Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-06T04:13:42.616Z Has data issue: false hasContentIssue false

Chapter 13 - Twenty Years of Monitoring CO2 Injection at Sleipner

from Part III - Case Studies

Published online by Cambridge University Press:  19 April 2019

Thomas L. Davis
Affiliation:
Colorado School of Mines
Martin Landrø
Affiliation:
Norwegian University of Science and Technology, Trondheim
Malcolm Wilson
Affiliation:
New World Orange BioFuels
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alnes, H. (2015). Gravity surveys over time at Sleipner. Presentation at the 10th IEAGHG Monitoring Network Meeting, June 10–12, 2015. http://ieaghg.org/docs/General_Docs/8_Mon/6_Gravity_surveys_over_time_at_SleipnerSEC.pdf Google Scholar
Alnes, H., Eiken, O., and Stenvold, T. (2008). Monitoring gas production and CO2 injection at the Sleipner field using time-lapse gravimetry. Geophysics, 73: WA155W161.CrossRefGoogle Scholar
Alnes, H., Eiken, O., Nooner, S., Stenvold, T., and Zumberge, M. A. (2011). Results from Sleipner gravity monitoring: Updated density and temperature distribution of the CO2 plume. Energy Procedia, 4, 55045511 (10th International Conference on Greenhouse Gas Control Technologies).CrossRefGoogle Scholar
Arts, R., Eiken, O., Chadwick, R. A., Zweigel, P., van der Meer, L., and Zinszner, B. (2004a). Monitoring of CO2 injected at Sleipner using time-lapse seismic data. Energy, 29: 13831393.CrossRefGoogle Scholar
Arts, R., Eiken, O., Chadwick, A., Zweigel, P., Meer, B. v. d., and Kirby, G. (2004b). Seismic monitoring at the Sleipner underground CO2 storage site (North Sea). In Baines, S. J. and Worden, R. H. (eds.), Geological storage of carbon dioxide. Special Publications 233. London: Geological Society, 181191.Google Scholar
Arts, R., Chadwick, A., Eiken, O., Thibeau, S., and Nooner, S. (2008). Ten years’ experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway. First Break, 26(January): 6572.CrossRefGoogle Scholar
Arts, R. J., Trani, M., Chadwick, R. A., Eiken, O., Dortland, S., and van der Meer, L. G. H. (2009). Acoustic and elastic modeling of seismic time-lapse data from the Sleipner CO2 storage operation. In Grobe, M., Pashin, J. C., and Dodge, R. L. (eds.), Carbon dioxide sequestration in geological media: State of the science. AAPG Studies in Geology, 59: 391403.Google Scholar
Baklid, A., Korbøl, R., and Owren, G. (1996). Sleipner Vest CO2 disposal, CO2 injection into a shallow underground aquifer. SPE Annual Technical Conference and Exhibition, Denver, CO, SPE paper 36600, 19.CrossRefGoogle Scholar
Bandilla, K. W., Celia, M. A., and Leister, E. (2014). Impact of model complexity on CO2 plume modeling at Sleipner. Energy Procedia, 63: 34053415.CrossRefGoogle Scholar
Bergman, P., and Chadwick, A. (2015). Volumetric bounds on subsurface fluid substitution using 4D seismic time shifts with an application at Sleipner, North Sea. Geophysics, 80(5): B153B165.CrossRefGoogle Scholar
Bickle, M., Chadwick, A., Huppert, H. E., Hallworth, M., and Lyle, S. (2007). Modelling carbon dioxide accumulation at Sleipner: Implications for underground carbon storage. Earth and Planetary Science Letters, 255(1–2): 164176.CrossRefGoogle Scholar
Bitrus, P. R., Iacopini, D., and Bond, C. E. (2016). Defining the 3D geometry of thin shale units in the Sleipner reservoir using seismic attributes. Marine and Petroleum Geology, 78: 405425.CrossRefGoogle Scholar
Boait, F., White, N., Chadwick, A., Noy, D., and Bickle, M. (2011). Layer spreading and dimming within the CO2 plume at the Sleipner Field in the North Sea. Energy Procedia, 4: 32543261.CrossRefGoogle Scholar
Boait, F. C., White, N. J., Bickle, M. J., Chadwick, R. A., Neufeld, J. A., and Huppert, H. E. (2012). Spatial and temporal evolution of injected CO2 at the Sleipner Field, North Sea. Journal of Geophysical Research, 117: B03309.CrossRefGoogle Scholar
Borgos, H. G., Randen, T., and Sonneland, L. (2003). Super-resolution mapping of thin gas pockets. Extended Abstract, Society of Exploration Geophysicists Annual Meeting.Google Scholar
Broto, K., Ricarte, P., Jurado, F., Eitenne, G., and Le Bras, C. (2011). Improving seismic monitoring by 4D prestack traveltime tomography: Application to the Sleipner CO2 storage case. Extended Abstract, EAGE 1st Sustainable Earth Sciences Conference.CrossRefGoogle Scholar
Cavanagh, A. (2013). Benchmark calibration and prediction of the Sleipner CO2 plume from 2006 to 2012. Energy Procedia, 37: 35293545.CrossRefGoogle Scholar
Cavanagh, A. J., and Haszeldine, R. S. (2014). The Sleipner storage site: Capillary flow modelling of a layered CO2 plume requires fractured shale barriers within the Utsira Formation. International Journal of Greenhouse Gas Control, 21: 101112.CrossRefGoogle Scholar
Cavanagh, A., and Nazarian, B. (2014). A new and extended Sleipner Benchmark model for CO2 storage simulations in the Utsira Formation. Energy Procedia, 63: 28312835.CrossRefGoogle Scholar
Cavanagh, A. J., Haszeldine, R. S., and Nazarian, B. (2015). The Sleipner CO2 storage site: Using a basin model to understand reservoir simulations of plume dynamics. First Break, 33(June): 6168.CrossRefGoogle Scholar
Chadwick, R. A., and Eiken, O. (2013). Offshore CO2 storage: Sleipner natural gas field beneath the North Sea. In Gluyas, J. and Mathias, S. (eds.), Geological storage of carbon dioxide (CO2): Geoscience, technologies, environmental aspects and legal frameworks. Sawston, UK: Woodhead Publishing, 227250.CrossRefGoogle Scholar
Chadwick, R. A., and Noy, D. J. (2010). History – matching flow simulations and time-lapse seismic data from the Sleipner CO2 plume. In Vining, B. A. and Pickering, S. C. (eds.), Petroleum geology: From mature basins to new frontiers. Proceedings of the 7th Petroleum Geology Conference. Petroleum Geology Conferences Ltd. London: Geological Society, 11711182.Google Scholar
Chadwick, R. A., and Noy, D. J. (2015). Underground CO2 storage: Demonstrating regulatory conformance by convergence of history-matched modelled and observed CO2 plume behaviour using Sleipner time-lapse seismics. Greenhouse Gas Science Technology, 5: 305322.CrossRefGoogle Scholar
Chadwick, R. A., Zweigel, P., Gregersen, U., Kirby, G. A., Johannessen, P. N., and Holloway, S. (2004a). Characterisation of a CO2 storage site: The Utsira Sand, Sleipner, northern North Sea. Energy, 29: 13711381.CrossRefGoogle Scholar
Chadwick, R. A., Arts, R., Eiken, O., Kirby, G. A., Lindeberg, E., and Zweigel, P. (2004b). 4D seismic imaging of an injected CO2 plume at the Sleipner Field, central North Sea. InCartwright, R. J., Stewart, S. A., Lappin, M., and Underhill, J. R. (eds.), 3D seismic technology: Application to the exploration of sedimentary basins. Geological Society, London, Memoirs. London: Geological Society, 29: 311320.Google Scholar
Chadwick, R. A., Arts, R., and Eiken, O. (2005). 4D seismic quantification of a growing CO2 plume at Sleipner, North Sea. In Doré, A. G. and Vining, B. A. (eds.), Petroleum Geology: North-West Europe and Global Perspectives: Proceedings of the 6th Petroleum Geology Conference, 13851399.Google Scholar
Chadwick, A., Arts, R., Bernstone, C., May, F., Thibeau, S., and Zweigel, P. (2008). Best practice for the storage of CO2 in saline aquifers: Observations and guidelines from the SACS and CO2STORE projects. British Geological Survey Occasional Publication, 14: 1267.Google Scholar
Chadwick, R. A., Noy, D., Arts, R., and Eiken, O. (2009). Latest time-lapse seismic data from Sleipner yield new insights into CO2 plume development. Energy Procedia, 1, 21032110.CrossRefGoogle Scholar
Chadwick, R. A., Williams, G., Delepine, N., et al. (2010). Quantitative analysis of time-lapse seismic monitoring data at the Sleipner CO2 storage operation. Leading Edge, 29, February: 170177.Google Scholar
Chadwick, R. A., Williams, G. A., Williams, J. D. O., and Noy, D. J. (2012). Measuring pressure performance of a large saline aquifer during industrial-scale CO2 injection: The Utsira Sand, Norwegian North Sea. International Journal of Greenhouse Gas Control, 10: 374388.CrossRefGoogle Scholar
Chadwick, R. A., Marchant, B. P., and Williams, G. A. (2014). CO2 storage monitoring: Leakage detection and measurement in subsurface volumes from 3D seismic data at Sleipner. Energy Procedia, 63: 42244239.CrossRefGoogle Scholar
Chadwick, R. A., Williams, G. A., and White, J. C. (2016). High-resolution imaging and characterization of a CO2 layer at the Sleipner CO2 storage operation, North Sea using time-lapse seismics. First Break, 34(February): 7785.CrossRefGoogle Scholar
Chadwick, R. A., Williams, G. A., and Noy, D. J. (2017). CO2 storage: Setting a simple bound on potential leakage through the overburden in the North Sea Basin. Energy Procedia, 114: 44114423.CrossRefGoogle Scholar
Clochard, V., Delépine, N., Labat, K., and Ricarte, P. (2010). CO2 plume imaging using pre-stack stratigraphic inversion: A case study on the Sleipner field. First Break, 28(1): 9196.CrossRefGoogle Scholar
Delepine, K., Clochard, N., Labat, V., and Ricarte, P. (2011). Post-stack stratigraphic inversion workflow applied to carbon dioxide storage: Application to the saline aquifer of Sleipner field. Geophysical Prospecting, 59(1): 132144.CrossRefGoogle Scholar
Dubos-Sallée, N., and Rasolofosaon, P. N. (2011). Estimation of permeability anisotropy using seismic inversion for the CO2 geological storage site of Sleipner (North Sea). Geophysics, 76(3): WA63WA69.CrossRefGoogle Scholar
Dupuy, B., Torres, V. A. C., Ghaderi, A., Querendez, E., and Mezyk, M. (2017a). Constrained AVO for CO2 storage monitoring at Sleipner. Energy Procedia, 114: 39273936.CrossRefGoogle Scholar
Dupuy, B., Romdhane, A., Eliasson, P., Querendez, E., Yan, H., Torres, B., and Ghaderi, A. (2017b). Quantitative seismic characterization of CO2 at the Sleipner storage site, North Sea. Interpretation, 5(4): SS23SS42.CrossRefGoogle Scholar
Eiken, O., Ringrose, P., Hermanrud, C., Nazarian, B., Torp, T. A., and Høier, L. (2011). Lessons learned from 14 years of CCS operations: Sleipner, In Salah and Snøhvit. Energy Procedia, 4: 55415548.CrossRefGoogle Scholar
Eliasson, P., and Romdhane, A. (2017). Uncertainty quantification in waveform-based imaging methods: A Sleipner CO2 monitoring study. Energy Procedia, 114: 39053915.CrossRefGoogle Scholar
Evensen, A. K., and Landrø, M. (2010). Time-lapse tomographic inversion using a Gaussian parameterization of the velocity changes. Geophysics, 75(4): U29U38.CrossRefGoogle Scholar
Falcon-Suarez, I., Papageorgiou, G., Chadwick, A., North, L., Best, A. I., and Chapman, M. (2018). CO2-brine flow-through on an Utsira Sand core sample: Experimental and modelling. Implications for the Sleipner storage field. International Journal of Greenhouse Gas Control, 68: 236246.CrossRefGoogle Scholar
Furre, A.-K., and Eiken, O. (2014). Dual sensor streamer technology used in Sleipner CO2 injection monitoring. Geophysical Prospecting, 62(5): 10751088.CrossRefGoogle Scholar
Furre, A. K., Ringrose, P., Cavanagh, A., Janbu, A. D., and Hagen, S. (2014). Characterization of a submarine glacial channel and related linear features. Extended Abstract, EAGE Near Surface Geoscience.Google Scholar
Furre, A.-K., Kiær, A., and Eiken, O. (2015). CO2-induced seismic time shifts at Sleipner. Interpretation, 3(3): SS23SS35.CrossRefGoogle Scholar
Furre, A.-K., Eiken, O., Alnes, H., Vevatne, J. N., and Kiær, A. F. (2017). 20 years of monitoring CO2-injection at Sleipner. Energy Procedia, 114: 39163926.CrossRefGoogle Scholar
Ghaderi, A., and Landrø, M. (2009). Estimation of thickness and velocity changes of injected carbon dioxide layers from prestack time-lapse seismic data. Geophysics, 74(2): O17O28.CrossRefGoogle Scholar
Ghosh, R., Sen, M. K., and Vedanti, N. (2015). Quantitative interpretation of CO2 plume from Sleipner (North Sea), using post-stack inversion and rock physics modelling. International Journal of Greenhouse Gas Control, 32: 147158.CrossRefGoogle Scholar
Gregersen, U., ed. (1998). Saline aquifer CO2 storage phase zero geological survey of Denmark and Greenland. GEUS.Google Scholar
Gregersen, U., Michelsen, O., and Sorensen, J. C. (1997). Stratigraphy and facies distribution of the Utsira Formation and the Pliocene sequences in the northern North Sea. Marine and Petroleum Geology, 14: 893914.CrossRefGoogle Scholar
Haffinger, P., Eyvazi, F. J., Doulgeris, P., Steeghs, P., Gisolf, D., and Verschuur, E. (2017). Quantitative prediction of injected CO2 at Sleipner using wave-equation based AVO. First Break, 35: 6570.CrossRefGoogle Scholar
Hansen, H., Eiken, O., and Aasum, T. O. (2005). Tracing the path of carbon dioxide from a gas-condensate reservoir, through an amine plant and back into a subsurface acquifer. Case study: The Sleipner area, Norwegian North Sea. Aberdeen, UK: SPE Offshore Europe.Google Scholar
Harrington, J. F., Noy., D. J., Horseman, S. T., Birchall, D. J., and Chadwick, R. A. (2010). Laboratory study of gas and water flow in the Nordland Shale, Sleipner, North Sea. In Grobe, M., Pashin, J. and Dodge, R. (eds.), Carbon dioxide sequestration in geological media: State of the science. AAPG Studies in Geology, 59: 521543.Google Scholar
Hauge, V. L., and Kobjørnsen, O. (2015). Bayesian inversion of gravimetric data and assessment of CO2 dissolution in the Utsira Formation. Interpretation, 3(2): sp1sp10.CrossRefGoogle Scholar
Haukaas, J., Nickel, M., and Sonneland, L. (2013). Successful 4D history matching of the Sleipner CO2 plume. Extended Abstract, EAGE Conference.CrossRefGoogle Scholar
Hermanrud, C., Andersen, T., Eiken, O., et al. (2009). Storage of CO2 in saline aquifers: Lessons learned from 10 years of injection into the Utsira Formation in the Sleipner area. Energy Procedia, 1: 19972004.CrossRefGoogle Scholar
Hofmann, R. (2006). Frequency dependent elastic and inelastic properties of clastic rocks. PhD thesis, Colorado School of Mines.Google Scholar
Jullum, M., and Kolbjørnsen, O. (2016). A Gaussian-based framework for local Bayesian inversion of geophysical data to rock properties. Geophysics, 81(3): R75R87.CrossRefGoogle Scholar
Kiær, A. (2011). Trykkutvikling under CO2-lagring. Master’s thesis, NTNU (in Norwegian).Google Scholar
Kiær, A. F. (2015). Fitting top seal topography and CO2 layer thickness to time-lapse seismic amplitude maps at Sleipner. Interpretation, 3(2): SM47SM55.CrossRefGoogle Scholar
Kiær, A. F., Eiken, O., and Landrø, M. (2015a). Time lapse seismic amplitudes close to the rim of Sleipner CO2 layers. In Kiær, A. F., CO2 fluid flow information from quantitative time-lapse seismic analysis. PhD thesis, Norwegian University of Science and Technology, 5772.Google Scholar
Kiær, A., Eiken, O., and Landrø, M. (2015b). Calendar time interpolation of amplitude maps from 4D seismic data. Geophysical Prospecting, 64(2): 421430.CrossRefGoogle Scholar
Labat, K., Delépine, N., Clochard, V., and Ricarte, P. (2012). 4D joint stratigraphic inversion of prestack seismic data: Application to the CO2 storage reservoir (Utsira sand formation) at Sleipner site. Oil & Gas Science and Technology, 67(2): 329340.CrossRefGoogle Scholar
Landrø, M., and Zumberge, M. (2017). Estimating saturation and density changes caused by CO2 injection at Sleipner: Using time-lapse seismic amplitude-variation-with-offset and time-lapse gravity. Interpretation, T243T257.CrossRefGoogle Scholar
Lindeberg, E. (2010). Modelling pressure and temperature profile in a CO2 injection well. Energy Procedia, 4, 39353941.CrossRefGoogle Scholar
Lindeberg, E., Zweigel, P., Bergmo, P., Ghaderi, A., and Lothe, A. (2000). Prediction of CO2 distribution pattern improved by geology and reservoir simulation and verified by time lapse seismic. Expanded Abstract, 5th GHGT Conference.Google Scholar
Monastersky, R. (2013). Seabed scars raise questions over carbon-storage plan. Nature, 504 (December 19/26): 339340.CrossRefGoogle ScholarPubMed
Neele, F. P., and Arts, R. J. (2010). Time-lapse seismic AVP analysis on the Sleipner CO2 storage monitoring data using CFP processing. Extended Abstract, 72nd EAGE Conference.Google Scholar
Nilsen, H. M., Krogstad, S., Andersen, O., Allen, R., and Lie, K.-A. (2017). Using sensitivities and vertical-equilibrium models for parameter estimation of CO2 injection models with application to Sleipner data. Energy Procedia, 114: 34763495.Google Scholar
Nooner, S. L., Eiken, O., Hermanrud, C., Sasagawa, G. S., Stenvold, T., and Zumberge, M. A. (2007). Constraints on the in situ density of CO2 within the Utsira formation from time-lapse seafloor gravity measurements. International Journal of Greenhouse Gas Control, 1: 198214.CrossRefGoogle Scholar
Park, J., Sauvin, G., and Vöge, M. (2017). 2.5D inversion and joint interpretation of CSEM data at Sleipner CO2 storage. Energy Procedia, 114: 39893996.CrossRefGoogle Scholar
Pedersen, R. B. (2011). Annual Report 2011. Center for Geobiology, University of Bergen.Google Scholar
Queißer, M., and Singh, S. C. (2013a). Full waveform inversion in the time lapse mode applied to CO2 storage at Sleipner. Geophysical Prospecting, 61(3): 537555.CrossRefGoogle Scholar
Queisser, M., and Singh, S. C., (2013b). Localizing CO2 at Sleipner:Seismic images versus P-wave velocities from waveform inversion. Geophysics, 78(3): B131B146.Google Scholar
Rabben, T. E., and Ursin, B. (2011). AVA inversion of the top Utsira Sand reflection at the Sleipner field. Geophysics, 76(3): C53C63.CrossRefGoogle Scholar
Raknes, E. B., Weibull, W., and Arntsen, B. (2015). Three-dimensional elastic full waveform inversion using seismic data from the Sleipner area. Geophysical Journal International, 202(3): 18771894.CrossRefGoogle Scholar
Romdhane, A., and Querendez, E. (2014). CO2 characterization at the Sleipner field with full waveform inversion: Application to synthetic and real data. Energy Procedia, 63: 43584365.CrossRefGoogle Scholar
Rossi, G., Chadwick, R. A., and Williams, G. A. (2011). Traveltime and attenuation tomography of CO2 plume at Sleipner. Extended Abstract, 73rd EAGE Conference & Exhibition.CrossRefGoogle Scholar
Rubino, J. G., and Velis, D. R. (2011). Seismic characterization of thin beds containing patchy carbon dioxide-brine distributions: A study based on numerical simulations. Geophysics, 76: R57R67.CrossRefGoogle Scholar
Rubino, J. G., Velis, D. R., and Sacchi, M. D. (2011). Numerical analysis of wave-induced fluid flow effects on seismic data: Application to monitoring of CO2 at the Sleipner field. Journal of Geophysical Research, 116: B03 306.CrossRefGoogle Scholar
Singh, V., Cavanagh, A., Hansen, H., Nazarian, B., Iding, M., and Ringrose, P. (2010). Reservoir modeling of CO2 plume behavior calibrated against monitoring data from Sleipner, Norway. SPE, 134891: 118.Google Scholar
White, J. C., Williams, G. A., and Chadwick, R. A. (2013). Thin layer detectability in a growing CO2 plume: Testing the limits of time-lapse seismic resolution. Energy Procedia, 37: 43564365.CrossRefGoogle Scholar
Williams, G., and Chadwick, A. (2012). Quantitative seismic analysis of a thin layer of CO2 in the Sleipner injection plume. Geophysics, 77(6): R245R256.CrossRefGoogle Scholar
Williams, G., and Chadwick, R. A. (2017). An improved history-match for layer spreading within the Sleipner plume including thermal propagation effects. Energy Procedia, 114: 28562870.CrossRefGoogle Scholar
Williams, G. A., Chadwick, R. A., and Vosper, H. (2018). Some thoughts on Darcy-type flow simulation for modelling underground CO2 storage based on the Sleipner CO2 storage operation. International Journal of Greenhouse Gas Control, 68: 164175.CrossRefGoogle Scholar
Zhang, G., Lu, P., and Zhu, C. (2014). Model predictions via history matching of CO2 plume migration at the Sleipner Project, Norwegian North Sea. Energy Procedia, 63: 30003011.CrossRefGoogle Scholar
Zhang, G., Lu, P., Ji, X., and Zhu, C. (2017). CO2 plume migration and fate at Sleipner, Norway: Calibration of numerical models, uncertainty analysis, and reactive transport modelling of CO2 trapping to 10,000 years. Energy Procedia, 114: 28802895.CrossRefGoogle Scholar
Zhu, C., Zhang, G., Lu, P., Meng, L., and Ji, X. (2015). Benchmark modeling of the Sleipner CO2 plume: Calibration to seismic data for the uppermost layer and model sensitivity analysis. International Journal of Greenhouse Gas Control, 43, 233246.CrossRefGoogle Scholar
Zweigel, P., Hamborg, M., Arts, R., Lothe, A. E., Sylta, O., and Tommeras, A. (2001). Prediction of migration of CO2 injected into an underground depository: Reservoir geology and migration modelling in the Sleipner case (North Sea). In Williams, D., Durie, I., McMullan, P., Paulson, C., and Smith, A. (eds.), Greenhouse Gas Control Technologies, Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies, 360365.Google Scholar
Zweigel, P., Arts, R., Lothe, A. E., and Lindeberg, E. (2004). Reservoir geology of the Utsira Formation at the first industrial-scale underground CO2 storage site (Sleipner area, North Sea). In Baines, S., Gale, J., and Worden, R. (eds.), Geological storage of carbon dioxide for emissions reduction. London: Geological Society, 165180.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×