘an, China: Xi’an Cartographic Publishing House.Google Scholar
Qiu, G. Q., et al. (2000). The map of geocryological regionalization and classification in China (1:10,000,000). Xian, China: Xian Press. In Chinese and English.Google Scholar
Quincey, D. J. and Glasser, N. F. (2009). Morphological and ice-dynamical changes on the Tasman Glacier, New Zealand, 1990–2007. Global Planet. Change, 68: 185–97.Google Scholar
Quincey, D. J. and Luckman, A. (2009). Progress in satellite remote sensing of ice sheets. Progr. Phys. Geog., 33: 546–67.Google Scholar
Rabatel, A., Dedieu, J. P., and Vincent, C. (2005). Using remote-sensing data to determine equilibrium-line altitude and mass-balance time series: validation on three French glaciers, 1994–2002. J. Glaciol., 51: 539–46.Google Scholar
Rabenstein, L. (2010). Sea-ice volume production in Laptev Sea polynya from January to April 2008. Paper 57A147. Proceedings, Tromso Sea Ice Symposium. Int. Glaciol. Soc.Google Scholar
Rabenstein, L., et al. (2010). Thickness and surface‐properties of different sea‐ice regimes within the Arctic Trans Polar Drift: Data from summers 2001, 2004 and 2007. J. Geophys. Res., 115: C12059, 18.Google Scholar
Rachold, V., et al. (2007). Near-shore Arctic subsea permafrost in transition. EOS, 88 (13): 149–56.Google Scholar
Racoviteanu, A. E., et al. (2008a). Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. J. Glaciol., 54 (186): 499510.Google Scholar
Racoviteanu, A., Williams, N. W., and Barry, R. G. (2008b). Optical remote sensing of glacier characteristics: A review with focus on the Himalaya. Sensors, 8: 3355–83.Google Scholar
Racoviteanu, A. E., et al. (2009). Challenges and recommendations in mapping of glacier parameters from space: Results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado. Annals Glaciol., 50 (53): 17.Google Scholar
Radić, V. and Hock, R. (2010). Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J. Geophys. Res., 115: F01010, doi:10.1029/2009JF001373.Google Scholar
Radic, V. and Hock, R. (2011). Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nature Geosci., 4: 91–4.Google Scholar
Radić, V., Hock, R., and Oerlemans, J. (2008). Analysis of scaling methods in deriving future volume evolution of valley glaciers. J. Glaciol., 54 (187): 601–12.Google Scholar
Radić, V., Bliss, A., Beedlow, A. C., Hock, R., Miles, E., and Cogley, J. G. (2014). Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Clim. Dyn., 42: 3758, doi:10.1007/s00382-013-1719-7.Google Scholar
Radok, U. (1997). The International Commission on Snow and Ice (ICSI) and its precursors, 1894–1994. J. Hydrol. Sci., 42: 131–40.Google Scholar
Ragner, C. L. (2000). Northern Sea Route cargo flows and infrastructure – Present state and future potential. FNI Report 13/2000. Lysaker, Norway: Fridtjof Nansen Institute. 130 pp.Google Scholar
Raina, V. K. and Srivastava, D. (2008). Glacier atlas of India. Bangalore: Geological Society of India. 315 pp.Google Scholar
Räisänen, J. (2008). Warmer climate: Less or more snow? Clim. Dyn., 30: 307–19.Google Scholar
Ran, Y., Li, X., and Cheng, G. (2018). Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau. The Cryosphere, 12: 595608.Google Scholar
Rango, A. (1993). Snow hydrology processes and remote sensing. Hydrologic Processes, 7: 121–38.Google Scholar
Ramillien, G., et al. (2006). Interannual variations of the mass balance of the Antarctic and Greenland ice sheets from GRACE. Global Planet. Change, 53: 198208.Google Scholar
Raper, S. C. B. and Braithwaite, R. J. (2009). Glacier volume response time and its links to climate and based on a conceptual model of glacier hypsometry. Cryosphere, 3: 183–94.Google Scholar
Rasmussen, R., et al. (2013). How well are we measuring snow. Bull. Am. Meteor. Soc., 93(6): 811–29, doi:10.1175/BAMS-D-11-00052.1.Google Scholar
Rastner, P., Bolch, T., Mölg, N., Machguth, H., and Paul, F. (2012). The first complete glacier inventory for entire Greenland. Cryosphere, 6: 1483–95.Google Scholar
Raup, B., et al. (2007). The GLIMS geospatial glacier database: A new tool for studying glacier change. Global Planet. Change, 56 (1–2): 101–10.Google Scholar
Raymo, M. E., Lieseck, L. E., and Nisancioglu, K. H. (2006). Plio-Pleistocen ice volume: Antarctic climate and the global δ18O record. Science, 313 (3786): 492–5.Google Scholar
Raymo, M. E. and Huybers, P. (2008). Unlocking the mysteries of the ice ages. Nature, 251: 284–5.Google Scholar
Raymond, A. and Metz, C. (2004). Ice and its consequences: Glaciation in the Late Ordovician, Late Devonian, Pennsylvanian-Permian, and Cenozoic compared. J. Geol., 112: 665–70.Google Scholar
Raymond, C. F. (1987). How do glaciers surge? A review. J. Geophys. Res., 92 (B9): 9,12134.Google Scholar
Rea, B. R. (2009). Defining modern day Area-Altitude Balance Ratios (AABRs) and their use in glacier-climate reconstructions. Quat. Sci. Rev., 28 (3–4): 237–48.Google Scholar
Reeh, N. (1968). On the calving of ice from floating glaciers and ice shelves. J. Glaciol., 7: 218–32.Google Scholar
Reeh, N. (1994). Calving from Greenland glaciers: Observations, balance estimates of calving rates, calving laws. In Reeh, N. (ed.), Workshop on the calving rate of West Greenland glaciers in response to climate change, Copenhagen: Danish Polar Center, pp. 85102.Google Scholar
Rees, G. H. and Collins, D. N. (2006). Regional differences in responses of flow in glacier-fed Himalayan rivers. Hydrol. Processes, 20: 2157–67.Google Scholar
Rees, W. G. (2006). Remote sensing of snow and ice. London: Taylor and Francis. 312 pp.Google Scholar
Reid, H. F. (1896a). Glacier Bay and its glaciers. U.S. Geological Survey, 16th Annual Report, Part 1, pp. 421–61.Google Scholar
Reid, H. F. (1896b). The mechanics of glaciers. J. Geol., 4: 912–28.Google Scholar
Regensburger, K. (1963). Comparative measurements on Fedtschenko glacier. In Ward, W. (ed.), Variations of the regime of existing glaciers. Symposium of Oberurgl, Int. Assoc. Sci. Hydrol., Publ. no. 58: pp. 5761.Google Scholar
Reichle, R. H., et al. (2017). Assessment of MERRA-2 land surface hydrology estimates. J. Clim., 30 (8): 2937–60, doi:10.1175/jcli-d-16-0720.1.Google Scholar
Reimnitz, E., Dethleff, D., and Nürnberg, D. (1994). Contrasts in Arctic shelf sea-ice regimes and some implications: Beaufort Sea and Laptev Sea. Mar. Geol., 119: 215–25.Google Scholar
Reinwarth, O. and Stäblein, G. (1972). Die Kryosphre. Das Eis der Erde und seine Untersuchung. Würzburger Geograph. Arbeit., 36: 71.Google Scholar
Rémy, F. and Parouty, S. (2009). Antarctic ice sheet and radar altimetry: A review. Remote Sensing, 1: 1212–39.Google Scholar
RGI Consortium, (2017). Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space. Digital Media, Colorado, USA, doi: https://doi.org/10.7265/N5-RGI-60.Google Scholar
Rhodes, J. J., Armstrong, R. L., and Warren, S. G. (1987). Mode of formation of “ablation hollows” controlled by dirt content of snow. J. Glaciol., 33: 135–9.Google Scholar
Richter-Menge, J. A., et al. (2006). Ice mass balance buoys: A tool for measuring and attributing change in the thickness of the Arctic ice cover. Ann. Glaciol., 44: 205–10.Google Scholar
Ricker, R., Girard-Ardhuin, F., Krumpen, T., and Lique, C. (2018). Satellite-derived sea ice export and its impact on Arctic ice mass balance. Cryosphere, 12: 3017–32, https://doi.org/10.5194/tc-12–3017-2018Google Scholar
Rignot, E. J. (1998). Fast recession of a West Antarctic glacier. Science, 281: 549–51.Google Scholar
Rignot, E. and Kanagaratnam, P. (2006). Changes in the velocity structure of the Greenland ice sheet. Science, 311: 986–90.Google Scholar
Rignot, E., Koppes, M., and Velicogna, I. (2010). Rapid submarine melting of the calving faces of West Greenland glaciers. Nature Geosci., 3 (3): 187–91.Google Scholar
Rignot, E., Rivera, A., and Casassa, G. (2003). Contribution of the Patagonia icefields of South America to area level rise. Science, 302 (5644): 434–7.Google Scholar
Rignot, E., et al. (1997). North and northeast Greenland ice discharge from satellite radar interferometry. Science, 276 (5314): 934–7.Google Scholar
Rignot, E., et al. (2004). Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett., 31: L18401, 4.Google Scholar
Rignot, E., et al. (2008). Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys. Res. Lett., 35: L20502, 5.Google Scholar
Rignot, E., et al. (2008). Recent Antarctic ice mass loss from radar interferometry and regional climate modeling. Nature Geosci., 1: 106–10.Google Scholar
Rignot, E., et al. (2011). Ice flow of Antarctic ice sheet. Science, 333(6048): 1427–30, https://doi.org/10.1126/science.1208336Google Scholar
Rigor, I. G. and Wallace, J. M. (2004). Variations in the age of Arctic sea ice and summer sea-ice extent. Geophys. Res. Lett., 31: L09401.Google Scholar
Riley, J. P., Israelsen, E. K., and Eggleston, K. O. (1972). Some approaches to snowmelt prediction. AISH Publ., 2 (107): 956–71.Google Scholar
Rinke, A., et al. (2003). A case study of the anomalous Arctic sea ice conditions during 1990: Insights from coupled and uncoupled regional climate model simulations. J. Geophys. Res., 108: 4275, 15.Google Scholar
Riseborough, D. (2007). The effect of transient conditions on an equilibrium permafrost– climate model. Permafrost Periglac. Process., 18: 2132 (Erratum: 18 (2):215).Google Scholar
Riseborough, D., et al. (2008). Recent advances in permafrost modelling. Permafrost Periglac. Process., 19 (2): 137–56.Google Scholar
Risebrobakken, B., et al. (2003). A high resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic Seas. Paleoceanog., 18: 1017–31.Google Scholar
Rivera, A., et al. (2002). Use of remote sensing and field data to estimate the contribution of Chilean glaciers to the sea level rise. Annals Glaciol., 34: 367–72.Google Scholar
Robe, R. Q. (1980). Iceberg drift and deterioration. In Colbeck, S. C. (ed.), Dynamics of snow and ice masses, New York: Academic Press. pp. 211–59.Google Scholar
Roberts, M. J. (2005). Jökulhlaups: A reassessment of floodwater flow through glaciers. Rev. Geophys., 43: RG1002, 21.Google Scholar
Robin, G. de Q. (1975). Radio-echo sounding: Glaciological interpretations and applications. J. Glaciol., 15 (73): 4964.Google Scholar
Robinson, D. A. (2008). Northern Hemisphere continental snow cover extent: A 2008 update. unpublished report, Rutgers University.Google Scholar
Robinson, D. A. and Dewey, K. F. (1990). Recent secular variations in the extent of Northern Hemisphere snow cover. Geophys. Res. Lett., 17: 1557–60.Google Scholar
Robinson, D. A., Frei, A., and Serreze, M. C. (1995). Recent variations and regional relationships in Northern Hemisphere snow cover. Ann. Glaciol., 21: 71–6.Google Scholar
Robinson, D. A., et al. (1992). Large-scale patterns and variability of snow melt and parameterized surface albedo in the Arctic Basin. J. Climate, 5 (10): 1,10919.Google Scholar
Rodrigues, J. (2008). The rapid decline of sea ice in the Russian Arctic. Cold Regions Sci. Technol., 54: 124–42.Google Scholar
Rodrigues, J. (2009). The increase in the length of the ice-free season in the Arctic. Cold Regions Sci. Technol., 59: 78101.Google Scholar
Roe, G. H., Baker, M. B., and Herla, F. (2016). Centennial glacier retreat as categorical evidence of regional climate change. Nature Geosci., 10: 9599, doi:10.1038/ngeo2863.Google Scholar
Rokaya, P., Budhathoki, S., and Lindenschmidt, K. E. (2018). Trends in the Timing and Magnitude of Ice-Jam Floods in Canada, Scientific Reports, 8:5834, doi:10.1038/s41598-018-24057-z.Google Scholar
Romanov, I. P. (1995). Atlas of ice and snow of the Arctic Basin and Siberian shelf seas (A. Tunik, translator and editor). 2nd edn. Paramus, NJ: Backbone Publishing Company. 176 pp.Google Scholar
Romanovskii, N. N., Afanaseo, V. E., and Koreisha, M. M. (1978). Long term dynamics of groundwater icings. Third International Conference on Permafrost. Edmonton, Alberta. Vol. 1. Part I: English translations of twenty-six of the Soviet papers. Ottawa: National Research Council of Canada. pp. 195207.Google Scholar
Romanovskii, N. N., et al. (2004). Permafrost of the east Siberian Arctic shelf and coastal lowlands. Quat. Sci,. Rev., 23 (11–13): 1359–69.Google Scholar
Romanovsky, V. E. and Osterkamp, T. E. (1997). Thawing of the active layer on the coastal plain of the Alaskan Arctic. Permafrost Periglac. Processes, 8: 122.Google Scholar
Romanovsky, V. E., Smith, S. L., and Christiansen, H. H. (2010). Permafrost thermal state in the polar Northern Hemisphere during the International Polar Year 2007–2009: A synthesis. Permafrost Periglac. Proc., 21: 106–16.Google Scholar
Romanovsky, V. E., et al. (2007a). Frozen ground. In Global outlook for ice and snow. UNEP, Earthprint. 181200 pp.Google Scholar
Romanovsky, V. E., et al. (2007b). Past and recent changes in air and permafrost temperatures in eastern Siberia. Global Plamet. Change, 56: 399413.Google Scholar
Romanovsky, V. E., et al. (2008a). Thermal state and fate of permafrost in Russia: First resuts of IPY. In Kane, D. L. and Hinkel, K. M. (eds.), Ninth International Conference on Permafrost, 29 June–3 July 2008, University of Alaska Fairbanks, Proceedings, vol. 2, Fairbanks, AK: University of Alaska. pp. 1511–18.Google Scholar
Romanovsky, V. E., et al. (2008b). Soil climate and frost heave along the permafrost/ ecological North American Arctic Transect. In Kane, D. L. and Hinkel, K. M. (eds.), Ninth International Conference on Permafrost, 29 June–3 July 2008, University of Alaska Fairbanks, Proceedings, vol. 2, Fairbanks, AK: University of Alaska. pp. 1519–24.Google Scholar
Rooney, J. F., Jr. (1967). The urban snow hazard in the United States. Geog. Rev., 57: 538–59.Google Scholar
Ropelewski, C. F. (1989). Monitoring large-scale cryosphere/atmosphere interactions. Adv. Space Res., 9: 213–18.Google Scholar
Rosen, P. A., et al. (2000). Synthetic aperture radar interferometry. Proc. IEEE, 88 (3): 333–80.Google Scholar
Rosenfeld, S. and Grody, N. C. (2000). Metamorphic signature of snow revealed in SSM/I measurement. IEEE Trans. Geosci. Remote Sensing, 38: 5363.Google Scholar
Rosenthal, W. and Dozier, J. (1996). Automated mapping of montane snow cover at sub-pixel resolution from the Landsat Thematic Mapper. Water Resour. Res., 32: 115–30.Google Scholar
Roth, A. et al. (1993). Experiences with ERS-1 SAR compositional accuracy. IEEE Transactions Geoscience. Remote Sensing, IGARRS Symposium, 1993. Tokyo, Japan, Proc. 3, 1450–52.Google Scholar
Röthlisberger, H. and Lang, H. (1987). Glacial Hydrology. Glacio-fluvial Sediment Transfer. In Gurnell, A. M. and Clark, M. J. (eds.). Chichester: John Wiley and Sons, pp. 207–84.Google Scholar
Rothrock, D. (1986). Ice thickness distribution – measurement and theory. In Untersteiner, N. (ed.), The geophysics of sea ice, New York: Plenum Press. pp. 551–75.Google Scholar
Rothrock, D. A. and Zhang, J. (2005). Arctic Ocean sea ice volume: What explains its recent depletion? J. Geophys. Res., 110: C01002, doi:10.1029/2004JC002282.Google Scholar
Rothrock, D. A., Yu, Y., and Maykut, G. A. (1999). Thinning of the Arctic sea-ice cover. Geophys. Res. Lett., 26 (23): 3469–72.Google Scholar
Rothrock, D. A., Zhang, J., and Yu, Y. (2001). The arctic ice thickness anomaly of the 1990s: A consistent view from observations and models. J. Geophys. Res., 108 (C3): 3083.Google Scholar
Rothrock, D. A., Zhang, J., and Yu, Y. (2003). The arctic ice thickness anomaly of the 1990s: A consistent view from observations and models. J. Geophys. Res., 108 (C3): 3083, https://doi.org/10.1029/2001JC001208.Google Scholar
Rothrock, D. A., Percival, D. B., and Wensnahan, M. (2008). The decline in arctic sea ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data. J. Geophys. Res., 113: C05003. doi:10.1029/2007JC004252.Google Scholar
Rott, H. and Nagler, T. (1995). Intercomparison of snow retrieval algorithms by means of spaceborne microwave radiometry. In Choudhury, B. J. , Kerr, Y. H. , Njoki, E. G. , and Pampaloni, P. (eds.), Passive microwave remote sensing of Land-Atmosphere Interactions, Utrecht, The Netherlands: VSP. pp. 227–41.Google Scholar
Rott, H., Skvarca, P., and Nagler, T. (1996). Rapid collapse of the northern Larsen Ice Shelf. Antarct. Sci., 271: 788–92.Google Scholar
Rowe, C. M., Kuiven, K. C., and Jordan, R. (1995). Simulation of summer snowmelt on the Greenland ice sheet using a one-dimensional model. J. Geophys. Res., 100: 16,26573.Google Scholar
Rowland, J. C., et al. (2010). Arctic landscapes in transition: responses to thawing permafrost. EOS Trans., 31 (26): 220–30.Google Scholar
Roy, M., et al. (2004). Glacial stratigraphy and paleomagnetism of late Cenozoic deposits of the north-central United States. Bull. Geol. Soc. Amer., 116: 3041.Google Scholar
Ruddiman, W. F. (2006). Orbital changes and climate. Quat. Sci. Rev., 25: 3092–112.Google Scholar
Ruddiman, W. F. (2010). A paleoclimatic enigma? Science, 328 (5980): 838–9.Google Scholar
Ruffieux, D., et al. (1995). Ice pack and lead surface energy budgets during LEADEX 1992. J. Geophys. Res., 100 (C3): 4593–612.Google Scholar
Russell, W. E., Riggs, N. P., and Robe, R. Q. (1978). Local iceberg motion – a comparison of fluid and model studies. POAC ’77. Fourth International Conference on Port and Ocean Engineering under Arctic Conditions. Newfoundland, Proceedings Vol.2: 784–98.Google Scholar
Rutt, I. C., et al. (2009). The glimmer community ice sheet model. J. Geophys. Res., 114: F02004, 22, doi:10.1029/2008JF001015.Google Scholar
Rutter, N., Essery, R. L. H., et al. (2009). Evaluation of forest snow processes models (SnowMIP2). J. Geophys. Res., 114 (D6): D06111, doi:10.1029/2008JD011063.Google Scholar
Ryder, C. (1896). Isforholdene I Nordhavet, 1877–1892. Kobenhaven: Tidsskr. f. Sovaesen. 28 pp.Google Scholar
Sagarin, R. and Micheli, F. (2001). Climate change in nontraditional data sets. Science, 294: 811.Google Scholar
Saito, K. and Cohen, J. (2003). The potential role of snow cover in forcing interannual variability of the major Northern Hemisphere mode. Geophys. Res. Lett.30(6): 1302, doi:10.1029/2002GL016341Google Scholar
Salerno, F., et al. (2008). Glacier surface-area changes in Sagarmatha national park, Nepal, in the second half of the 20th century, by comparison of historical maps. J.Glaciol., 54(187): 738–52.Google Scholar
Salm, B., Burkard, A., and Gubler, H. U. (1990). Berechnung von Fliesslawinen; eine Anleitung für Praktiker mit Beispielen. Mitteilunge, Eidgenössischen Institutes für Schnee und Lawinenforschung, No.47, Davos.Google Scholar
Sangewar, C. V. and Shukla, S. P. (eds.). (2009). Inventory of the Himalayan Glaciers: A contribution to the International Hydrological Programme. Special Publication No. 34, Geological Survey of India, New Delhi, India: Vedams eBooks 594 pp.Google Scholar
Sarnthein, M., et al. (2009). Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates. Clim. Past, 5: 269–83.Google Scholar
Sasgen, I., et al. (2012). Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet. Sci. Lett., 333: 293303, doi: 10.1016/j.epsl.2012.03.033Google Scholar
Sasgen I., et al. (2013). Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates. The Cryosphere, 7: 1499–512, https://doi.org/10.5194/tc-7–1499-2013Google Scholar
Satterlund, D. R. and Haupt, H. F. (1967). Snow catch by conifer crowns. Water Resour. Res., 3 (4): 1035–39.Google Scholar
Savage, S. B. (2001). Aspects of iceberg deterioration and drift. In Geomorphological fluid mechanics (Lecture notes in physics, volume 582). Berlin: Springer. pp. 279318.Google Scholar
Savko, N. F. (1973). Prediction of naleds and ways of regulating the naled process. Second International Conference on Permafrost. USSR Contribution. Washington, DC: National Research Council, pp. 403–08.Google Scholar
Savoie, M. H., et al. (2009). Atmospheric corrections for improved satellite passive microwave snow cover retrievals over the Tibet Plateau. Remote Sensing Environ., 113: 2661–669.Google Scholar
Sawyer, C. F. and Butler, D. R. (2006). A chronology of high-magnitude snow avalanches reconstructed from archived newspapers. Disaster Prevention Management, 15 (2): 313–24.Google Scholar
Scambos, T. A. and Bindschadler, R. (1993). Complex ice stream flow revealed by sequential satellite imagery. Ann. Glaciol., 17: 177–82.Google Scholar
Scambos, T. A. and Fahnestock, M. A. (1998). Improving digital elevation models over ice sheets using AVHRR-based photoclinometry. J.Glaciol., 44: 97103.Google Scholar
Scambos, T., Hulbe, C., and Fahnestock, M. (2003). Climate-induced ice shelf disintegration in the Antarctic Peninsula. In Domack, E., et al. (eds.), Antarctic Peninsula climate variability: Historical and paleoenvironmental perspectives. Washington, DC: American Geophysical Union: pp. 7992.Google Scholar
Scambos, T. A., et al. (1992). Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sens, Environ., 42: 177–86.Google Scholar
Scambos, T. A., et al. (2000). The link between climate warming and breakup of ice shelves in the Antarctic Peninsula. J. Glaciol., 46 (154): 116–30.Google Scholar
Scambos, T. A., et al. (2004). Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res.Lett., 31 (18): L18402.Google Scholar
Scambos, T. A., et al. (2006). Impact of megadunes and glaze areas on estimates of East Antarctic mass balance and accumulation rate change. EOS, Trans. American Geophysical Union, Fall Meeting Suppl., Abstr. #C11A-1130.Google Scholar
Scambos, T., et al. (2007). MODIS-based Mosaic of Antarctica (MOA) data sets: Continent-wide surface morphology and snow grain size. Remote Sens. Environ., 111: 242–57.Google Scholar
Scambos, T., et al. (2008). Calving and ice-shelf breakup processes investigated by proxy: Antarctic iceberg evolution during northward drift. J. Glaciol., 54 (187): 579–91.Google Scholar
Scambos, T., et al. (2009). Ice shelf disintegration by plate bending and hydro-fracture: Satellite observations & model results of 2008 Wilkins ice shelf break-ups. Earth Planet. Sc. Lett., 280: 5160, doi:10.1016/j.epsl.2008.12.027Google Scholar
Scanlon, , B. R., et al. (2018). Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1704665115Google Scholar
Scarchilli, C., Frezzotti, M. and Grigioni, P. (2010). Extraordinary blowing snow transport events in East Antarctica. Clim. Dynam., 34 (7–8): 11951206.Google Scholar
Schaefer, J., et al. (2009). High-frequency Holocene glacier fluctuations in New Zealand differ from the northern signature. Science, 324: 622–25.Google Scholar
Schaefer, K., et al. (2011). Amount and timing of permafrost carbon release in response to climate warming. Tellus B, 63: 165–80.Google Scholar
Schaefer, V. J., Klein, G. J., and de Quervain, M. R. (1954). The international classification for snow (with special reference to snow on the ground), 31, The Commission of Snow and Ice of the International Association of Hydrology, Associate Committee on soil and snow mechanics. Ottawa, Ont: National Research Council of Canada.Google Scholar
Schaerer, P. (1988). The yield of avalanche snow at Rogers Pass, British Columbia, Canada, J. Glaciol., 34 (117): 16.Google Scholar
Schannwell, C., Cornford, S., Pollard, D., and Barrand, N. E. (2018). Dynamic response of Antarctic Peninsula Ice Sheet to potential collapse of Larsen C and George VI ice shelves. Cryosphere, 12 (7): 2307–26.Google Scholar
Schanda, E., (1983). Selection of microwave bands for global detection of snow. Adv. Space Res., 3 (2): 303–08.Google Scholar
Scherler, D., Bookhagen, B., and Strecker, M., (2011). Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience, doi:10.1038/NGEO1068Google Scholar
Scherer, R. P., et al. (1998). Pleistocene collapse of the West Antarctic ice sheet. Science, 281: 8285.Google Scholar
Schiefer, E., Menounos, B., and Wheate, R. (2007). Recent volume loss of British Columbian glaciers, Canada. Geophys. Res. Lett., 34 (16): L16503, doi:10.1029/2007GL030780.Google Scholar
Schirmer, M., Lehning, M., and Schweizer, J. (2009). Statistical forecasting of regional avalanche danger using simulated snow cover data. J. Glaciol., 55 (103): 761–68.Google Scholar
Schlüchter, C. (1988). A non-classical summary of the Quaternary stratigraphy of the northern Alpine Foreland of Switzerland, Bull. Soc. Neuchâtel. Géogr., 32/33: 143–57.Google Scholar
Schmidt, D. F., Grise, K. M., and Pace, M. L. (2019). High-frequency climate oscillations drive ice-off variability for Northern Hemisphere lakes and rivers. Clim. Change, 152: 517–32, doi:10.1007/s10584-018-2361-5Google Scholar
Schmitt, C., et al. (2005). Atlas of Antarctic sea ice drift. http://imkhp7.physik.uni-karlsruhe.de/~eisatlas/Google Scholar
Schneebeli, M., Laternser, M., and Amman, W. (1997). Destructive snow avalanches and climate change in the Swiss Alps. Eclogau Geol. Helv., 90: 457–61.Google Scholar
Schneebeli, M., et al. (1998). Measurement of density and wetness in snow using time-domain-reflectometry. Annals of Glaciology, 26: 6972.Google Scholar
Schneeberger, C., et al. (2003). Modelling changes in the mass balance of glaciers of the northern hemisphere for a transient 2×CO2 scenario. J, Hydrol., 282L: 145–63.Google Scholar
Schneider, M., et al. (2007). Glacier inventory of the Gran Campo Nevado icecap in the southern Andes and glacier changes observed during recent decades. Global Planet. Change, 59: 87100.Google Scholar
Schneider, W. and Budeus, G. (1997). Summary of the Northeast Water Polynya formation and development (Greenland Sea). J. Mar. Systems, 10: 107–22.Google Scholar
Schneider von Deimling, T. , et al. (2006). How cold was the Last Glacial Maximum? Geophys. Res. Lett., 33 (L14709): 5.Google Scholar
Schnell, R. C., et al. (1989). Lidar detection of leads in Arctic sea ice. Nature, 339: 530–32.Google Scholar
Schoof, C. (2007a). Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. J. Geophys. Res., 112: F03S28, doi:10.1029/2006JF000664.Google Scholar
Schoof, C. (2007b). Marine ice-sheet dynamics. Part 1. The case of rapid sliding. J. Fluid Mech., 573: 2755.Google Scholar
Schoof, C. (2010). Ice-sheet acceleration driven by melt supply variability. Nature, 468: 803–06.Google Scholar
Schrama, et al. (2014). A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data. J. Geophys. Res.-Solid Earth, 119: 6048–66.Google Scholar
Schuenemann, K. C., Cassano, J. J. and Finnis, J. (2009). Synoptic forcing of precipitation over Greenland: Climatology for 1961–99. J. Hydromet., 10: 6078.Google Scholar
Schuur, E.A.G., McGuire, A.D., Schdel, C., Grosse, G., Harden, J.W., Hayes, D.J., Hugelius, G., Koven, C.D., Kuhry, P., Lawrence, D.M., 2015. Climate Change and the Permafrost Carbon Feedback, Nature, 520, 171–179.Google Scholar
Schuur, E. A. G., et al. (2008). Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience, 58 (8): L701–14, doi:10.1641/B580807.Google Scholar
Schwarzacher, W. and Hunkins, K. (1961). Dredged gravels from the central Arctic Ocean. In Raasch, G. O. (ed.), Geology of the Arctic. Toronto: University of Toronto Press. pp. 666–77.Google Scholar
Schweiger, A. J. and Barry, R. G. (1989). Evaluation of algorithms for mapping snow cover in the Federal Republic of Germany using passive microwave data. Erdkunde, 43: 8594.Google Scholar
Schweiger, A. J., Armstrong, R. , and Barry, R. G. (1987). Snow cover parameter retrieval from various data sources in the Federal Republic of Germany. In Goodison, B. E., Barry, R. G. and Dozier, J. (eds.), Large-Scale Effects of Seasonal Snow Cover. IAHS Publ. No. 166, Wallingford, UK: IAHS Press, 353364.Google Scholar
Schweiger, A. J., et al. (2008). Did unusually sunny skies help drive the record sea ice minimum of 2007? Geophys. Res. Lett., 35: L10503, doi:10.1029/2008GL033463.Google Scholar
Schweizer, J. (1998). Laboratory experiments on shear failure of snow. Ann. Glaciol., 26: 97102.Google Scholar
Schweizer, J. (2008). Snow avalanche formation and dynamics. Cold Regions Sci, Technol. 54: 153–54.Google Scholar
Schweizer, J., et al. (2008). Review of spatial variability of snowpack properties and its importance for avalanche formation. Cold Reg. Sci. Technol., 51: 253–72.Google Scholar
Schweizer, J., Jamieson, J.B., and Schneebeli, M. (2003). Snow avalanche formation. Rev. Geophys., 41 (4): 1016, 2.1–2.25, doi:10.1029/2002RG000123.Google Scholar
Schweizer, J., Mitterer, C., and Stoffel, L. (2009). On forecasting large and infrequent snow avalanches. Colk Reg. Sci. Technol., 59: 234–41.Google Scholar
Schytt, V. (1954). Glaciology in Queen Maud Land: Work of the Norwegian-British-Swedish Antarctic Expedition. Geog. Rev., 44: 7087.Google Scholar
Scholander, P. F. and Nutt, D. C. (1960). Bubble pressure in icebergs, J, Glaciol., 3: 671–78.Google Scholar
Schubert, C. (1992). The glaciers of the Sierra Nevada de Merida (Venezuela) : A photographic comparison of recent deglaciation. Erdkunde, 46: 5864.Google Scholar
Schuur, E. A. G., McGuire, A. D., Schdel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., and Lawrence, D. M. (2015). Climate change and the permafrost carbon feedback. Nature, 520: 171–79.Google Scholar
Scoresby, W. Jr. (1820). An account of the Arctic regions with a history and description of the northern whale-fishery. Republished 1969. NewYork: Augustus M. Kelley. 2 vols. 551 pp. and 574 pp. (vol. 1, pp. 225–33, 238–41).Google Scholar
Scourse, J. D., et al. (2009). Growth, dynamics and deglaciation of the last British– Irish ice sheet: the deep-sea ice-rafted detritus record. Quat, Sci. Rev., 28 (27–28): 3066–84.Google Scholar
Screen, J. A. and Simmonds, I. (2010). The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464: 1334–37.Google Scholar
Sedláček, J. and Mysak, L. A. (2009). Sensitivity of sea ice to wind-stress and radiative forcing since 1500: a model study of the Little Ice Age and beyond. Clim. Dynam., 32: 817–31.Google Scholar
Segal, R. A., Lantz, T. C., and Kokelj, S. V. (2016). Acceleration of Thaw Slump Activity in Glaciated Landscapes of the Western Canadian Arctic. Environmental Research Letters, 11: 034025.Google Scholar
Seibert, J. and Vis, M. J. P. (2012). Teaching hydrological modeling with a user-friendly catchment runoff-model software package. Hydrol. Earth Syst. Sc., 16: 3315–25.Google Scholar
Seidel, K. and Martinec, J. (2004). Remote sensing in snow hydrology. Runoff modeling, Effect of climate change. Chichester, UK: Springer/Praxis, 150 pp.Google Scholar
Seligman, G. (1936). Snow structure and ski fields: Being an account of snow and ice forms met in nature and a study on avalanches and snowcraft. (Appendix on alpine weather by C.K.M. Douglas). London: MacMillan and Cox. 327 ppGoogle Scholar
Semakova, E., Myakov, S., and Armstrong, R. (2009). The current state of avalanche risk analysis and hazard mapping in Uzbekistan. Proceedings of the International Snow Science Workshop. Davos, Switzerland. Davos: Swiss Federal Institute for Snow and Avalanche Research SLF, 509513Google Scholar
Semtner, A. J. (1976). A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6: 2737.Google Scholar
Senneset, K. (ed.). (2000). Proceedings, international workshop on permafrost engineering, longyearbyen, svalbard. Norway: Norwegian University of Science and Technology. 327 pp.Google Scholar
Sergent, C., et al. (1993). Experimental investigation of optical snow properties, Ann. Glaciol., 17: 281–87.Google Scholar
Sergienko, O. V., Macayeal, D. R., and Hulbe, C. L (2008). Flexural-gravity wave phenomena on ice shelves. Fall Meeting, Amer. Geophys. Union, C31D0536S.Google Scholar
Serreze, M. C. and Barry, R. G. (2005). The arctic climate system. Cambridge, UK: Cambridge University Press, 385 pp.Google Scholar
Serreze, M. C. and Barry, R. G. (2011). Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change, 77: 8596.Google Scholar
Serreze, M. C. and Stroeve, J. (2015). Arctic sea ice trends, variability and implications for seasonal ice forecasting. Philos Trans A Math Phys Eng Sci., 373 (2045): 20140159, doi: 10.1098/rsta.2014.0159.Google Scholar
Serreze, M. C., Barry, R. G., and McLaren, A. S. (1989a). Seasonal variations in sea ice motion and effects on sea ice concentrations in the Canada Basin. M.C. J. Geophys. Res., 94 (8): 10,95570.Google Scholar
Serreze, M. C., McLaren, A. S., and Barry, R. G. (1989b). Seasonal variations of sea ice motion in the Transpolar Drift Stream. M.C. Geophys. Res. Letters, 16 (8): 811–14.Google Scholar
Serreze, M. C., et al. (1990). Sea ice concentration in the Canada Basin during 1988: Comparisons with other years and evidence of multiple forcing mechanisms. M.C J. Geophys. Res., 95 (C12): 22,253267.Google Scholar
Serreze, M. C., et al. (1993). Interannual variations in snow melt over Arctic sea ice and relationships to atmospheric forcing. Annals of Glaciol., 17: 327–31.Google Scholar
Serreze, M. C., et al. (1999). Influence of snow vertical structure on hydrothermal regime characteristics of the western United States snowpack from snowpack telemetry (SNOTEL). Water Resour. Res., 35: 2145–60.Google Scholar
Serreze, M. C, et al. (2003). A record minimum in Arctic sea ice extent and area in 2002. Geophys. Res. Lett., 30(3)1110: 10.1–10.4, doi: 10.1029/2002GL016407.Google Scholar
Serreze, M. C., et al. (2009). The emergence of surface-based Arctic amplification. Cryosphere, 3: 1119, doi:10.5194/tc-3-11-2009.Google Scholar
Serreze, M. C., and A. P. Barrett, 2010: Characteristics of the Beaufort Sea High. Journal of Climate, 24, 159–182.Google Scholar
Serson, H. (1979). Mass balance of the Ward Hunt ice rise and ice shelf: An 18-year record. Tech. Mem. 79–4 Defense Research Establishment, Canada: Ottawa, 14 pp.Google Scholar
Severinghaus, J. P. (2009). Southern see-saw seen. Nature, 457: 1093–94.Google Scholar
Sevestre, H. (2017). Surging glaciers. Science, AAAS 1, 358(6367). pp. 11–20.Google Scholar
Sexstone et al. (2018). Snow sublimation in mountain environments and its sensitivity to forest disturbance and climate warming. Water Resources Research, https://doi.org/10.1002/2017WR021172Google Scholar
Shahgedanova, M. et al. (2010). Glacier shrinkage and climatic change in the Russian Altai from the mid-20th century: An assessment using remote sensing and PRECIS regional climate model. J. Geophys. Res. 115 (D16107):112, doi 2009JD012976.Google Scholar
Shakova, N. et al. (2010). Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 327 (597):1246–50.Google Scholar
Shakun, J. D. and Carlson, A. E. (2010). A global perspective on Last Glacial Maximum to Holocene climate change. Quat. Sci. Rev., 29 (15–16): 1674–90.Google Scholar
Shangguan, D., et al. (2006). Monitoring the glacier changes in the Muztag Ata and Konggur mountains, east Pamirs, based on Chinese Glacier Inventory and recent satellite imagery. Annals Glaciol., 43: 7985.Google Scholar
Sharma, S., et al. (2013). Influences of local weather, large-scale climatic drivers, and the ca. 11 year solar cycle on lake ice breakup dates; 1905–2004. Clim. Change, 118: 857870, doi.org/10.1007/s10584-012–0670-7Google Scholar
Sharma, S., et al., (2016). Direct observations of ice seasonality reveal changes in climate over the past 320-570 years. Sci. Rep., 6: 25061. doi:10.1038/srep25061Google Scholar
Sharp, M. and Wang, L.-B. (2009). A five-year record of summer melt on Eurasian Arctic ice caps. J. Clim., 22: 133–45.Google Scholar
Sharp, R. P. (1954). Glacier flow: A review. Bull. Geol. Soc. Amer., 65: 821–38.Google Scholar
Shchetinnikov, A. S. (1998). Morfologiya i rezhim lednikov Pamiro-Alaya (Morphology and regime of the Pamir-Alai glaciers). Tashkent: (SANIGMI) Central Asia Hydro-Meteorological Institute. 219 pp. (in Russian).Google Scholar
Shea, J. M., Moore, R. D., and Stahl, K. (2009). Derivation of melt factors from glacier mass-balance records in western Canada. J. Glaciol., 55 (189): 123–30.Google Scholar
Shen, H. T. (2010). Mathematical modeling of river ice processes. Cold Reg. Sci. Technol., 62: 313.Google Scholar
Shepherd, A. and Wingham, D. (2007). Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science, 315 (5818): 1529–32.Google Scholar
Shepherd, A, et al. (2007). Mass balance of Devon Island ice cap, Canadian Arctic,Annals Glaciol. 46: 249–54.Google Scholar
Shepherd, A., et al. (2010). Recent loss of floating ice and the consequent sea level contribution. Geophys. Res. Lett., 37 (L13503): 5.Google Scholar
Shepherd, A., et al. (2012). A reconciled estimate of ice-sheet mass balance. Science, 338: 1183–89.Google Scholar
Shi, J. and Dozier, J. (2000). Estimation of snow water equivalent using SIR-C/X-SAR, Part I: Inferring snow density and subsurface properties. IEEE Trans. Geosci. Remote Sensing, 38 (6): L 246574.Google Scholar
Shi, X., et al. (2009). SnowSTAR2002 transect reconstruction using a multilayered energy and mass balance snow model, J. Hydromet., 10 (5): 1151–67.Google Scholar
Shi, Y.-F. (ed.-in-chief). (2008a). Glaciers and related environments in China. Beijing: Science Press. 539 pp.Google Scholar
Shi, Y.-F. (2008b). Collection of the studies on glaciology, climate and environmental change in China. Beijing: China Meteorological Press. 850 pp.Google Scholar
Shi, Y.-F. et al. (2008c). Impact of global warming on glaciers and related water resources in China. In Shi, Y.-F. et al. (eds.), Glaciers and related environments in China. Beijing: Science Press. pp. 507–28.Google Scholar
Shi, Y.-F., Zheng, B.-X., and Su, Z. (2008b). Quaternary glaciations, glacial and interglacial cycles and environmental changes. In: Shi, Y.-F. (ed.-in-chief). Glaciers and related environments in ChinaVol.2. Beijing: Science Press. pp. 436506.Google Scholar
Shields, G. A. (2008). Palaeoclimate: Marinoan meltdown. Nature Geosci., 1: 351–53.Google Scholar
Shields, G. A. (2009). Palaeoclimate: Marinoan meltdown. Nature Geosci., 1 (6): 351–53.Google Scholar
Shiklomanov, N. I. (2005). From exploration to systematic investigation: development of geocryology in 19th- and early–20th-century Russia. Phys. Geog., 26: 249–63.Google Scholar
Shiklomanov, N. I. and Nelson, F. E. (2002). Active-layer mapping at regional scales: a 13-year spatial time series for the Kuparuk region, north-central Alaska. Permafrost Periglac. Process., 13 (3): 219–30.Google Scholar
Shiklomanov, N. I., et al. (2010). Decadal variations of active-layer thickness in moisture-controlled landscapes, Barrow, Alaska. J. Geophys. Res., 115: G00I04.Google Scholar
Shiklomanov, N. I., Streletskiy, D. A., and Nelson, F. E., (2012). Northern Hemisphere Component of the Global Circumpolar Active Layer Monitoring (CALM) Program, 377–382, Proceedings of the Tenth International Conference on Permafrost, Salekhard, Russia, June 25–29, 2012.Google Scholar
Shil ’ nikov, V. L. (1965). Volume and number of icebergs in the Antarctic (from 44° to 66°E). Soviet Antarct. Exped. Info. Bull, [translation], 3: 21–6.Google Scholar
Shine, K. P., Henderson-Sellers, A., and Barry, R. G. (1984). Albedo-climate feedback: the importance of cloud and cryosphere variability. K.P. In Berger, A. and Nicolis, C., (eds.), New Perspectives in Climate Modelling. Amsterdam: Elsevier, 135–55.Google Scholar
Shokr, M. and Sinha, N. (2015). Sea ice: physics and remote sensing, 600 pp., AGU Geophysical Monograph Series, Wiley, ISBN-13: 978–1119027898, ISBN-10: 9781119027898Google Scholar
Shook, K. (1993). Fractal geometry of snowpacks during ablation. Saskatoon, Sas., Canada: University of Saskatchewan: M.Sc. thesis. 178 pp.Google Scholar
Shook, K. (1995). Simulation of the ablation of prairie snow covers, Ph.D. dissertation, 189 pp., Univ. of Saskatchewan, Saskatoon, Sask., Canada.Google Scholar
Shook, K. and Gray, D. M. (1997). Synthesizing shallow seasonal snow covers. Water Resour. Res., 33 (3): 419–26.Google Scholar
Shrestha, K. L. (2005). Impact of climate change on Himalayan glaciers. In Muhammed, A., Mirza, M. M. Q., and Stewart, B. A. (eds.), Climate and water resources in South Asia: Vulnerability and adaptation. (APN, START) Pakistan, Islamabad: Asiatics Agro Dev. International. pp. 4457.Google Scholar
Shul ’tz, V. L. (ed.). (1962). Lednik Fedchecnko. (Fedchenko glacier) (in Russian). Tashkent: Izdat, Akad, Nauk, Uzbekskoi SSR. Vol. 1. 248 pp. Vol. 2 198 pp.Google Scholar
Shulyakovskii, L. G. (ed.). (1966). Manual of forecasting ice-formation for rivers and inland lakes. Manual of hydrological forecasting No. 4, Central Forecasting Institute of USSR: 1963, Translated from Russian, Israel Program for Scientific Translations, Jerusalem, Israel. 245pp.Google Scholar
Shum, C. K., Kou, C.-Y., and Guo, J.-Y. (2008). Role of Antarctic ice mass balance in present-day sea-level change. Polar Sci., 2: 149–61.Google Scholar
Shumskii, P. A. (1964). Principles of structural glaciology. The petrography of freshwater ice as a method of glaciological investigation. (trans. D.Kraus). New York: Dover Publ. Inc. 497 pp.Google Scholar
Shumskiy, P. A. (1969). Glaciation. In Tolstikov, E. (ed.), Atlas of Antarctica. Leningard: Gidrometeoizdat. pp. 367400.Google Scholar
Sibrava, V. (2010). Quaternary climatic changes in the Alpine foreland – new observation and new conclusions. Global and Planetary Change, 72(4): 374–80, doi:10.1016/j.gloplacha.2010.01.013Google Scholar
Sicart, J. E., et al. (2007). Glacier mass balance of tropical Glaciar Zongo, Bolivia, comparing hydrological and glaciological methods. Global Planet. Change, 59 (1–4): 2736.Google Scholar
Sicart, J. E., Hock, R., and Six, D. (2008). Glacier melt, air temperature, and energy balance in different climates: The Bolivian Tropics, the French Alps, and northern Sweden. J. Geophys. Res., 113 (D24113): 11.Google Scholar
Siegert, M. J. (1999). On the origin, nature and uses of Antarctic ice-sheet radio-echo layering. Prohr. Phys. Geog., 23: 159–79.Google Scholar
Siegert, M. J. (2005). Reviewing the origin of subglacial Lake Vostok and its sensitivity to ice sheet changes. Progr. Phys. Geog., 29: 156–70.Google Scholar
Sikonia, W. G. (1982). Finite-element glacier dynamics model applied to Columbia Glacier, Alaska. U.S. Geological Survey Profess.Paper 1258-B, 74 pp.Google Scholar
Sillmann, J., Kharin, V. V. , Zhang, X., Zwiers, F. W. , and Bronaugh, D. (2013). Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophy. Res. Atm. 118(4): 1716–33. https://doi.org/10.1002/jgrd.50203Google Scholar
Simojoki, H. (1940). Über die Eisverhältnisse der Binnenseen Finnlands. Ann. Acad. Sci. Fenn., A52 (6): 1194.Google Scholar
Singh, P. S. and Gan, T. Y. (2000). Retrieval of snow water equivalent using passive microwave brightness temperature data. Remote Sensing Environ., 74: 275–86.Google Scholar
Singh, P. S. and Gan, T. Y. (2005). Modeling snowpack surface temperature in the Canadian Prairies, Hydrol. Processes, 19: 3481–500.Google Scholar
Singh, P. S., Gan, T. Y., and Gobena, A. K. (2005). A modified temperature index approach for snowmelt modeling in the Canadian Prairies using near surface soil and air temperature. J. Hydrol. Engineering., ASCE, 10 (5): 405–19.Google Scholar
Singh, P. S., Gan, T.Y., and Gobena, A. K. (2009). Evaluating a hierarchy of snowmelt models at a watershed in the Canadian Prairies. J. Geophys. Res., 114: D04109. doi:10.1029/2008JD010597.Google Scholar
Sinha, N. K. (1985). Confined strength and deformation of second-year columnar-grained sea ice in Mould Bay. Proceedings Ocean, Offshore and Arctic Engineering OMAE’85, 2: 209–91.Google Scholar
Sinha, T., Cherkauer, K. A., and Mishra, V. (2010). Impacts of historic climate variability on seasonal soil frost in the midwestern United States. J. Hydromet., 11: 229–52.Google Scholar
Skyllingstad, E. D., Paulson, C. A., and Perovich, D. K. (2009). Simulation of melt pond evolution on level ice. J, Geophys. Res., 114: C12019, doi:10.1029/2009JC005363.Google Scholar
Slaymaker, O. and Kelly, R. E. J. (2006). The cryosphere and global environmental change. Oxford, UK: Wiley-Blackwell. 272 pp.Google Scholar
Slater, A. G., et al. (2001): The representation of snow in land-surface schemes: Results from PILPS 2(d). J. Hydrometeorol., 2: 725.Google Scholar
Slobbe, D. C., Lindenbergha, R. C., and Ditmar, P. (2008). Estimation of volume change rates of Greenland’s ice sheet from ICESat data using overlapping footprints. Remote Sens, Environ., 112 (12): 4204–13.Google Scholar
Slobbe, D. C., Ditmar, P., and Lindenbergh, R. C. (2009). Estimating the rates of mass change, ice volume change and snow volume change in Greenland from ICESat and GRACE data. Geophys. J. Int., 176: 95106.Google Scholar
Smedsrud, L. H., Sorteberg, A., and Kloster, K. (2008). Recent and future changes of the Arctic sea-ice cover. Geophys. Res. Lett., 35 (L20503): 4.Google Scholar
Smedsrud, L. H., et al. (2010). Fram Strait sea ice area export: 1950–2010. Abstract 379363 Oslo Science Conference, IPY.Google Scholar
Šmejkalová, T., Edwards, M. E., and Dash, J. (2016). Arctic lakes show strong decadal trend in earlier spring ice-out. Sci. Rep., 6: 18. https://doi.org/10.1038/srep38449Google Scholar
Smith, B. E., et al. (2009). An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). J. Glaciol., 54 (192): 573–95.Google Scholar
Smith, L. C. (2000). Time-trends in Russian Arctic river ice formation and breakup: 1917– 1994. Phys. Geog., 21: 4656Google Scholar
Smith, M. W. and Riseborough, D. W. (2002). Climate and the limits of permafrost: A zonal analysis. Permafrost Periglac. Processes, 13: 115.Google Scholar
Smith, S., et al. (2009). Active-layer characteristics and summer climatic indices, Mackenzie Valley, Northwest Territories. Canada: Permafrost Periglac. Proc., 10: 201–20.Google Scholar
Smith, S. D. (1993). Hindcasting iceberg drift using current profiles and winds. Cold Regions Sci. Technol., 22: 3445.Google Scholar
Smith, S. D., Muench, R. D., and Pease, C. H. (1990). Polynyas and leads: an overview of physical processes and environment. J. Geophys. Res., 95 (C6): 9461–79.Google Scholar
Smith, S. L. and Riseborough, D. W. (2010). Modelling the thermal response of permafrost terrain to right-of-way disturbance and climate warming/ Cold Reg. Sci. Technol., 60: 92103.Google Scholar
Smith, S. L., et al. (2010). Thermal state of permafrost in North America: A contribution to the International Polar Year. Permafrsot Periglac. Proc., 21: 117–35.Google Scholar
Sokolov, B. L. (1973). Regime of naleds. Second International Conference on Permafrost. USSR Contribution. Washington, DC: National Research Council. pp. 408–11.Google Scholar
Sokratov, S. A. and Barry, R. G. (2002). Intraseasonal variations in the thermoinsulation effect of snow cover on soil temperatures and energy balance. J. Geophys. Res., 107 (D1): 4374, doi:10.1029/2002JD001595.Google Scholar
Soldatova, I. I. (1993). Secular variations in river breakup dates and their relations to climate changes. Sovuet Met. Hydrol., 9: 7076.Google Scholar
Sole, A., et al. (2008). Testing hypotheses of the cause of peripheral thinning of the Greenland Ice Sheet: is land-terminating ice thinning at anomalously high rates? The Cryosphere, 2: 205–18.Google Scholar
Solomina, O., Barry, R., and Bodnya, M. (2005). The retreat of Tien Shan glaciers (Kyrgyzstan) since the Little Ice Age estimated from aerial photographs, lichenometric and historical data. Geograf. Annal., 86A (2): 205–15.Google Scholar
Solomon, , et al. (2010). Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327: 1219–23.Google Scholar
Soloviev, P. A. (1962). Alasnyy ryelev Centralnoi Yakutii i ego proiskhozdenie. (Alas relief in central Yakutia and its origin). In Mnogoletnemerzlyye porody i soptstvuyushchie im yavlenie na territorii YASSR. Moscow: Izdat. Akad Nauk, SSSR. Pp. 3853.Google Scholar
Solow, A. R. (1991). The nonparametric analysis of point process data: The freezing history of Lake Konstanz. J. Climate, 4: 116–19.Google Scholar
Soruco, A., et al. (2009). Glacier decline between 1963 and 2006 in the Cordillera Real, Bolivia. Geophys. Res. Lett., 36: L03502, doi:10.1029/2008GL036238.Google Scholar
Sou, T. and Flato, G. (2009). Sea ice in the Canadian Arctic Archipeago: Modeling the past (1959–2004) and the future (2041–60). J. Climate, 27 (8): 2181–97.Google Scholar
Soulis, E. D. (1975). Modelling of drift of nearby icebergs using wind and current measurements at a fixed station. Canad. Soc. Petrol, Geol., Memoir, 4: 879–89.Google Scholar
Speerschneider, C. I. H. (1915). Om Isforholdene i danske Farvande i aeldre of nyere Tid: Aarene 690–1860. Medd. Danske Met. Inst., Nr 2 (Copenhagen): 123.Google Scholar
Speerschneider, C. I. H. (1927). Summary to the state of the ice in arctic seas. In Nautisk Meteorologisk Aarbog, 1916, Danske Met. Inst., (Copenhagen), xxiii–x1vii.Google Scholar
Speerschneider, C. I. H. (1931). The state of the ice in Davis Strait, 1820–1930. Meddd, Danske Met. Inst., 8 (Copenhagen): 53.Google Scholar
Speloläogisches Institut. (1926). Die Eisriesenwelt im Tennengebirge (Salzburg). Speloläog. Monogr. 6, 145pp. Vienna.Google Scholar
Spielhagen, R. F., et al., (2011). Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science, 331: 450, doi: 10.1126/science.1197397Google Scholar
Spötl, C. (2007). Ein neues Forschunsproject in der Eisriesenwelt (Werfen). Alpin Untertage., Berchesgarden November 9–11, 2007. Proceedings. Dtsch. Höhlen- und Karstforscher, Munich. p. 80.Google Scholar
Spreen, G., Aaleschke, L., and Heygster, G. (2008). Sea ice remote sensing using AMSR-E 89 GHz channels. J. Geophys. Res., 113: C02S03. doi:10.1029/2005JC003384.Google Scholar
SROCC (2019). IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [In H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. Weyer (eds.)].Google Scholar
St. John, K. (2008). Cenozoic ice-rafting history of the central Arctic Ocean: Terrigenous sands on the Lomonosv Ridge. Pakeoceanog., 23: PA1S05.Google Scholar
Stafford, H. M. (1959). History of snow surveying in the West. Proc.27th Western Snow Conf., Reno, NV. pp. 112.Google Scholar
Statham, G., et al. (2017). A conceptual model of avalanche hazard. Nat Hazards, doi:10.1007/s11069-017–3070-5Google Scholar
Statham, G., et al. (2010). The North American public avalanche danger scale. In: Proceedings of the 2010 international snow science workshop, Squaw Valley, CA, pp 117123.Google Scholar
Steele, M. and Flato, G. M. (2000). Sea ice growth and modeling: A survey. In Lewis, E. L. , et al. (eds.), The freshwater budget of the Arctic. Dordrecht: Kluwer, pp. 549–87.Google Scholar
Stefan, J. (1890).Über die Theorie der Eisbildung, inbesondere über die Eisbildung im Polarmeere. Sitzber. Akad. Wiss. Wien, 7: 98.Google Scholar
Steffen, K. (1985). Warm water cells in the North Water, northern Baffin Bay during winter. J. Geophys. Res., 90: 9129–36.Google Scholar
Steffen, K. (1986). Ice conditions of an Arctic polynya: North Water in winter. J. Glaciol., 32: 383–90.Google Scholar
Steffen, K., et al. (2008). Rapid changes in glaciers and ice sheets and their impact on sea level. In Delworth, T. L., et al. (eds.), Abrupt climate change, U.S. Climate Change Science Program and Subcommittee on Global Change Research. Washington, DC: U.S. Geological SurveyGoogle Scholar
Steig, E. J., et al. (1998). Synchronous climate changes in Antarctica and the North Atlantic. Science, 282 (5386): 9296.Google Scholar
Steiner, D., Zumbühl, H., and Bauder, A. (2008). Two alpine glaciers over the past two centuries. In Orlove, B., Wiegandt, E., and Luckman, B. H. (eds.), Darkening peaks. Glacier retreat, science and society. Berkeley, CA: University of California Press. pp. 8399.Google Scholar
Stern, W. (1926). Versuch einer elektrodynamischen Dickenmessung von Gletschereis. Gerlands Beitr. Geophysik, 3: 292333.Google Scholar
Stewart, I. T. (2009). Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol. Proc., 23: 7894.Google Scholar
Stickley, C., et al. (2009). Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted\debris. Nature, 460 (7253): 376, doi:10.1038/nature08163Google Scholar
Stiles, W. H. and Ulaby, F. T. (1980). The active and passive microwave response to snow parameters. 1. Wetness, J. Geophys. Res., 85 (C2): 1037–44.Google Scholar
Stolarski, S., et al. (2010). Representing glaciers in a regional climate model. Clim. Dynam., 34: 2746.Google Scholar
Stokes, C. R., Clark, C. D., and Storrar, R. (2009). Major changes in ice stream dynamics during deglaciation of the north-western margin of the Laurentide Ice Sheet. Quatern. Sci. Rev., 28: 721–38.Google Scholar
Stranneo, F., et al. (2010). Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nature Geoci., 3 (3): 182–86.Google Scholar
Strasser, U., et al. (2008). Is snow sublimation important in the alpine water balance? Cryosphere, 2: 5366.Google Scholar
Streletskiy, D. A., Shiklomanov, N. I., and Nelson, F. E. (2008). Thirteen years of observations at Alaskan CALM Sites: Long-term active layer and ground surface temperature trends. In Kane, D. L. and Hinkel, K. M. (eds.), Proceedings, Ninth International Conference on Permafrost. Fatrbanks, AK:University of Alaska, Institute of Northern Engineering. pp. 1727–32.Google Scholar
Streletskiy, D. A. et al. (2017). Thaw subsidence in undisturbed tundra landscapes, barrow, alaska, 1962–2015. Permafrost and Periglacial Processes, 28 (3): 566–72, doi:10.1002/ppp.1918.Google Scholar
Stroeve, J. (2010). The accelerating decline of Arctic sea ice. Paper A57206. Proceedings, Tromso Symposium on Sea Ice. Cambridge, UK: Int. Glaciol. Soc.Google Scholar
Stroeve, J. C. and Nolin, A. W. (2002). Comparison of snow albedo from MISR with ground-based observations on the Greenland ice sheet. IEEE Trans. Geosci. Remote Sens., 40: 1616–25.Google Scholar
Stroeve, J. and Notz, D. (2018). Changing state of Arctic sea ice across all seasons. Environ. Res. Lett., 13: 103001.Google Scholar
Stroeve, J., et al. (2006). Recent changes in the Arctic melt season. Ann. Glaciol., 44: 367–74.Google Scholar
Stroeve, J., et al. (2007). Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34 (9): L09501. doi: 10.1029/2007GL029703Google Scholar
Stroeve, J. C., et al. (2012). Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters, 39: L16502, doi:10.1029/2012GL052676Google Scholar
Sturm, M. (1992). Snow distribution and heat flow in the taiga. Arctic Alp. Res., 24 (2): 145–52.Google Scholar
Sturm, M. (2009). Field techniques for snow observations on sea ice. In Eicken, H. et al. (eds.), Field techniques for sea ice research. Fairbanks, AK: University of Alaska Press. pp. 2547.Google Scholar
Sturm, M. and Benson, C. S. (2004). Scales of spatial heterogeneity for perennial and seasonal snow layers. Ann. Glaciol., 38: 253–60.Google Scholar
Sturm, M., Holmgren, J., and Liston, G. E. (1995). A seasonal snow cover classification system for local to global application. J. Climate, 8 (3): 1261–83.Google Scholar
Sturm, M. and Massom, R. A. (2010). Snow and sea ice. In Thomas, D. N. and Dieckmann, G. S. (eds.), Sea ice. 2nd edn. Chichester, UK: Wiley-Blackwell. pp. 153204.Google Scholar
Sturm, M., et al. (1997). Thermal conductivity of seasonal snow. J. Glaciol., 43 (143): 2641.Google Scholar
Sturm, M., et al. (2010). Estimating snow water equivalent using snow depth data and climate classes. J. Hydromet., 11 (6): 1380–94.Google Scholar
Sturm, M., et al. (2017). Using an option pricing approach to evaluate strategic decisions in a rapidly changing climate: Black–Scholes and climate change. Climatic Change, 140 (3): 437–49, doi:10.1007/s10584-016-1860-5.Google Scholar
Sumgin, M. I. (1927). Vechnaya merzlota pochvy v predelach SSSR. (Perennially frozen soils in the USSR). Izdanie Dal’ne-Vostochnoi Geofizicheskoi Observatorii 23. Vladivostok. Sumgin, M. I. (1941). Naledy i nalednye bugry. (Icings and icing mounds). Priroda, 30 (1): 2633.Google Scholar
Sundal, A. V., et al. (2009). Evolution of supra-glacial lakes across the Greenland Ice Sheet. Remote Sensing Environ., 113 (10): 2164–71.Google Scholar
Sundal, A. V., et al. (2011). Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature, 469: 521–24.Google Scholar
Surazakov, A. B., et al. (2007). Glacier changes in the Siberian Altai Mountains, Ob river basin, (1952–2006) estimated with high resolution imagery. Environ. Res. Lett., 2(045017): 7.Google Scholar
Surdu, C. M., et al. (2016). Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from space borne satellite observations. Cryosphere, 10(3): 941–60, doi:10.5194/tc-10-941-2016Google Scholar
Suyetova, I. A. (1966). The dimensions of Antarctica. Polar Re., 13(84): 344–47.Google Scholar
Sverdrup, H. U. (1935). Scientific results of the Norwegian-Swedish Spitsbergen Expedition in 1934. Part IV. Geograf. Annal., 17: 145–66.Google Scholar
Swart, S. et al. 2018, Return of the Maud Rise polynya: climate litmus or sea ice anomaly? [in “State of the Climate in 2017”]. Bull. Am. Meteorol. Soc., 99: S188–89.Google Scholar
Swithinbank, C. W. M. (1969). Giant icebergs in the Weddell Sea. Polar Rec., 13 (84): 344–47.Google Scholar
Taber, S. (1943). Perennially frozen ground in Alaska; its origin and history. Geol. Soc. Amer. Bull., 54: 1433–548.Google Scholar
Tabler, R. D. (1975) Predicting profiles of snow drifts in topographic catchments, Proceedings, 43rd Annual Western Snow Conference (Coronado, CA): 8797.Google Scholar
Tait, A. (1998). Estimation of snow water equivalent using passive microwave radiation data. Remote Sens. Environ., 64: 286–91.Google Scholar
Tajika, E. (2003). Faint young sun and the carbon cycle: Implication for the Proterozoic global glaciation. Earth Planet. Sci. Lett., 214: 443–53.Google Scholar
Takaia, M., et al. (2009). Detection of snowmelt using spaceborne microwave radiometer data in Eurasia from 1979 to 2007. IEEE Trans. Geosci, Rem. Sensing, 47(9): 29963007.Google Scholar
Takala, M., et al. (2011). Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sensing of Env., 115: 3517–29, doi:10.1016/j.rse.2011.08.014Google Scholar
Tammiksaar, E. (2001). Materiale zur Kenntnis des unvergänglichen Boden-Eises in Sibirien. Germany, Giessen: Universitätsbibliothek, University of Giessen. 234 pp.Google Scholar
Tangborn, W. V. (1984). Prediction of glacier derived runoff for hydroelectric development, Geogr. Ann., 66A: 257–65.Google Scholar
Tangborn, W. V. (1999). A mass balance model that uses low-altitude meteorological observations and the area-altitude distribution of a glacier. Geogr. Ann. A, 81 (4): 753–65.Google Scholar
Tao, W. (ed.). (2006). Map of the glaciers, frozen ground and deserts in China Behei: SinoMaps Press. (ISBN: 9787503139888).Google Scholar
Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., and Watkins, M. M. L., (2004). GRACE measurements of mass variability in the Earth system.Science, 305: 503–05, https://doi.org/10.1126/science.1099192Google Scholar
Tarasov, L. and Peltier, W. R. (2007). Coevolution of continental ice cover and permafrost extent over the last glacial–interglacial cycle in North America. J. Geophys. Res., 112 (F2): F02S08, doi:10.1029/2006JF000661.Google Scholar
Tarnocai, C. (2009). Arctic permafrost soils. In Margesin, R. (ed.), Permafrost soils. Berlin: Springer Verlag. pp. 316.Google Scholar
Tarr, R. S. and Martin, L. (1914). Alaskan glacier studies. Washington, DC: National Geographic Society. 498 pp.Google Scholar
Taylor, K. E., Stouffer, R. J., and Meehl, G. A. (2012). An overview of CMIP5 and the experiment design, Bull. Am. Meteorol. Soc., 93: 485–98, doi:10.1175/BAMS-D-11-00094.1.Google Scholar
Taylor, R. G., et al. (2006). Recent glacial recession in the Rwenzori Mountains of East Africa due to rising air temperature. Geophys. Res. Lett., 33: L10402, doi:10.1029/2006GL025962.Google Scholar
Techel, F., et al. (2016). Avalanche fatalities in the European Alps: long-term trends and statistics. Geogr. Helv., 71: 147–59, doi:10.5194/gh-71-147-2016Google Scholar
Tedesco, M. (2007). A new record in 2007 for melting in Greenland. Eos, Transactions American Geophysical Union, 88: 39.Google Scholar
Tedesco, M. and Monaghan, A. J. (2009). An updated Antarctic melt record through 2009 and its linkages to high-latitude and tropical climate variability. Geophys. Res. Lett., 36: L18502.Google Scholar
Tedesco, M., et al. (2008). Extreme snowmelt in northern Greenland during summer 2008. Eos, 82 (41): 391.Google Scholar
Tedesco, M., et al. (2009). Pan arctic terrestrial snowmelt trends (1979–2008) from spaceborne passive microwave data and correlation with the Arctic Oscillation. Geophys. Res. Lett., 36: L21402, doi:10.1029/2009GL039672. Pan arctic terrestrial snowmelt trends (1979–2008) from spaceborne passive microwave data and correlation with the Arctic OscillationGoogle Scholar
Tedesco, M., et al. (2017). Greenland Ice Sheet, Arctic Report Card: Update for 2017, Arctic Program.Google Scholar
Teel, S. (1994). Snow and ice activities to celebrate the Alaskan cold. 10 pp. (britton.disted.camosun.bc.ca/snow/snowbook.pdf)Google Scholar
Teich, M. et al. (2012). Snow and weather conditions associated with avalanche releases in forests: Rare situations with decreasing trends during the last 41 years. Cold Regions Science and Technology, 83–84: 7788, doi:10.1016/j.coldregions.2012.06.007Google Scholar
Tennant, C., Menounos, B., Wheate, R., and Clague, J. J. (2012). Area change of glaciers in the Canadian Rocky Mountains, 1919 to 2006. Cryosphere, 6: 1541–52.Google Scholar
Terzago, S., Fratianni, S., and Cremonini, R., (2013). Winter precipitation in Western Italian Alps (1926–2010). Meteorol. Atmos. Phys., 119: 125–36, https://doi.org/10.1007/s00703-012-0231-7Google Scholar
Thackray, G. D., Owen, L. A., and Yi, C.-L. (2008). Timing and nature of late Quaternary mountain glaciation. J. Quatern. Sci., 23: 503–08.Google Scholar
Thackeray, C. W., Fletcher, C. G., Mudryk, L. R., and Derksen, C. (2016). Quantifying the uncertainty in historical and future simulations of Northern Hemisphere spring snow cover. J. Clim., 29: 8647–63, doi:10.1175/JCLI-D-16-0341.1.Google Scholar
Thaler, K. (2008). Analyse der Temperaturverhältnisse in der Eisriesenwelt-Höhle im Tennengebirgeanhandeiner 12 jährigen Messreihe. MSc thesis, Institut für Meteorologie und Geophysik, Leopold-Franzens Universität, Innsbruck. 101pp.Google Scholar
Thayyen, R. J. and Gergan, J. T. (2010). Role of glaciers in watershed hydrology: a preliminary study of a “Himalayan catchment”. The Cryosphere, 4: 115–28.Google Scholar
Thiede, J., et al. (2001). The late Quaternary stratigraphy and environments of northern Eurasia and the adjacent Arctic seas – new contributions from QUEEN. Global Planet. Change, 31: viix.Google Scholar
Thomas, D. N. and Dieckmann, G. S. (eds.). (2010). Sea ice, 2nd ed. Chichester, UK: Wiley-Blackwell. 621 pp.Google Scholar
Thomas, D. R. and Rothrock, D. A. (1993). The arctic ocean ice balance: A Kalman smoother estimate. J. Geophys. Res., 98 (C6):10,05367.Google Scholar
Thomas, E. R., et al. (2009). Anatomy of a Dansgaard-Oeschger warming transition: High-resolution analysis of the North Greenland Ice Core Project ice core. J. Geophys. Res., 114: D08102, doi:10.1029/2008JD011215.Google Scholar
Thomas, R. H. (1979). The dynamics of marine ice sheets. J. Glaciol., 24 (90): 167–77.Google Scholar
Thomas, R. H. (2004). Force-perturbation analysis of recent thinning and acceleration of Jakobshavn Isbrae, Greenland. J. Glaciol., 50 (168): 5766.Google Scholar
Thomas, R. H., et al. (2006). Progressive increase in ice loss from Greenland, Geophys. Res Lett., 33: L10503, doi:10.1029/2006GL026075Google Scholar
Thompson, D. W. J. and Wallace, J. M. (1998). The arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25: 1297–300.Google Scholar
Thompson, L. G., et al. (1991). Laminated ice bodies in collapsed lava tubes at El Malpais National Monument, central New Mexico. Field Guide to Geologic Excursions in New Mexico and adjacent areas of Texas and Colorado. New Mexico Bureau of Mines and Mineral Resources, Bulletin 137, 149.Google Scholar
Thompson, L. G., et al. (1997). Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core. Science, 276 (5320): 1821–5.Google Scholar
Thompson, L. G., et al. (2009). Glacier loss on Kilimanjaro continues unabated. Proc. Nat. Acad. Sci., 106 (47): 19770–5. doi: 10.1073/pnas.0906029106CrossRefGoogle ScholarPubMed
Thomson, L. I., Osinski, G. R. and Ommanney, C. S. L. (2011). Glacier change on Axel Heiberg Island, Nunavut, Canada. J. Glaciol., 57: 1079–86Google Scholar
Thomson, S. (1966). Icings on the Alaska Highway. Proceedings International Conference on Permafrost, (Nov. 1963 Lafayette, Indiana). Washington, DC: National Research Council, National Academy of Sciences. pp. 526–29.Google Scholar
Thorarinsson, S. (1943). Oscillations of the Icelandic glaciers in the last 250 years. Geogr. Annal., 25: 154.Google Scholar
Thorndike, A. (1992). Estimates of sea ice thickness distributions using observations and theory. J. Geophys. Res., 97 (C8): 12,601605.Google Scholar
Thorndike, A. S., et al. (1975). The thickness distribution of sea ice. J. Geophys. Res., 80(33): 4501–13.Google Scholar
Tietsch, S., et al. (2010). Rapid recovery of Arctic summer sea-ice loss. Paper 57A031. Proceedings, Tromso Sea Ice Symposium. Int. Glaciol. Soc., www.igsoc.org/symposia/previous.htmlGoogle Scholar
Timco, G. W. and Barker, A. (2002). What is the maximum pile-up height for ice? Ice in the environment, Vol. 2, Squire, V. and Langhorne, P. (eds.), Proc. 16th IAHR Internat. Sympos. on Ice, Int. Assoc. Hydraulic Eng. Res., Dunedin, New Zealand: International Association of Hydraulic Engineering and Research. pp. 6977.Google Scholar
Timco, G. W. and Frederking, R. (2009). Overview of historical Canadian Beaufort Sea information. Tech. Rep. CHC-TR-057. Ottawa, Canada: NRC Canadian Hydraulics Centre. 99 pp.Google Scholar
Timco, G. W. and Weeks, W. F. (2010). A review of the engineering properties of sea ice, Cold Regions Sci. Technol., 60: 107–29.Google Scholar
Timokhov, L. A. (1994). Regional characteristics of the Laptev and the East Siberian seas: climate, topography, ice phases, thermohaline regime, and circulation. In Kassens, H., Hubberten, H. W., Priamikov, S. and Stein, R. (eds.), Russian–German Cooperation in the Siberian Shelf Seas: Geo-SysteCHC-TR-057. m Laptev Sea. Ber. St. Petersburg, Russia: Polarforsch. 144: 1531.Google Scholar
Todd, M. C. and Mackay, A. W. (2003). Large-scale climatic controls on Lake Baikal ice cover. J. Climate, 16 (19): 3186–99.Google Scholar
Todhunter, P. E. (2007). Hydroclimatological analysis of the red rwer of the north snowmelt flood catastrophe of 1997. J. Amer. Water Resour. Assoc., 37 (5): 1263–78.Google Scholar
Tolstikhin, O. N. (1968). The meaning and calculation of the icing processes in the balance of the underground waters in the permafrost areas. IUGG General Assembly of Bern, Int. Assoc. Hydrol. Sci., Publ., 77: 361–67.Google Scholar
Tomas, R. A., Deser, C., and Sun, L. T. (2016). The role of ocean heat transport in the global climate response to projected arctic sea ice loss. Journal of Climate, 29: 6841–59.Google Scholar
Tremper, B., (2008). Staying alive in avalanche terrain. 2nd ed. The Mountaineers, Seattle, WA.Google Scholar
Trenberth, K. E. (2009). An imperative for climate change planning: tracking Earth’s global energy. Current Opinion Environ, Sustain., 1: 1927.Google Scholar
Tramoni, F., Barry, R. G., and Key, J. (1985). Lake ice cover as a temperature index for monitoring climate perturbations. Zeitschrift Gletscherkunde Glazialgeologie, 21: 43–9.Google Scholar
Tran, N., et al. (2008). Snow facies over ice sheets derived from Envisat active and passive observations. IEEE Trans. Geoscience Remote Sensing, 46 (11): 3694–708.Google Scholar
Tripati, A. K., Roberts, C. D., and Eagle, R. A. (2009). Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years. Science, 326: 1394–7.Google Scholar
Troll, C. (1942). Der Büßerschnee (Nieve de los Penitentes) in den Hochgebirgen der Erde. Petermanns Geographische Mitteilungen, Ergänzungsband (210): Gotha.Google Scholar
Trujillo, E., Ramirez, J. A., and Elder, K. J. (2007). Topographic, meteorologic and canopy controls on the scaling characteristics if the spatial distribution of snow depth fields. Water Resour. Res., 43: W07409.Google Scholar
Tsang, L, et al. (2001). Scattering of electromagnetic waves, vol. 2, Numerical simulations. Hoboken, NJ: Wiley Interscience.Google Scholar
Tschudi, M. A., Maslanik, J. A., and Perovich, D. K. (2008). Derivation of melt pond coverage on Arctic sea ice using MODIS observations. Rem. Sens. Env., 112: 2605–14.Google Scholar
Tsukimoto, H. (2000). Extracting rules from trained neural networks. IEEE Trans. Neural Network, 11(2): 377–89. doi: 10.1109/72.839008Google Scholar
Tsytovich, N. A. (1966). Permafrost problems. In Proceedings, Permafrost International Conference. Washington, DC: National Research Council, p. 7.Google Scholar
Tucker, W. B. (1989). An overview of the physical properties of sea ice. In Proceedings of workshop on ice properties, Assoc. Comm. Geotech. Res., Natl. Res. Council Canada, Tech. Memorandum No. 144, NRCC 30358, pp. 7185.Google Scholar
Tucker, W. B., et al. (1999). Physical characteristics of summer sea ice across the Arctic Ocean. J. Geophys. Res., 104: 1489–504.Google Scholar
Tyndall, J. (1860). The glaciers of the alps, London: John Murray. 444 pp.Google Scholar
Tyrell, J. B. (1910). Ice on Canadian lakes. Trans. Canad. Inst., 9 (20, Pt 1): 1322.Google Scholar
Tzedakis, P. C., et al. (2009). Interglacial diversity. Nat. Geosci., 2: 751–55.Google Scholar
Ulaby, F. T., Stiles, W. H., and Abdelrazik, M. (1984). Snowcover influence on backscattering from terrain. IEEE Trans. Geosci. Remote Sens., GE-22 (2): 126–33.Google Scholar
UNEP. (2007). Global outlook for ice and snow. www.unep.org/geo/geo_ice/Google Scholar
UNEP/WGMS. (2008). Global glacier changes; facts and figures. Zurich: World Glacier Monitoring Service. 45 pp.Google Scholar
University of Alaska. (2008). Compendium of the Proceedings of the first nine International Conferences on Permafrost 1963–200. DVD. ISBN 10: 0–98001794–7.Fairbanks,AK: University of Alaska.Google Scholar
Untersteiner, N. (1961). On the mass and heat budget of Arctic sea ice. Archiv Meteorol., Geophys. Bioklimatol., A12: 151–82.Google Scholar
Untersteiner, N. (1968). Natural desalination and equilibrium salinity profile of perennial sea ice. J. Geophys. Res., 73: 1257.Google Scholar
Untersteiner, N. (ed.). (1986). The geophysics of sea ice. New York: Plenum Press. 1096 pp.Google Scholar
Untersteiner, N. and van der Hoeven, F. (2009). International geophysical year, 1957– 1958, drifting station alpha documentary film. Boulder, CO: National Snow and Ice Data Center. Digital media.Google Scholar
Untersteiner, N., et. al., (2007). AIDJEX revisited: A look back at the U.S.-canadian arctic ice dynamics joint experiment 1970–78. Arctic, 60: 2736.Google Scholar
US Army Corps of Engineers. (1956). Snow hydrology: Summary report of the snow investigations. Portland, OR: North Pacific Div., US Army Corps of Engineers. www.navcen.uscg.gov/pdf/iip/2018_Annual_Report_FINAL.pdfGoogle Scholar
U.S. Coast Guard, (2018). Report of the International Ice Patrol in the North Atlantic Season of 2018, Bulletin #104, CG 188-73. www.navcen.uscg.gov/pdf/iip/2018_Annual_Report_FINAL.pdfGoogle Scholar
U.S. National Academy (1990). Snow/-avalanche hazards and mitigation in the United States. Panel on Snow Avalanches, Commission on Engineering and Technical Systems. Washington, DC. National Academy Press. 84 pp.Google Scholar
Van de Wal, R. S. W. and Wild, M. (2001). Modelling the response of glaciers to climate change by applying volume-area scaling in combination with a high-resolution GCM. Clim. Dynam., 18: 359–66.Google Scholar
van den Broeke, M. R., et al. (2009). Partitioning recent Greenland mass losses, Science 326: 984–86.Google Scholar
Broeke, van den et al. (2016). On the recent contribution of the Greenland ice sheet to sea level change, The Cryosphere, 10: 1933–46, https://doi.org/10.5194/tc-10–1933-2016Google Scholar
van der Veen, C. J. (1996). Tidewater calving, J. Glaciol., 42: 375–85.Google Scholar
van der Veen, C. J. (2002). Calving glaciers. Progr. Phys. Gog., 26: 96122.Google Scholar
van der Veen, C. J. and Payne, A. J. (2004). Modelling land-ice dynamics. In Bamber, J. A. and Payne, A .J. (eds.), Mass balance of the cryosphere: Observations and modelling of contemporary and future change. Cambridge: Cambridge University Press, pp. 169225CrossRefGoogle Scholar
van Everdingen, R. O. (1985). Unfrozen permafrost and other taliks. In Brown, J et al. (eds.), Workshop on permafrost geophysics. CRREL Special Rep. Hanover, NH: US Army, 101–5.Google Scholar
van Wessem, J. M. , et al., (2018). Modelling the climate and surface mass balance of polar ice sheets using RACMO2, part 2: Antarctica (1979–2016). The Cryosphere, 135, https://doi.org/10.5194/tc-2017-202Google Scholar
Vare, L. L., et al. (2009). Sea ice variations in the central Canadian Arctic Archipelago during the Holocene. Quatern. Sci. Rev., 28: 1354–66, doi:10.1016/j.quascirev.2009.01.013.Google Scholar
Vasil ’ chuk, Y. K. and Vasil’chuk, A. C. (1997). Radiocarbon dating and oxygen-isotope variations in Late-Pleistocene syngenetic ice wedges in northern Siberia. Permafrost & Periglac. Proc., 8: 335–45.Google Scholar
Vaughan, D. G. (2008). West Antarctic Ice Sheet collapse – the fall and rise of a paradigm, Clim. Change, 91: 6579.Google Scholar
Vaughan, D. G., et al. (1993). A synthesis of remote sensing data on Wilkins Ice Shelf, Antarctica. Ann. Glaciol., 17: 211–8.Google Scholar
Vaughan, D. G., et al. (2003). Acoustic impedance and basal shear stress beneath four Antarctic ice streams. Ann. Glaciol., 36: 225–32.Google Scholar
Vaughan, , et al. (2013). Observations: cryosphere. In Stocker, T. F., et al. (eds.), Climate change 2013: The physical science basis. Contribution of WG I to the AR5 of the intergovernmental panel on climate change, pg. 317-382. Cambridge University Press, Cambridge, UK and New York, NY, USA.Google Scholar
Vavrus, S., (2004). The impact of cloud feedbacks on Arctic climate under greenhouse forcing. Journal of Climate, 17: 603–15.Google Scholar
Vavrus, S. (2007). The role of terrestrial snow cover in the climate system. Clim. Dyn., 29: 7388.Google Scholar
Vavrus, S. J., Wynne, R. H. and Foley, J. A. (1996). Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model. Limnol. Oceanogr., 41 (5): 822–31.Google Scholar
Veatch, W., et al. (2009). Quantifying the effects of forest canopy cover on net snow accumulating at a continental mid-latitude site. Ecohydr., 2: 115–28.Google Scholar
Velicogna, I. (2009). Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE, Geophys. Res. Lett., 36: L19503. doi:10.1029/2009GL040222.Google Scholar
Velicogna, I. and Wahr, J. (2005). Greenland mass balance from GRACE. Geophys. Res. Lett., 32: L18505. doi:10.1029/2005GL023955.Google Scholar
Velicogna, I. and Wahr, J. (2006a). Acceleration of Greenland ice mass loss in spring 2004. Nature 443: 329–31.Google Scholar
Velicogna, I. and Wahr, J. (2006b). Measurements of time-variable gravity show mass loss in Antarctica. Science, 311: 1754–6, https://doi.org/10.1126/science.1123785Google Scholar
Velicogna, I. and Wahr, J., 2013, Time‐variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data, Geophysical Res. Letters, https://doi.org/10.1002/grl.50527Google Scholar
Velicogna, I., et al. (2014). Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys. Res. Lett., 41: 8130–7.Google Scholar
Venkatesh, S. and El-Tahan, M., M. (1988). Iceberg life expectancies in the Grand Banks and Labrador Sea. Cold Reg. Sci. Technol., 15: 111.Google Scholar
Vimeux, F., et al. (1999). Glacial-interglacial changes in ocean surface conditions in the Southern Hemisphere. Nature, 399: 410–3.Google Scholar
Vilesov, E. N. and Morozova, V. I. (2005). Degradacia oledenenia gor Yuzhnoy Dzhungarii vo vtoroj polovine 20 veka (Degradation of glaciers in Southern Djungaria mountaines in the second part of 20th century). Moscow: Inst. of Geography, RAS. Data Glaciol. Studies 98: 201–6 (in Russian).Google Scholar
Vilesov, E. N. and Uvarov, V. N. (2001). Evoljutsija sovremennogo oledeninja Zailijskogo Alatau v XX Veke (Evolution of glaciers at the Zailiysky Alatau in 20th century). Almaty: Kazakh State University Press. (in Russian).Google Scholar
Vilesov, E. N., et al. (2006). Degradacia oledenenia i kryogenez na sovremennyh morenah severnogo Tian-Shania (Degradation of the glaciation and cryogenesis of modern moraines in the northern Tien Shan). Cryosphera Zemli, 10: 6973 (in Russian).Google Scholar
Vincent, C., et al. (2004). Ice ablation as evidence of climate change in the Alps over the 20th century. J. Geophys. Res., 109 (D10): D10104.Google Scholar
Vincent, W. F., Gibson, J. A. E. and Jeffries, M. O. (2001). Ice shelf collapse, climate change, and habitat loss in the Canadian high Arctic. Polar Record, 37 (201): 133–42.Google Scholar
Vincent, W. F., Hobbie, J. E. and Layborne-Parry, J. (2008a). Introduction to the limnology of high-latitude lake and river ecosystems. In Vincent, W. F. and Laybourn-Parry, J., (eds.), Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems. Oxford: Oxford University Press. pp. 123.Google Scholar
Vincent, W. F., et al. (2008b). The physical limnology of high-latitude lakes. In Vincent, W. F. and Laybourn-Parry, J., (eds.), Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems. Oxford: Oxford University Press. pp. 6581CrossRefGoogle Scholar
Vinje, T. (1980). Some satellite-tracked iceberg drifts in the Antarctic. Annals Glaciol., 1: 83–7.Google Scholar
Vinje, T. (1999). Barents Sea-ice edge variation over the past 400 years. Proceedings of the Workshop on sea-ice charts of the Arctic. Geneva: World Meteorological Organization. WMO/TD 949. pp. 46.Google Scholar
Vinje, T. (2001). Anomalies and trends of sea-ice extent and atmospheric circulation in the Nordic Seas during the period 1864–1998. J. Clim., 14: 255–67.Google Scholar
Vinther, B. M., et al. (2009). Holocene thinning of the Greenland ice sheet. Nature, 461: 385–8.Google Scholar
Visser, P. C. (1928). Von den Gletschern am Obersten. Indus. Zeit. Gletscherk, 16: 169229.Google Scholar
Vizcaino, M., Rupperm, S., and Chiang, J. C. H. (2010). Permanent El Niño and the onset of Northern Hemisphere glaciations: Mechanism and comparison with other hypotheses. Paleoceanog, 25 (PA2205): 20.Google Scholar
Voeikov, A. I. (1889). Permafrost in Siberia along prospective railroad route. J. Minesterstva Putei Soobshenia, 13: 1418. (In Russian).Google Scholar
Voellmy, A. (1955), Über die Zerstörungskraft von Lawinen. Schweizer Bauzeitung, 73 (12, 15, 17, 19, 37): 159–65, 212–17, 246–49, 280–85.Google Scholar
von Cholnoky, E. (1909). Das Eis des Baltonsees. Geogr. Gesellschaft, 1(5).Google Scholar
Vonderthann, H. (2007). Die Schnellberger Eishöhle 1339/26. Eine touristische Besonderheit des Berchtesgadener Landes. Berchtesgadener Alpen. Karst und Höhle 2004/2005. Munich: Verband Deutschen Höhlen- und Karstforscher, pp. 197211.Google Scholar
von Drygalski, E. (1897). Gronland-Expedition der Gesellschaft fiir Erdkunde zu Berlin, 1891–1893, vol. 1. Berlin: W.H. Kühl. pp. 385–95Google Scholar
von Drygalski, E. (1983). The temperature of the iceberg. (transl. of text from German Antarctic Expedition 1901–1903, 1903). Iceberg Res., No. 6 (Cambridge: Scott Polar Res. Inst.,). pp. 1012.Google Scholar
von Saar, R. (1956). Eishöhlen, Ein Meteorologisch-Geophysikalisches Phänomen (Untersuchungen an der Rieseneishöhle (R. E. H.) im Dachstein, Oberösterreich). Geogr, Annal., 38: 163.Google Scholar
Vose, R. S., Oak Ridge National Laboratory. Environmental Sciences Division, U.S. Global Change Research Program, US Dept. of Energy, Office of Health and Environmental Research, Carbon Dioxide Information Analysis Center (U.S.), 1992, The Global Historical Climatology Network: Long-Term Monthly Temperature, Precipitation, Sea Level Pressure, and Station Pressure Data. Carbon Dioxide Information Analysis Center.Google Scholar
Vose, R. S., et al., (2012). NOAA’s Merged Land–Ocean Surface Temperature Analysis. American Meteorological Society, 19 (11): 1677–85. doi: https://doi.org/10.1175/BAMS-D-11-00241.1Google Scholar
Vuglinsky, V. S. (2002a). Peculiarities of ice events in Russian Arctic rivers. Hydrol. Proc., 15: 905–13.Google Scholar
Vuglinsky, V. S. (2002b). Ice events on the Soberian rivers: Formation and variability. Ice in the environment, Vol. 1, Squire, V. and Langhorne, P. (eds.), Proc. 16th IAHR Internat. Sympos. on Ice, Int. Assoc. Hydraulic Eng. Res., Dunedin, New Zealand. pp. 5966.Google Scholar
Vuglinsky, V. S. (2006). Ice regime in the rivers of Russia, its dynamics during last decades and possible future changes. In Saeki, H. (ed.), Proceedings of the 18th IAHR International Symposium on Ice, vol. 1, Sapporo: Nakanishi Publishing Co., pp. 9398.Google Scholar
Vuglinsky, V. S., Gronskaya, T. P., and Lemeshko, N. A. (2002). Long-term characteristics of ice events and ice thickness on the largest lakes and reservoirs of Russia, Ice in the environment, Vol. 3, Squire, V. and Langhorne, P. (eds.). Proc. 16th IAHR Internat. Sympos. on Ice, Int. Assoc. Hydraulic Eng. Res., Dunedin, New Zealand. pp. 80–6.Google Scholar
Vuichard, D. and Zimmemann, M. (1986). The Langmoche flash-flood, Khumbu Himal Nepal. Mountain Res. Devel., 6: 90–4.Google Scholar
Vuille, M., et al. (2008). Climate change and tropical Andean glaciers: past, present & future. Earth-Scien. Rev., 89(3–4): 79–96, doi:10.1016/j.earscirev.2008.04.002Google Scholar
Vuyovich, C., et al. (2009). Monitoring river ice conditions using web-based cameras. J. Cold Reg. Engin., 23(1): 117.Google Scholar
Wadhams, P. (1998). Sea ice morphology. In Physics of ice covered seas, vol. 1, Lepparanta, M. (ed.), Finland: University of Helsinki, pp. 483516.Google Scholar
Wadhams, P. (2000). Ice in the oceans. Amsterdam: Gordon and Breach. 351 pp.Google Scholar
Wadhams, P. (2008). How does Arctic sea ice form and decay? www.arctic.noaa.gov/essay_wadhams.htmlGoogle Scholar
Wadhams, P. and Amanatidis, G. (eds.). (2007). Arctic sea ice thickness: past, present and future. Brusseks: European Commission. 409 pp.Google Scholar
Wadhams, P. and Dobie, M. J. (2010). Sea ice thickness measurement using episodic infragravity waves from distant storms. Cold Reg. Sci.Technol., 56: 98101.Google Scholar
Wadhams, P., et al. (1992). Relationships between sea ice freeboard and draft in the Arctic Basin and implications for ice thickness monitoring. J. Geophys. Res., 97 (C12):20, 325–34.Google Scholar
Wagnon, P., et al. (1999). Annual cycle of energy balance of Zongo Glacier, Cordillera Real, Bolivia. J. Geophys. Res., 104 (D4): 3907–23.Google Scholar
Wailer, C. (1995). A comparison of two avalanche-models with exemplary avalanches of Tyrol and Switzerland and the effects to hazard zoning. Surveys Geophs., 16(5–6): 671–9.Google Scholar
Waite, A. H. and Schmidt, S. J. (1961). Gross errors in height indication from pulsed radar altimeters operating over thick ice or snow. Inst. Radio Engineers. International Convention Record, Part, 5: 3853.Google Scholar
Walker, A. E. and Davey, M. R. (1993). Observation of Great Slave Lake ice freeze-up and breakup processes using passive microwave satellite data. Proc. 16th Canadian Symposium on Remote Sensing, Sherbrooke, Quebec: 233–8.Google Scholar
Walker, A. E. and Goodison, B. E. (1993): Discrimination of a wet snow cover using passive microwave satellite data. Ann. Glaciol., 17: 307–11.Google Scholar
Walker, A. E. and Silis, A. (2002). Snow-cover variations over the Mackenzie River basin, Canada, derived from SSM/I passive-microwave satellite data. Annals of Glaciology, 34 (1): 814.Google Scholar
Walker, E. R. and Wadhams, P. (1979). Thick sea-ice floes. Arctic, 32: 140–7.Google Scholar
Walker, M., et al. (2009). Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. J. Quatern. Sci., 24: 317.Google Scholar
Wallace, A. R. (1871). The theory of glacier motion. Nature, 3: 309–10.Google Scholar
Walland, D. J. and Simmonds, I. (1997). Modelled atmospheric response to changes in Northern Hemisphere snow cover. Climate Dyn., 13: 2534.Google Scholar
Wallén, C. C. (1948). Glacial-meteorological investigations on the Kårsa Glacier in Swedish Lappland. Geogr. Annal., 30: 451672.Google Scholar
Wallevik, J. E. and Sigurjónssson, H. (1998). The Koch index: formulations, corrections and extensions. Vedurstofa Islands Report VI-G98035-UR28. Iceland: Reyjavik. 15 pp.Google Scholar
Walsh, J. E., et al. (2008). Glaciers and ice sheets in the Arctic. The Encyclopedia of Earth. Earth Portal. www.eoearth.org/article/Glaciers_and_ice_sheets_in_the_Arctic.Google Scholar
Walsh, J. E., et al. (2016). A database for depicting Arctic sea ice variations back to 1850. Geographical Review, 107 (1): 89107, doi: 10.1111/j.1931-0846.2016.12195.x.Google Scholar
Walsh, S., et al. (1998). Global patterns of lake ice phenology and climate: Model simulations and observations. J. Geophys. Res., 103 (D22): 28, 825–37.Google Scholar
Walvoord, M. A. and Kurylyk, B. L. (2016). Hydrologic impacts of thawing permafrost – a review, Vadose Zone Journal, 15 (6): 120. doi: 10.2136/vzj2016.01.0010.Google Scholar
Wang, A., Xu, L., and Kong, X. (2018). Assessments of the north hemisphere snow cover response to 1.5 C and 2.0 C warming. Earth Syst. Dyn., 9: 865–77. doi:10.5194/esd-9-865-2018.Google Scholar
Wang, J., et al. (2009). Is the dipole anomaly a major driver to record lows in Arctic summer sea ice extent? Geophys. Res. Lett., 36 (L05706): 5.Google Scholar
Wang, J., et al. (2010). Severe ice cover on Great Lakes during winter 2008–2009. Eos, 01 (5): 4142.CrossRefGoogle Scholar
Wang, L.-B., et al. (2005). Melt season duration on Canadian Arctic ice caps, 2000–2004. Geophys. Res. Lett., 32: L19502.Google Scholar
Wang, L.-B., et al. (2007). Melt season duration and ice layer formation on the Greenland ice sheet, 2000–2004. J. Geophys. Res., 112: F04013.Google Scholar
Wang, L., et al. (2013). Recent changes in pan-Arctic melt onset from satellite passive microwave measurements. Geophysical Research Letters, 40: 522–8.Google Scholar
Wang, M.-Y. and Overland, J. E. (2009). A sea ice free summer Arctic within 30 years? Geophys. Res. Lett., 36 L (L07502): 5.Google Scholar
Wang, T., et al. (2020). Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau,. Sci. Adv., 6: eaaz3513.Google Scholar
Warren, C. and Aniya, M. (1999). The calving glaciers of southern South America. Global Planet. Change, 22: 5977.Google Scholar
Warren, S. G. and Town, M. S. (2009). Antarctica. In Schneider, S. H. (ed.) Encyclopedia of climate and weather. Oxford: Oxford University Press.Google Scholar
Warren, S. G., et al. (1998). Snow depth on Arctic sea ice. J. Clim., 12: 1814–29.Google Scholar
Washburn, A. L. (1973). Periglacial processes and environments. London: Edward Arnold, 320 pp.Google Scholar
Washburn, A. L. (1980). Geocryology: a survey of periglacial processes and environments. 2nd edn. New York: Wiley, 406 pp.Google Scholar
Washington, W. M. and Meehl, G. A. (1996). High-latitude climate change in a global coupled ocean-atmosphere-sea ice model with increased atmospheric CO2. J. Geophys. Res., 101 (D8): 12, 795802.Google Scholar
Watanabe, T., Lamsal, D., and Ives, J. D. (2009). Evaluating the growth characteristics of a glacial lake and its degree of danger of outburst flooding: Imja Glacier, Khumbu Himal, Nepal. Norsk Geogr. Tidsskr, 63: 255–67.Google Scholar
Watson, C. S. et al. (2015). Unabated global mean sea-level rise over the satellite altimeter era. Nat. Clim. Change, 5: 565–8, https://doi.org/10.1038/nclimate2635, 2015.Google Scholar
Weber, M., et al. (2011). Contributions of rain, snow and icemelt in the Upper Danube discharge today and in the future. Geaogr, Fis. Dinam. Quat, 33, 221–30, www.glaciologia.it/wp-content/uploads/Abstracts/Abstract_33_2/12_GFDQ_33_2_Weber_Abst.pdfGoogle Scholar
Webster, M., Rigor, I., and Morison, J. (2010). Improved weather filters for analyzing sea-ice concentration. Paper 57A096. Proceedings, Tromso Sea Ice Symposium. Int. Glaciol. Soc.Google Scholar
Weeks, W. F. (1998). On the history of sea ice research. In Leppäranta, M. (ed.), Physics of ice-covered seas, Vol.1. Helsinki: University of Helsinki Press. pp. 124.Google Scholar
Weeks, W. F. (2010). On sea ice. Fairbanks, AK: University of Alaska Press. 664 pp.Google Scholar
Weeks, W. F. and Ackley, S. F. (1986). The growth, structure, and properties of sea ice. In Untersteiner, N. (ed.), The geophysics of sea ice. New York: Plenum Press. pp. 9164.Google Scholar
Weeks, W. F. and Lofgren, G. (1967). The effective solute distribution coefficient during the freezing of NaCl solutions. In Oura, H. (ed.), Physics of snow and ice. Sapporo, Japan: Institute of Low Temperature Science, Hokkaido University. pp. 579–97.Google Scholar
Weertman, J. (1957). On the sliding of glaciers. J. Glaciol., 3(21): 3338.Google Scholar
Weertman, J. (1983). On the creep deformation of ice. Ann. Rev. Earth Planet. Sci., 11: 215–40.Google Scholar
Weijer, W. et al. (2017). Local atmospheric response to an open-ocean polynya in a high-resolution climate model. J. Clim., 30: 1629–41.Google Scholar
Wendisch, M., et al. (2017), Understanding causes and effects of rapid warming in the Arctic, Eos, 98, AGU, https://doi.org/10.1029/2017EO064803. Published on 17 January 2017.Google Scholar
Wetherald, R. T. and Manabe, S. (1988). Cloud feedback processes in a general-circulation model. Journal of the Atmospheric Sciences, 45: 1397–415.Google Scholar
Weyhenmeyer, G. A., Livingstone, D. M., Meili, M., Jensen, O., Benson, B., and Magnuson, J. J. (2011). Large geographical differences in the sensitivity of ice-covered lakes and rivers in the Northern Hemisphere to temperature changes. Glob. Chang. Biol., 17: 268–75. https://doi.org/10.1111/j.1365–2486.2010.02249.xGoogle Scholar
Wiersma, A. P. and Jongma, J. I. (2010). A role for icebergs in the 8.2 ka climate event. Clim. Dyn., 35: 535–49.Google Scholar
Wiese, D. N., et al. (2016a). Quantifying and reducing leakage errors in the JPL RL05 M GRACE mascon solution. Water Resour. Res., 52: 7490–502, //doi.org/10.1002/2016WR019344, 2016Google Scholar
Wiese, , D. N., et al. (2016b). JPL GRACE Mascon Ocean, Ice, and Hydrology Equivalent Water Height RL05 M. 1 CRI Filtered, Ver. 2, PO. DAAC, CA, USA.Google Scholar
Weisman, R. (1977). Snowmelt: a two-dimensional turbulent diffusion model. Water Resour. Res., 13 (2): 337–42.Google Scholar
Weiss, J., Schulson, E. M., and Stern, H. L. (2006). Sea ice rheology from in-situ, satellite and laboratory observations: Fracture and friction. Earth Planet. Sci. Lett., 255: 18.Google Scholar
Weyhenmeyer, G. A., Meili, M., and Livingstone, D. M. (2004). Nonlinear temperature response of lake ice breakup. Geophys Res Lett., 31: L07203. doi:10.1029. 2004GL019530.Google Scholar
Weyrick, P. P., White, K. D., Daly, S. F., Bullock, M. J., and Gagnon, J. J. (2007). CRREL’s Ice Jam Database and Website. In Proc., 14th Workshop on the Hydraulics of Ice Covered Rivers, Quebec City, Quebec, Canada.Google Scholar
WGMS, (2017). Global glacier change bulletin no. 2 (2014–2015). In Zemp, M., Nussbaumer, S. U., Gärtner-Roer, I., Huber, J., Machguth, H., Paul, F., and Hoelzle, M. (eds.), ICSU(WDS)/IUGG(IACS)/UNEP/UNESCO/ WMO, Zurich, Switzerland: World Glacier Monitoring Service, 244 pp., based on database, doi:10.5904/wgms-fog-2018-11Google Scholar
Wigle, T., et al. (1990). Optimum operation of hydroelectric plants during the ice regime of rivers – A Canadian experience. Ottawa, Canada: Task Force of the Subcommittee on Hydraulics of Ice-Covered Rivers, National Research Council of Canada, NRCC 31107.Google Scholar
Wild, G. O. (1882). Air temperature in the Russian Empire. Izdat. Russk. Geograf. Obshest. St. Petersburg (in Russian). 159 pp.Google Scholar
Wilhelmy, F. (1975). Schnee und Gletscherkunde. Berlin: Walter de Gruyter. 454 pp.Google Scholar
Wilken, M. and Meinert, J. (2006). Submarine glacigenic debris flows, deep-sea channels and past ice-stream behaviour of the East Greenland continental margin. Quat. Sci. Rev., 25: 784810.Google Scholar
Willett, H. C. (1950). Temperature trends of the past century. In Centenary Proceedings.London: Royal Meteorological Society, pp.195206.Google Scholar
Williams, G. P. (1965). Correlating freeze-up and breakup with weather conditions. Canad. Geotech. J., 2: 313–26.Google Scholar
Williams, R. S. Jr. and Ferrigno, J. G. (eds.). (1988). Satellite image atlas of glaciers of the world – Antarctica. (Swithinbank, C.), U.S. Geological Survey, Prof. Papers 1386-B. 290 pp.Google Scholar
Williams, R. S. Jr. and Ferrigno, J. G. (eds.). (1998). Satellite image atlas of glaciers of the world: Glaciers of South America. U.S. Geological Survey Professional Paper 1386-I. 206 pp.Google Scholar
Williams, R. S. Jr. and Ferrigno, J. G. (eds.). (2012). State of the Earth’s cryosphere at the beginning of the 21st century–Glaciers, global snow cover, floating ice, and permafrost and periglacial environments: U.S. Geological Survey Professional Paper 1386–A, 546 p, (https://pubs.usgs.gov/pp/p1386a.).Google Scholar
Williams, G., Layman, K. L., and Stefan, H. G. (2004). Dependence of lake ice covers on climatic, geographic and bathymetric variables. Cold Regions Sci. Technol., 40: 145–64.Google Scholar
Williams, S. G. and Stefan, H. G. (2006). Modeling of lake ice characteristics using climate, geography, and lake bathymetry. J. Cold Reg, Engrg., 87: 140–67.Google Scholar
Williamson, S., et al. (2008). Iceberg calving rates from northern Ellesmere Island ice caps, Canadian Arctic, 1999–2003. J. Glaciol., 54 (186): 391400.Google Scholar
Willmott, C. J. and Robeson, S. M. (1995). Climatologically aided interpolation (CAI) of terrestrial air temperature. Int. J.Climatol., 15 (2): 221–29.Google Scholar
Willmott, C. J. and Matsuura, K. (2009). Terrestrial precipitation: 1900–2008, Gridded Monthly Time Series. http://climate.geog.udel.edu/~climate/html_pages/Global2Ts_2009/README.global_p_ts_2009.html.Google Scholar
Wilson, L., et al. (1999). Mapping snow water equivalent in the mountainous areas by combining a spatially distributed snow hydrology model with passive microwave remote sensing data. IEEE Trans. Geosci. Remote Sensing, 37: 690704.Google Scholar
Wimmer, M. (2007). Eis- und Tenperaturmessungen im Schönberg System (Totes Gebirge, Öbersterreich/Steiermark). Alpin Untertage, Berchesgarden November 9–11, 2007. Proceedings. Dtsch. Höhlen- und Karstforscher, Munich. p. 83. www.zobodat.at/pdf/BNO_0023_2_0757-0794.pdfGoogle Scholar
Wingham, D. J., et al. (2006). Rapid discharge connects Antarctic subglacial lakes. Nature, 440: 1033–36.Google Scholar
Wingham, D. J., Wallis, D. W., and Shepherd, A. (2009). The spatial and temporal evolution of Pine Island glacier thinning, 1995–2006. Geophys. Res. Lett., 36 (17): L17501Google Scholar
Winkelmann, R., et al. (2011). The Potsdam parallel ice sheet model (PISM-PIK)–part 1: model description. The Cryosphere, 5: 715–26.Google Scholar
Winsborrow, M. C. M., Clark, C. D., and Stokes, C. R. (2004). Ice streams of the Laurentide Ice Sheet. Geogr. phys. Quatern., 58: 269–80.Google Scholar
Winsemius, H. C., et al. (2016). Global drivers of future river flood risk. Nat. Clim. Change, 6: 381–85. doi:10.1038/nclimate2893Google Scholar
Winstral, A. and Marks, D. (2002). Simulating wind fields and snow redistribution using terrain-based parameters to model snow accumulation and melt over a semi-arid mountain catchment. Hydrol. Processes, 16: 3585–603.Google Scholar
Wisshak, M., Straub, R., and Lopez Correa, M. (2005). Das Eisrohrhöhle – Bammelschacht – System (1337/118) im Kleinen Weitschartenkopf (Reiteralm). Berchtesgadener Alpen. Karst und Höhle 2004/2005. Munich: Verband Deutschen Höhlen- und Karstforscher, pp. 6881.Google Scholar
WMO. (1986). Intercomparison of models of snowmelt runoff. Operational Hydrology Rep. 23. WMO-No. 646. Geneva: World Meteorological Organization. 36 pp.Google Scholar
Wohlleben, T. and Tivy, A. (2010). An investigation into the anomalous sea-ice conditions in Lincoln Sea and Nares Strait: 2007 and 2009. Paper 57A019. Proceedings of the Tromso Sea Ice Symposium. Int. Glaciol. Soc.Google Scholar
Wojtowicz, A., et al. (2009). 2-D modeling of ice-cover formation processes on the Athabaska River, AB. CGU HS Committee on river ice processes and the environment. 15th Workshop on river ice. St. John’s, Newfoundland and Labrador, 19 pp.Google Scholar
Wolff, E. M., Fischer, H. and Röthlisberger, R. (2009). Glacial terminations as southern warmings without northern control. Nature Geosci., 2: 206–09.Google Scholar
Wolken, G. J., England, J. H., and Dyke, A. S. (2008). Changes in late-Neoglacial perennial snow/ice extent and equilibrium-line altitudes in the Queen Elizabeth Islands, Arctic Canada. The Holocene, 18: 615–27. doi:10.1177/0959683608089215.Google Scholar
Wolken, G. J., Sharp, M., and Wang, L. (2009). Snow and ice facies variability and ice layer formation on Canadian Arctic ice caps, 1999–2005. J. Geophys. Res., 114(F3): F03011. doi:10.1029/2008JF001173.Google Scholar
Woo, M. and Valverde, J. (1982). Ground and water temperatures of a forested mid-latitude swamp, paper presented at Canadian Hydrology Symposium ’82, Can. Natl. Res. Counc., Fredericton, N. B., Canada.Google Scholar
Woo, M.-K., Marsh, P., and Pomeroy, J. W. (2000). Snow, frozen soils and permafrost hydrology in Canada, 1995–1998. Hydrol. Processes., 14: 1591–611.Google Scholar
Woo, M.-K., Mollinga, M., and Smith, S. L. (2008). Modeling maximum active layer thaw in boreal and tundra environments using limited data. In Woo, M.-K. (ed.), Cold region atmospheric and hydrologic studies. The Mackenzie GEWEX experience, Vol. 2: Hydrologic processes. Dordrecht: Springer-Verlag. pp.125–37.Google Scholar
Woo, M. K., et al. (2004). A two-directional freeze and thaw algorithm for hydrologic and land surface modelling. Geophys Res Lett., 31(L12501), 4.Google Scholar
Woodbury, A. D., et al. (2009). Observations of northern latitude ground- surface and surface-air temperatures. Geophys. Res. Lett., 36(L07703): 14. doi:10.1029/ 2009GL037400.Google Scholar
Woodgate, R., Weingartner, T., and Linsay, R. (2010). The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat. Geophys. Res. Lett., 37: L01602. doi:10.1029/2009GL041621.Google Scholar
Worby, A. P. (1999). Observing Antarctic sea ice: A practical guide for conducting sea ice observations from vessels operating in the Antarctic pack ice. Antarctic Sea Ice Processes and Climate (ASPeCt) program of the Scientific Committee for Antarctic Research (SCAR) Global Change (GLOCHANT) program. Australia: Hobart, Tasmania. CD ROM.Google Scholar
Worby, A., et al. (1998). East Antarctic sea ice: a review of its structure, properties and drift. In Jeffries, M. (ed.), Antarctic sea ice physical processes, interactions and variability. Antarctic Res. Ser. 74. Washington, DC: American Geophysical Union, pp. 4168.Google Scholar
Worby, A. P., et al. (2008a). Thickness distribution of Antarctic sea ice. J. Geophys. Res., 113 (C05592): 14.Google Scholar
Worby, A., et al. (2008b). Evaluation of AMSR-E snow depth product over East Antarctic sea ice using in situ measurements and aerial photography. J. Geophys. Res., 113 (C05S94):. 13.Google Scholar
Workman, W. H. (1914). Nieve penitente and allied formations in Himalaya, or surface forms of névé and ice created or modeled by melting. Zeit, f. Gletscherk., 7: 289330.Google Scholar
World Meteorological Organization. (1970–2004). Sea ice nomenclature. Volume I Terminology. Volume II Illustrated Glossary. Volume III International system of sea ice symbols. WMO No. 259. Geneva: World Meteorological Organization.Google Scholar
World Meteorological Organization. (2007). Sea ice nomenclature. WMO No. 259. Geneva: World Meteorological Organization. 23 pp.Google Scholar
World Meteorological Organization. (2010). Sea-ice information services in the world. WMO No. 574. Geneva: World Meteorological Organization. 73 pp.Google Scholar
World Meteorological Organization. (2009). The state of polar research. Geneva: World Meteorological Organization, 12 pp.Google Scholar
Wouters, B., et al. (2013). Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nat. Geosci., 6: 613–16.Google Scholar
Wouters, B., Chambers, D., and Schrama, E. J. O. (2008). GRACE observes small-scale mass loss in Greenland. Geophys. Res. Lett., 35 (L20501): 15, doi:10.1029/2008GL034816.Google Scholar
Wouters, B., Gardner, A. S., and Moholdt, G. (2019). Global glacier mass loss during the GRACE satellite mission (2002–2016). Front. Earth Sci., https://doi.org/10.3389/feart.2019.00096.Google Scholar
Wright, A. and Siegert, M., (2012). A fourth inventory of Antarctic subglacial lakes. Antarctic Science, 24 (6): 659–64, https://doi.org/10.1017/S095410201200048XGoogle Scholar
Wu, Q.-B., Li, X., and Li, W.-J. (2001). The response model of permafrost along the Qinghai Tibetan Highway under climate change. J. Glaciol. Geocryol., 23: 16.Google Scholar
Wu, Q.-B. and Zhang, T.-J. (2010). Changes in active layer thickness over the Qinghai- Tibetan Plateau from 1995 to 2007. J. Geophys. Res., 115 (D09107), 12.Google Scholar
Wu, Q.-B., Zhang, T.-J., and Liu, Y.-Z. (2010). Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Global Planet. Change, 72: 32–8.Google Scholar
Wu, X., Che, T., Li, X., Wang, N., and Yang, X. (2018). Slower snowmelt in spring along with climate warming across the Northern Hemisphere. Geophys. Res. Lett., 45: 12,3319. doi:10.1029/2018GL079511.Google Scholar
Wu, Q., Hou, Y., Yun, H., and Liu, Y., (2015). Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in Alpine ecosystems, Qinghai–Xizang (Tibet) Plateau, China, Glob. Planet. Change, 124: 149–55, doi:10.1016/j.gloplacha.2014.09.002Google Scholar
Wulder, M. A., Nelson, T. A. , Derksen, C., and Seemann, D. (2007). Snow cover variability across central Canada (1978–2002) derived from satellite passive microwave data. Clim. Change, 82: 113–30.Google Scholar
Wunsch, C. (2004). Quantitative estimate of the Milankovitch-forced contribution to observed climate change. Quat. Sci. Revs., 23 (9–10): 1001–12.Google Scholar
Wurbs, R. A. (1993). Reservoir-system simulation and optimization models. J Water Resour Plan Manage, 119 (4): 455–72.Google Scholar
Wynne, R. H., et al. (1998). Satellite monitoring of lake ice breakup on the Laurentian shield (1980–1994). Photogram. Engin. Remote Sens., 64: 607–17.Google Scholar
Xie, Z.-C, et al. (1996). Mass balance at the steady state equilibrium line altitude and its application. Zeit. Glelscherk. Glazialgeol., 32: 129Google Scholar
Xu, J.-C. , et al. (2007). The melting Himalayas. ICIMOD Technical Paper. Kathmandu, Nepal: International Centre for Integrated Mountain Development. 15 pp.Google Scholar
Xu, X.-K., et al. (2010). Responses of two branches of Glacier No.1 to climate change from 1993–2005, Tianshan, China. Quat. Int., doi: 10.1016/j.quaint.2010.06.013Google Scholar
Xue, Y., Sun, S., Kahan, D. S., and Jiao, Y., (2003), Impact of parameterizations in snow physics and interface processes on the simulation of snow cover and runoff at several cold region sites. J. Geophy. Res., 108 (D22): 8859, doi:10.1029/2002JD003174.Google Scholar
Yachevskyi, L. A. (1889). Permafrt soils in Siberia. Izvestiya Russ. Imperator. Geograf. Obshestva, 25: 341–55. (In Russian).Google Scholar
Yachevskyi, L. A. and Vannari, P. I. (eds.) (1912). Instructions for studying permafrost in soils. 2nd edn. St. Petersburg, Russia: Russian Imperial Geographical Society. (In Russian).Google Scholar
Yamazaki, T. and Kondo, J. (1992). The snowmelt and heat balance in snow-covered forested areas, J. Appl. Meteor., 31: 1322–7.Google Scholar
Yang, D., et al. (2000). An evaluation of the Wyoming Gauge system for snow measurement. Water Resour. Res., 36 (9): 2665–77.Google Scholar
Yang, X., Pavelsky, T. M., and Allen, G. H., (2020). The past and future of global river ice. Nature, 577: 6973, https://doi.org/10.1038/s41586-019–1848-1Google Scholar
Ye, Q., Zong, J., Tian, L., Cogley, J. G., Song, C., and Guo, W. (2017). Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000–13. J. Glaciol., 63: 273–87. doi:10.1017/jog.2016.137.Google Scholar
Yeh, W. W.-G. (1985). Reservoir management and operation models: a state-of-the-art review. Water Resour Res., 21 (12): 1797–818.Google Scholar
Yershov, E. D. (1989). Geokriologiya SSSR. (Geocryology of the USSR). Moscow: Nauka. 5 volumes; in Russian).Google Scholar
Yershov, E. D. (1998). General geocryology. (English translation,Williams, P. J. (ed.)). Cambridge: Cambridge University Press. 580 pp.Google Scholar
Yi, D.-H., Zwally, H. J., and Robbins, J. W. (2010). Sea-ice freeboard and thickness in the Weddell Sea (2003–2009). Paper 57A160. Proceedings, Tromso Sea Ice Symposium. Int. Glaciol. Soc. www.igsoc.org/symposia/previous.htmlGoogle Scholar
Ying, I.-L, et al. (2006). Impacts of Yulong Mountain glacier on tourism in Lijiang, J. Mountain Sci., 3: 7180.Google Scholar
Yoo, J.-C. and d ’ Odorico, P. (2002). Trends and fluctuations in the dates of ice breakup of lakes and rivers in northern Europe: the effect of the North Atlantic Oscillation. J. Hydrol., 268: 100–12.Google Scholar
Yu, S.-Y., et al. (2010). Freshwater outburst from Lake Superior as a trigger for the cold event 9300 years ago. Science, 328 (5983): 1262–6Google Scholar
Yu, Y., Maykut, G. A., and Rothrock, D. A. (2003). Changes in the thickness distribution of Arctic sea ice between 1958–1970 and 1993–1997. J. Geophys. Res.-Ocean, 108 (C3): 3083, https://doi.org/10.1029/2001JC001208Google Scholar
Yuan, L.- l., et al. (2006). Impacts of Yulong Mountain glacier on tourism in Lijian. J. Mountain Sci., 3: 7180.Google Scholar
Zemp, M., Hoelzle, M., and Haeberli, W. (2009a). Six decades of glacier mass-balance observations: a review of the worldwide monitoring network. Annals Glaciol., 50: 101–11.Google Scholar
Zemp, M., et al. (2009b). ECV T6 – Glaciers and ice caps. Assessment of the status of the development of standards for the Terrestrial Essential Climate Variables. Rome: GTOS Secretariat, 31 pp.Google Scholar
Zemp, M., et al. (2015). Historically unprecedented global glacier decline in the early 21st century. J. Glaciol., 61(228): 745–62, doi:10.3189/2015JoG15J017Google Scholar
Zemp, M., et al. (2019). Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568: 382–86. https://doi.org/10.1038/s41586-019-1071-0Google Scholar
Zeng, Q.-H., et al. (2008). Snow and ice hazards and their control measures. In: Shi, Y.-F. (ed.-in-chief). Glaciers and related environments in China. Beijing: Science Press. pp. 317–85.Google Scholar
Zeng, X.-P., et al. (2009). A contribution by ice nuclei to global warming. Quart.J. Roy. Met. Soc., 135 (643): 1614–29.Google Scholar
Zeng, X., Broxton, P., and Dawson, N. (2018). Snowpack Change from 1982 to 2016 over Conterminous United States. Geophy. Res. Let., https://doi.org/10.1029/2018GL079621Google Scholar
Zhang, J., 2014, Modeling the Impact of Wind Intensification on Antarctic Sea Ice Volume, J. of Climate, 27(1):202–214, DOI: 10.1175/JCLI-D-12-00139.1Google Scholar
Zhang, J., et al. (2007). Climate downscaling for estimating glacier mass balances in northwestern North America: validation with a USGS benchmark glacier. Geophys. Res. Lett., 34: L21505. doi:10.1029/2007GL031139.Google Scholar
Zhang, J.-L., et al. (2008). What drove the dramatic retreat of arctic sea ice during summer 2007? Geophys. Res. Lett., 35 (L11505): 5.Google Scholar
Zhang, T.-J. (2005a). Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev. Geophys., 43: RG4002, doi:10.1029/2004RG000157.Google Scholar
Zhang, T.-J. (2005b). Historical overview of permafrost studies in China. Phys. Geog., 26: 279–98.Google Scholar
Zhang, T.-J. and Armstrong, R. L. (2001). Soil freeze/thaw cycles over snow-free land detected by passive microwave remote sensing. Geophys. Res. Lett., 28 (5): 763–6.Google Scholar
Zhang, T.-J., et al. (1999). Statistics and characteristics of permafrost and ground ice distribution in the Northern Hemisphere. Polar Geogr., 23 (2): 147–69.Google Scholar
Zhang, T.-J., et al. (2000). Further statistics on the distribution of frozen ground and permafrost. Polar Geogr., 24 (2): 126–31.Google Scholar
Zhang, T.-J., et al. (2001). An amplified signal of climate change in soil temperatures during the last century at Irkutsk, Russia. Clim. Change, 49: 4176.Google Scholar
Zhang, T.-J., et al. (2003a). Ground-based and satellite-derived measurements of surface albedo on the North Slope of Alaska. J. Hydrometeorol., 4 (1): 7791.Google Scholar
Zhang, T.-J., et al. (2003b). Distribution of seasonally and perennially frozen ground in the Northern Hemisphere. In Phillips, M., Springman, S. M. and Arenson, L. U. (eds.). Permafrost, Vol. 2, Proceedings of the 8th international conference on permafrost. Lisse, Netherlands: A.A. Balkema, pp. 1289–94.Google Scholar
Zhang, T., et al. (2003c). Investigation of the near-surface soil freeze-thaw cycle in the contiguous United States: algorithm development and validation. J. Geophys. Res, 108: 8860. doi:10.1029/2003JD003530.Google Scholar
Zhang, T., Barry, R. G., and Armstrong, R. L. (2004). Application of satellite remote sensing on frozen ground studies. Polar Geog., 28 (3): 193–96.Google Scholar
Zhang, T.-J., et al. (2005). Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J. Geophys. Res.,110 (D16): D16101, 14.Google Scholar
Zhang, T.-J., Baker, T. H. W., and Cheng, G. D. (2008). The Qinghai–Tibet Railroad: a milestone project and its environmental impact. Cold Reg. Sci. Technol., 53 (3): 229–40.Google Scholar
Zhang, X., et al. (2001). Trends in Canadian streamflow. Water Res. Res., 37: 987–98.Google Scholar
Zhang, X.-D. (2010). Sensitivity of arctic summer sea ice coverage to global warming forcing: towards reducing uncertainty in arctic climate change projections. Tellus, 62: 220–27.Google Scholar
Zhang, Y., et al. (2004). Sublimation from snow surface in southern mountain taiga of eastern Siberia. J. Geophys. Res., 109: D21103, doi:10.1029/2003JD003779CrossRefGoogle Scholar
Zhang, Y., Chen, W., and Riseborough, D. W. (2008a). Disequilibrium response of permafrost thaw to climate warming in Canada over 1850–2100. Geophys. Res. Lett., 35 (2): L02502. doi:10.1029/2007GL032117Google Scholar
Zhang, Y., Chen, W., and Riseborough, D. W. (2008b). Transient projections of permafrost distribution in Canada during the 21st century under scenarios of climate change. Global Planet. Change, 60 (3–4): 443–56.Google Scholar
Zhang, W., X. Mei, X. Geng, A. G. Turner, and F.-F. Jin, 2018: A Nonstationary ENSO–NAO Relationship Due to AMO Modulation. Journal of Climate, 32, 33–43.Google Scholar
Zheng, G., Yang, Y., Yang, D., Dafflon, B., Lei, H. , and Yang, H. (2019). Satellite-based simulation of soil freezing/thawing processes in the northeast Tibetan Plateau. Remote Sens. Environ., 231 (2019): 111269, doi.org/10.1016/j.rse.2019.111269Google Scholar
Zimov, S. A., Schuur, E. A. G., and Chapin III, F. S. (2006). Permafrost and the global carbon budget. Science, 312: 1612–13.Google Scholar
Zotikov, I. A. (2006). The antarctic subglacial lake vostok: glaciology, biology and planetology. Chichester, U.K.: Praxis Publishing Ltd. 139 pp.Google Scholar
Zotikov, I. A., Zagorodnov, V. S., and Raikovsky, J. V. (1980). Core drilling through the Ross Ice Shelf (Antarctica) confirmed basal freezing. Science, 207 (4438):1463–65.Google Scholar
Zubov, N. N. (1943). Arctic ice. Moscow: Izdat. Glavsevmorputi. (translated 1963) San Diego, CA: US Navy Electronics Laboratory. 491 pp.Google Scholar
Zuerndorfer, B. and England, A. W. (1992). Radiobrightness decision criteria for freeze/ thaw boundaries. IEEE Trans. Geosci. Remote Sens., 30: 89101.Google Scholar
Zwally, H. J., et al. (1983). Antarctic sea ice, 1973–1976; Satellite passive-microwave observations. SP 459, NASA, Washington, DC: National Aeronautics and Space Administration, 206 pp.Google Scholar
Zwally, H. J., et al. (2002). Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 197: 218–22.Google Scholar
Zwally, H. J., et al. (2005). Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J. Glaciol., 51 (175): 509–27.Google Scholar
Zwally, H. J. and Gloersen, P. (2008). Arctic sea ice surviving the summer melt: interannual variability and decreasing trend. J. Glaciol., 54 (185): 279–96.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Roger G. Barry, University of Colorado Boulder, Thian Yew Gan, University of Alberta
  • Book: The Global Cryosphere
  • Online publication: 15 April 2022
  • Chapter DOI: https://doi.org/10.1017/9781108767262.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Roger G. Barry, University of Colorado Boulder, Thian Yew Gan, University of Alberta
  • Book: The Global Cryosphere
  • Online publication: 15 April 2022
  • Chapter DOI: https://doi.org/10.1017/9781108767262.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Roger G. Barry, University of Colorado Boulder, Thian Yew Gan, University of Alberta
  • Book: The Global Cryosphere
  • Online publication: 15 April 2022
  • Chapter DOI: https://doi.org/10.1017/9781108767262.014
Available formats
×