Published online by Cambridge University Press: 01 June 2011
The survey is devoted to application of the technique of filling by holomorphic discs to different symplectic and complex analytic problems.
COMPLEX AND SYMPLECTIC RECOLLECTIONS
J-Convexity
Let X, J be an almost complex manifold of the real dimension 4 and Σ be an oriented hypersurface in X of the real codimension 1. Each tangent plane Tx(Σ), x ∈ Σ, contains a unique complex line ξx ⊂ Tx(Σ) which we will call a complex tangency to Σ at x. The complex tangency is canonically oriented and, therefore, cooriented. Hence the tangent plane distribution ξ on Σ can be defined by an equation α = 0 where the 1-form α is unique up to multiplication by a positive function. The 2-form dα ∣ξ is defined up to the multiplication by the same positive factor. We say that Σ is J-convex (or pseudo-convex) if dα(T, JT) > 0 for any non-zero vector T ∈ ξx, x ∈ Σ. We use the word “pseudo-convex” when the almost complex structure J is not specified.
An important property of a J-convex hypersurface Σ is that it cannot be touched inside (according to the canonical coorientation of Σ) by a J-holomorphic curve. In particular, if Ω is a domain in X bounded by a smooth J-convex boundary ∂Ω then all interior points of a J-holomorphic curve C ⊂ X with ∂C ⊂ ∂Ω belong to IntΩ. Moreover, C is transversal to ∂Ω in all regular points of its boundary ∂C.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.