Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T11:26:49.028Z Has data issue: false hasContentIssue false

13 - Temporal Field Variations

from Part III - Spatial and Temporal Variations of the Geomagnetic Field

Published online by Cambridge University Press:  25 October 2019

Mioara Mandea
Affiliation:
Centre National d'études Spatiales, France
Monika Korte
Affiliation:
GeoforschungsZentrum, Helmholtz-Zentrum, Potsdam
Andrew Yau
Affiliation:
University of Calgary
Eduard Petrovsky
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

The geomagnetic field supports a wide range of magnitudes, spatial scales and temporal variations. Outlined here are particular recent advances in temporal variability, stretching from geomagnetic field polarity reversals over millions of years, through secular field variations and ultra-low frequency (ULF) waves (1mHz – 5Hz), to very low frequency(VLF) emissions with frequencies in the kHz range. Long-term variations are discussed with respect to paleomagnetic, geological and archaeological records. Both external and internal fields contribute to temporal variations on decadal to daily time scales. More rapid oscillations at ULF wave frequencies associated with Sun-Earth connection contribute to weather in space. These involve the magnetosphere, ionosphere and atmosphere system, and may affect charged/neutral particle populations. Waves are generated external and internal to the magnetosphere and through integration of global magneto-hydrodynamic or local magneto-ionic modelling with satellite and ground observations, progress has been made in understanding the dynamics of waves and energy transfer within the coupled system. Equally important to space weather is the understanding of ULF and VLF waves on energetic charged particles in the Van Allen radiation belts during geomagnetic storms.

Type
Chapter
Information
Geomagnetism, Aeronomy and Space Weather
A Journey from the Earth's Core to the Sun
, pp. 181 - 206
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ables, S. T. and Fraser, B. J. (2005). Observing the open-closed boundary using cusp-latitude magnetometers. Geophys. Res. Lett., 32, L10104, doi: 10.1029/2005GL022824.Google Scholar
Albert, J. M. (2003). Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma. J. Geophys. Res., 108, 1249, doi: 10.1029/2002JA009792.Google Scholar
Alfvén, H. (1942). Existence of electromagnetic-hydromagnetic waves. Nature, 150, 405.CrossRefGoogle Scholar
Alfvén, H., and Fälthammar, C. G. (1963). Cosmical Electrodynamics, Oxford University Press, Oxford.Google Scholar
Allan, W., and Knox, F. B. (1979a). A dipole field model for axisymmetric Alfvén waves with finite ionosphere conductivities. Planet. Space Sci., 27(1), 7985.Google Scholar
Allan, W., and Knox, F. B. (1979b). The effect of finite ionosphere conductivities on axisymmetric toroidal Alfvén wave resonances. Planet. Space Sci., 27(7), 939–50.Google Scholar
Allan, W., and Wright, A. N. (1997), Large-m waves generated by small-m field line resonances via the nonlinear Kelvin–Helmholtz instability. J. Geophys. Res., 102(A9), 19927–33, doi: 10.1029/97JA01489.Google Scholar
Arnoldy, R. L., Cahill, L. J. Jr, Engebretson, M. J., Lanzerotti, L. J. and Wolfe, A. (1988). Review of hydromagnetic wave studies in the Antarctic. Rev. Geophys., 26, 181201.CrossRefGoogle Scholar
Backus, G., Parker, R. and Constable, C. (1996). Foundations of Geomagnetism. Cambridge University Press, Cambridge.Google Scholar
Backus, G. E. (1983). Application of mantle filter theory to the magnetic jerk of 1969. Geophys. J. Int., 74(3), 713–46.Google Scholar
Baddeley, L. J., Yeoman, T. K., Wright, D. M. et al. (2002). Morning sector drift-bounce resonance driven ULF waves observed in artificially-induced HF radar backscatter. Ann. Geophys., 20(9), 1487–98.Google Scholar
Baker, D. N., Kanekal, S. G., Hoxie, V. C., Henderson, M. G., Li, X., Spence, H. E., Elkington, S. R., Friedel, R. H. W., Goldstein, J., Hudson, M. K. and Reeves, G. D. (2013). A long-lived relativistic electron storage ring embedded in Earth’s outer Van Allen belt. Science, 340(6129), 186–90.CrossRefGoogle ScholarPubMed
Balasis, G., Daglis, I. A. and Mann, I. R., eds. (2016). Waves, Particles, and Storms in Geospace: A Complex Interplay. Oxford University Press, Oxford.CrossRefGoogle Scholar
Beharrell, M., Kavanagh, A. J. and Honary, F. (2010). On the origin of high m magnetospheric waves. J. Geophys. Res., 115, A02201, doi: 10.1029/2009JA014709.Google Scholar
Belakhovsky, V., Pilipenko, V., Murr, D., Fedorov, E. and Kozlovsky, A. (2016). Modulation of the ionosphere by Pc5 waves observed simultaneously by GPS/TEC and EISCAT. Earth Planets Space, 68, 102, doi: 10.1186/s40623-016–0480-7.Google Scholar
Boteler, D. H. (2011). Space weather effects on power systems, in Space Weather, ed. Song, P., Singer, H. J. and Siscoe, G. L., American Geophysical Union, Washington, DC, doi: 10.1002/GM125p0347.Google Scholar
Bourdarie, S., Friedel, R. H. W., Fennell, J., Kanekal, S. and Cayton, T. E. (2005). Radiation belt representation of the energetic electron environment: Model and data synthesis using the Salammbô radiation belt transport code and Los Alamos geosynchronous and GPS energetic particle data. Space Weather, 3, S04S01, doi: 10.1029/2004SW000065.Google Scholar
Brautigam, D. H. and Albert, J. M. (2000). Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm. J. Geophys. Res., 105(A1), 291309.Google Scholar
Brizard, A. J. and Chan, A. A. (2001). Relativistic bounce-averaged quasilinear diffusion equation for low-frequency electromagnetic fluctuations. Phys. Plasmas, 8(11), 4762–71.Google Scholar
Campbell, W. H. (2009). Natural magnetic disturbance fields, not precursors, preceding the Loma Prieta earthquake. J. Geophys. Res., 114, A05307, doi: 10.1029/2008JA013932.CrossRefGoogle Scholar
Carpenter, D. and Anderson, R. (1992). An ISEE/Whistler model of equatorial electron density in the magnetosphere. J. Geophys. Res., 97, 10971108.Google Scholar
Carrington, R. C. (1859). Description of a Singular Appearance seen in the Sun on September 1, 1859. Monthly Notices R. Astron. Soc., 20(1), 1315.Google Scholar
Chapman, S. and Bartels, J. (1962). Geomagnetism, vol. 1, Clarendon Press, Oxford.Google Scholar
Chave, A. D., and Jones, A. G., eds. (2012). The Magnetotelluric Method: Theory and Practice, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Chen, L., and Hasegawa, A. (1974). A theory of long‐period magnetic pulsations: 1. Steady state excitation of field line resonance. J. Geophys. Res., 79(7), 1024–32.Google Scholar
Chen, L., and Hasegawa, A. (1991). Kinetic theory of geomagnetic pulsations: 1. Internal excitations by energetic particles. J. Geophys. Res., 96(A2), 1503–12, doi: 10.1029/90JA02346.Google Scholar
Chen, L., Thorne, R. M., Bortnik, J. and Zhang, X.-J. (2016). Nonresonant interactions of electromagnetic ion cyclotron waves with relativistic electrons. J. Geophys. Res., 121, 9913–25, doi: 10.1002/2016JA022813.Google Scholar
Chi, P. J., Russell, C. T., Foster, J. C., Moldwin, M. B., Engebretson, M. J. and Mann, I. R. (2005). Density enhancement in plasmasphere-ionosphere plasma during the 2003 Halloween Superstorm: Observations along the 330th magnetic meridian in North America. Geophys. Res. Lett., 32, L03S07, doi: 10.1029/2004GL021722.CrossRefGoogle Scholar
Chi, P. J., Russell, C. T. and Ohtani, S. (2009). Substorm onset timing via traveltime magnetoseismology. Geophys. Res. Lett., 36(8).CrossRefGoogle Scholar
Chisham, G., Mann, I. R. and Orr, D. (1997). A statistical study of giant pulsation latitudinal polarization and amplitude variation. J. Geophys. Res., 102(A5), 9619–29.Google Scholar
Claudepierre, S. G., et al. (2013). Van Allen Probes observation of localized drift resonance between poloidal mode ultra-low frequency waves and 60 keV electrons. Geophys. Res. Lett., 40, 4491–7, doi: 10.1002/grl.50901.Google Scholar
Claudepierre, S. G., Hudson, M. K., Lotko, W., Lyon, J. G. and Denton, R. E. (2010). Solar wind driving of magnetospheric ULF waves: Field line resonances driven by dynamic pressure fluctuations. J. Geophys. Res., 115(A11), doi: 10.1029/2010JA015399.Google Scholar
Claudepierre, S. G., Wiltberger, M., Elkington, S. R., Lotko, W. and Hudson, M. K. (2009). Magnetospheric cavity modes driven by solar wind dynamic pressure fluctuations. Geophys. Res. Lett., 36(13), doi: 10.1029/2009GL039045.Google Scholar
Constable, C., and Korte, M. (2015). Centennial- to millennial-scale geomagnetic field variations, in Treatise on Geophysics, vol. 5, pp. 309–41, Elsevier, New York.Google Scholar
Constable, C., Korte, M. and Panovska, S. (2016). Persistent high paleosecular variation activity in the Southern Hemisphere for at least 10000 years. Earth Planet. Sci. Lett., 453, 7886.Google Scholar
Constable, C. G., and Constable, S. C. (2004). Satellite magnetic field measurements: Applications in studying the deep earth, in The State of the Planet: Frontiers and Challenges in Geophysics, American Geophysical Union, Washington, DC.Google Scholar
Currie, J. L., and Waters, C. L. (2014). On the use of geomagnetic indices and ULF waves for earthquake precursor signatures. J. Geophys. Res., 119, 9921003, doi: 10.1002/2013JA019530.Google Scholar
Dai, L., Takahashi, K., Lysak, R. L. et al. (2015). Storm time occurrence and spatial distribution of Pc4 poloidal ULF waves in the inner magnetosphere: A Van Allen Probes statistical study. J. Geophys. Res., 120(6), 4748–62.Google Scholar
Degeling, A. W., Rae, I. J., Watt, C. E. J., Shi, Q. Q., Rankin, R. and Zong, Q.-C. (2018). Control of ULF wave accessibility to the inner magnetosphere by the convection of plasma density. J. Geophys. Res., 123, doi: 10.1002/2017ja024874.Google Scholar
Demekhov, A. G. (2007). Recent progress in understanding Pc1 pearl formation. J. Atmos. Sol. Terr. Phys., 69, 1609–22.Google Scholar
Dent, Z. C., Mann, I. R., Menk, F. W., Goldstein, J., Wilford, C. R., Clilverd, M. A., and Ozeke, L. G. (2003). A coordinated ground-based and IMAGE satellite study of quiet-time plasmaspheric density profiles. Geophys. Res. Lett., 30, 1600, doi: 10.1029/2003GL016946.Google Scholar
Dent, Z. C., Mann, I. R., Goldstein, J., Menk, F. W. and Ozeke, L. G. (2006). Plasmaspheric depletion, refilling, and plasmapause dynamics: A coordinated ground-based and IMAGE satellite study. J. Geophys. Res., 111, A03205, doi: 10.1029/2005JA011046.Google Scholar
Dimitrakoudis, S., Mann, I. R., Balasis, G., Papadimitriou, C., Anastasiadis, A. and Daglis, I. A. (2015). Accurately specifying storm-time ULF wave radial diffusion in the radiation belts. Geophys. Res. Lett., 42, 5711–18, doi: 10.1002/2015GL064707.Google Scholar
Dungey, J. W. (1954). Electrodynamics of the outer atmosphere. Pennsylvania State University lonos. Res. Lab. Sci. Rept. No. 69.Google Scholar
Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett., 6(2), 47.Google Scholar
Elkington, S. R., Hudson, M. K. and Chan, A. A. (2003). Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field. J. Geophys. Res., 108(A3).Google Scholar
Engebretson, M. J., Takahashi, K and Scholer, M, eds. (1994). Solar Wind Sources of Magnetospheric Ultra-Low Frequency Waves, AGU Monogr. 81, American Geophysical Union, Washington, DC, doi: 10.1029/GM081p00xi.CrossRefGoogle Scholar
Engebretson, M. J., Lessard, M. R., Bortnik, J., Green, J. C., Thorne, R. B., Detrick, D. L., Weatherwax, A. T., Mannionen, J., Petit, N. J., Posch, J. L. and Rose, M. C. (2008). Pc1-Pc2 waves and energetic particle precipitation during and after magnetic storms: Superposed epoch analysis and case studies. J. Geophys. Res., 113, A01211, doi: 10.1029/2007JA012362.CrossRefGoogle Scholar
Fälthammar, C.-G. (1965). Effects of time-dependent electric fields on geomagnetically trapped radiation. J. Geophys. Res., 70(11), 2503–16, doi: 10.1029/JZ070i011p02503.CrossRefGoogle Scholar
Fei, Y., Chan, A. A., Elkington, S. R. and Wiltberger, M. J. (2006). Radial diffusion and MHD particle simulations of relativistic electron transport by ULF waves in the September 1998 storm. J. Geophys. Res., 111, A12209, doi: 10.1029/2005JA011211.Google Scholar
Fenrich, F. R., and Samson, J. C. (1997). Growth and decay of field line resonances. J. Geophys. Res., 102(A9), 20031–9.CrossRefGoogle Scholar
Fenrich, F. R., Samson, J. C., Sofko, G. and Greenwald, R. A. (1995). ULF high‐and low‐m field line resonances observed with the Super Dual Auroral Radar Network. J. Geophys. Res., 100(A11), 21535–47.CrossRefGoogle Scholar
Finlay, C. C., Olsen, N., Kotsiaros, S., Gillet, N. and Tøffner-Clausen, L. (2016). Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model. Earth Planets Space, 68(1), 1.Google Scholar
Fraser, B. J., Horwitz, J. L., Slavin, J. A., Dent, Z. C. and Mann, I. R. (2005). Heavy ion mass loading of the geomagnetic field near the plasmapause and ULF wave implications. Geophys. Res. Lett., 32, L04102, doi: 10.1029/2004GL021315.Google Scholar
Fraser-Smith, A. C., Bernardi, A., McGill, P. R., Ladd, M. E., Helliwell, R. A. and Villard, O. G. (1990). Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake. Geophys. Res. Lett., 17, 1465–8, doi: 10.1029/GL017i009p01465.Google Scholar
Gee, J. S., and Kent, D. V. (2007). Source of oceanic magnetic anomalies and the geomagnetic polarity timescale, in Treatise on Geophysics, vol. 5, pp. 419–60, Elsevier, New York.Google Scholar
Gjerloev, J. W. (2012). The SuperMAG data processing technique. J. Geophys. Res., 117, A09213, doi: 10.1029/2012JA017683.Google Scholar
Glassmeier, K. H., Vogt, J., Stadelmann, A. and Buchert, S. (2004). Concerning long-term geomagnetic variations and space climatology. Ann. Geophys., 22(10), 3669–77.Google Scholar
Goldstein, J., Sandel, B. R., Thomsen, M. F., Spasojević, M. and Reiff, P. H. (2004). Simultaneous remote sensing and in situ observations of plasmaspheric drainage plumes. J. Geophys. Res., 109, A03202, doi: 10.1029/2003JA010281.Google Scholar
Grebowsky, J. M. (1970). Model study of plasmapause motion. J. Geophys. Res., 75(22), 4329–33, doi: 10.1029/JA075i022p04329.Google Scholar
Grew, R. S., Menk, F. W., Clilverd, M. A. and Sandel, B. R. (2007). Mass and electron densities in the inner magnetosphere during a prolonged disturbed interval. Geophys. Res. Lett., 34, L02108, doi: 10.1029/2006GL028254.CrossRefGoogle Scholar
Gu, X., Shprits, Y. Y. and Ni, B. (2012). Parameterized lifetime of radiation belt electrons interacting with lower‐band and upper‐band oblique chorus waves. Geophys. Res. Lett., 39, L15102, doi: 10.1029/2012GL052519.Google Scholar
Halford, A. J., Fraser, B. J. and Morley, S. K. (2010). EMIC wave activity during geomagnetic storm and nonstorm periods: CRRES results. J. Geophys. Res., 115, A12248, doi: 10.1029/2010JA015716.Google Scholar
Harrold, B. G., and Samson, J. C. (1992). Standing ULF modes of the magnetosphere: A theory. Geophys. Res. Lett., 19(18), 1811–14.Google Scholar
Hartinger, M. D., Turner, D. L., Plaschke, F., Angelopoulos, V., and Singer, H. (2013). The role of transient ion foreshock phenomena in driving Pc5 ULF wave activity. J. Geophys. Res., 118(1), 299312.Google Scholar
Hayakawa, M. (2016). Earthquake prediction with electromagnetic phenomena. AIP Conf. Proc., 1709, 020002, doi: 10.1063/1.4941199.Google Scholar
Helliwell, R. A. (2006). Whistlers and Related Ionospheric Phenonemena. Dover, Mineola, NY.Google Scholar
Hendry, A. T., Rodger, C. J. and Clilverd, M. A. (2017). Evidence of sub-MeV EMIC-driven electron precipitation. Geophys. Res. Lett., 44, 1210–18, doi: 10.1002/2016GL071807.Google Scholar
Hendry, A. T., Rodger, C. J., Clilverd, M. A., Engebretson, M. J., Mann, I. R., Lessard, M. R., Raita, T., and Milling, D. K. (2016). Confirmation of EMIC wave driven relativistic electron precipitation. J. Geophys. Res., 121, doi: 10.1002/2015JA022224Google Scholar
Horne, R. B., and Thorne, R. M. (1998). Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophys. Res. Lett., 25(15), 3011–14.Google Scholar
Horne, R. B., Glauert, S. A., Meredith, N. P., Koskinen, H., Vainio, R., Afanasiev, A., Ganushkina, N. Y., Amariutei, O. A., Boscher, D., Sicard, A. and Maget, V. (2013). Forecasting the Earth’s radiation belts and modelling solar energetic particle events: Recent results from SPACECAST. J. Space Weather Space Clim., 3, A20.CrossRefGoogle Scholar
Hughes, W. J., Southwood, D. J., Mauk, B., McPherron, R. L. and Barfield, J. N. (1978). Alfvén waves generated by an inverted plasma energy distribution. Nature, 275(5675), 43–5.CrossRefGoogle Scholar
Jackson, A., Jonkers, A. R. T. and Walker, M. R. (2000). Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. London A, 358, 957–90.Google Scholar
Jacobs, J. A., Kato, Y., Matsushita, S. and Troitskaya, V. A. (1964). Classification of geomagnetic micropulsations. J. Geophys. Res., 69(1), 180–81.Google Scholar
James, M. K., Yeoman, T. K., Mager, P. N. and Klimushkin, D. Y. (2013). The spatio-temporal characteristics of ULF waves driven by substorm injected particles. J. Geophys. Res., 118, 1737–49, doi: 10.1002/jgra.50131.Google Scholar
James, M. K., Yeoman, T. K, Mager, P. N. and Klimushkin, D. Y. (2016). Multiradar observations of substorm-driven ULF waves. J. Geophys. Res., 121, 5213–32, doi: 10.1002/2015JA022102.Google Scholar
Jorgensen, A. M., Heilig, B., Vellante, M., Lichtenberger, J., Reda, J., Valach, F. and Mandic, I. (2017). Comparing the dynamic global core plasma model with ground-based plasma desnity observations. J. Geophys. Res., 122, 79978013, doi: 10.1002/2016JA023229.CrossRefGoogle Scholar
Kabin, K., Rankin, R., Mann, I. R., Degeling, A. W. and Marchand, R. (2007). Polarization properties of standing shear Alfvén waves in non-axisymmetric background magnetic fields. Ann. Geophys., 25(3), 815–22.Google Scholar
Kale, Z. C., Mann, I. R., Waters, C. L., Vellante, M., Zhang, T. L. and Honary, F. (2009). Plasmaspheric dynamics resulting from the Hallowe’en 2003 geomagnetic storms. J. Geophys. Res., 114, A08204, doi: 10.1029/2009JA014194.Google Scholar
Kavosi, S. and Raeder, J. (2015). Ubiquity of Kelvin–Helmholtz waves at Earth’s magnetopause. Nat. Comm., 6, 7019.Google Scholar
Keiling, A., and Takahashi, K. (2011). Review of Pi2 models. Space Sci. Rev., 161(14), 63148.Google Scholar
Kelley, M. C. (2009). The Earth’s Ionosphere: Plasma Physics and Electrodynamics, 2nd edn., Elsevier, New York.Google Scholar
Kepko, L., Spence, H. E. and Singer, H. J. (2002). ULF waves in the solar wind as direct drivers of magnetospheric pulsations. Geophys. Res. Lett., 29(8), doi: 10.1029/2001GL014405.Google Scholar
Kimura, I. (1974). Interrelation between VLF and ULF emissions. Space Sci. Rev., 16, 389411.Google Scholar
Kivelson, M. G., and Russell, C. T., eds. (1995). Introduction to Space Physics. Cambridge University Press, Cambridge.Google Scholar
Kivelson, M. G., and Southwood, D. J. (1985). Resonant ULF waves: A new interpretation. Geophys. Res. Lett., 12(1), 4952.CrossRefGoogle Scholar
Kivelson, M. G., and Southwood, D. J. (1986). Coupling of global magnetospheric MHD eigenmodes to field line resonances. J. Geophys. Res., 91(A4), 4345–51.Google Scholar
Kivelson, M. G., Cao, M., McPherron, R. L. and Walker, R. J. (1997). A possible signature of magnetic cavity mode oscillations in ISEE spacecraft observations. J. Geomagn. Geoelec., 49(9), 1079–98.Google Scholar
Kivelson, M. G., and Russell, C. T., eds. (1995). Introduction to Space Physics. Cambridge University Press, Cambridge.Google Scholar
Klimushkin, D. Y. (2000). The propagation of high-m Alfvén waves in the Earth’s magnetosphere and their interaction with high-energy particles. J. Geophys. Res., 105(A10), 23303–10, doi: 10.1029/1999JA000396.Google Scholar
Kono, M. (2015). Geomagnetism: An introduction and overview, in Treatise on Geophysics, vol. 5, pp. 131, Elsevier, New York.Google Scholar
Le, G., and Russell, C. T. (1994). The morphology of ULF waves in the Earth’s foreshock, in Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves, ed. Engebretson, M. J., Takahashi, K. and Scholer, M., American Geophysical Union, Washington, DC, doi: 10.1029/GM081p0087.Google Scholar
Lee, D.-H., and Lysak, R. L. (1999). MHD waves in a three-dimensional dipolar magnetic field: A search for Pi2 pulsations. J. Geophys. Res., 104(A12), 28691–99, doi: 10.1029/1999JA900377.CrossRefGoogle Scholar
Li, W., et al. (2016a). Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations. J. Geophys. Res., 121, 5520–36.Google Scholar
Li, W., Thorne, R., Bortnik, J., Baker, D., Reeves, G., Kanekal, S., Spence, H. and Green, J. (2015a). Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis. Geophys. Res. Lett., 42, 6906–15.Google Scholar
Li, Z., Hudson, M., Kress, B. and Paral, J. (2015b). Three‐dimensional test particle simulation of the 17–18 March 2013 CME shock‐driven storm. Geophys. Res. Lett., 42, 5679–85.Google Scholar
Li, Z., Hudson, M., Paral, J., Wiltberger, M. and Turner, D. (2016b). Global ULF wave analysis of radial diffusion coefficients using a global MHD model for the 17 March 2015 storm. J. Geophys. Res., 121(7), 61966206.Google Scholar
Loto’aniu, T. M., Fraser, B. J. and Waters, C. L. (2005). Propagation of electromagnetic ion cyclotron wave energy in the magnetosphere. J. Geophys. Res., 110, A07214, doi: 10.1029/2004JA010816.Google Scholar
Loto’aniu, T. M., Mann, I. R., Ozeke, L. G., Chan, A. A., Dent, Z. C. and Milling, D. K. (2006). Radial diffusion of relativistic electrons into the radiation belt slot region during the 2003 Halloween geomagnetic storms. J. Geophys. Res., 111, A04218, doi: 10.1029/2005JA011355.Google Scholar
Loto’Aniu, T. M., Singer, H. J., Waters, C. L., Angelopoulos, V., Mann, I. R., Elkington, S. R. and Bonnell, J. W. (2010) Relativistic electron loss due to ultralow frequency waves and enhanced outward radial diffusion. J. Geophys. Res., 115, A12245, doi: 10.1029/2010JA015755.Google Scholar
Lowrie, W. (2007). Fundamentals of Geophysics, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Lysak, R. L. (1993). Generalized model of the ionospheric Alfvén resonator, in Auroral Plasma Dynamics, ed. Lysak, R. L., Geophys. Monogr. 80, American Geophysical Union, Washington, DC.Google Scholar
Mann, I. R., et al. (2018). Reply to ‘The dynamics of Van Allen belts revisited’. Nat. Phys., 14(2), 103, doi: 10.1038/nphys4351.Google Scholar
Mann, I. R., Murphy, K. R., Ozeke, L. G., Rae, I. J., Milling, D. K., Kale, A. A. and Honary, F. F. (2012). The role of ultralow frequency waves in radiation belt dynamics, in Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere, ed. Summers, D., Mann, I. R., Baker, D. N. and Schulz, M., American Geophysical Union, Washington, DC, doi: 10.1029/2012GM001349.Google Scholar
Mann, I. R., Ozeke, L. G., Murphy, K. R., Claudepierre, S., Turner, D., Baker, D. N., Rae, I. J., Kale, A., Milling, D. K. and Boyd, A. (2016). Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt. Nat. Phys., 12(10), 978, doi: 10.1038/nphys3799.Google Scholar
Mann, I. R., and Wright, A. N. (1995). Finite lifetimes of ideal poloidal Alfvén waves. J. Geophys. Res., 100(A12), 23677–86.Google Scholar
Mann, I. R., and Wright, A. N. (1999). Diagnosing the excitation mechanisms of Pc5 magnetospheric flank waveguide modes and FLRs. Geophys. Res. Lett., 26(16), 2609–12.Google Scholar
Mann, I. R., Balmain, K. G., Blake, J. B., Boteler, D., Bourdarie, S., Clemmons, J. H., Dent, Z. C., Degeling, A. W., Fedosejeves, R., Fennell, J. F. and Fraser, B. J. (2006). The outer radiation belt injection, transport, acceleration and loss satellite (ORBITALS): A Canadian small satellite mission for ILWS. Adv. Space Res., 38(8), 1838–60.Google Scholar
Mann, I. R., Chisham, G. and Bale, S. D. (1998). Multisatellite and ground‐based observations of a tailward propagating Pc5 magnetospheric waveguide mode. J. Geophys. Res., 103(A3), 4657–69.Google Scholar
Mann, I. R., Lee, E. A., Claudepierre, S. G., Fennell, J. F., Degeling, A., Rae, I. J., Baker, D. N., Reeves, G. D., Spence, H. E., Ozeke, L. G. and Rankin, R. (2013). Discovery of the action of a geophysical synchrotron in the Earth’s Van Allen radiation belts. Nat. Comm., 4, 2795.Google Scholar
Mann, I. R., Milling, D. K., Rae, I. J, Ozeke, L. G., Kale, A. et al. (2008). The upgraded CARISMA magnetometer array in the THEMIS era. Space Sci. Rev., 141(1–4), 413–51.Google Scholar
Mann, I. R., O’Brien, T. P. and Milling, D. K. (2004). Correlations between ULF wave power, solar wind speed, and relativistic electron flux in the magnetosphere: Solar cycle dependence. J. Atmos. Sol. Terr. Phys., 66(2), 187–98.Google Scholar
Mann, I. R., Wright, A. N. and Cally, P. S. (1995). Coupling of magnetospheric cavity modes to field line resonances: A study of resonance widths. J. Geophys. Res., 100(A10), 19441–56.Google Scholar
Mann, I. R., Wright, A. N. and Hood, A. W. (1997). Multiple‐timescales analysis of ideal poloidal Alfvén waves. J. Geophys. Res., 102(A2), 2381–90.Google Scholar
Mann, I. R., Wright, A. N., Mills, K. J. and Nakariakov, V. M. (1999). Excitation of magnetospheric waveguide modes by magnetosheath flows. J. Geophys. Res., 104(A1), 333–53.Google Scholar
Marshall, R. A., Gorniak, H., der Walt, T. V., Waters, C. L., Sciffer, M. D., Miller, M., Dalzell, M., Daly, T., Pouferis, G., Hesse, G., and Wilkinson, P. (2013). Observations of geomagnetically induced currents in the Australian power network. Space Weather, 11, doi: 10.1029/2012SW000849.Google Scholar
Marshall, R. A. (1996). Geomagnetic pulsation service, IPS Radio and Space Services Internal Report, IPS TR-96-02, Aus. Govt. Dep. Admin. Services.Google Scholar
Masci, F. (2011). On the seismogenic increase of the ratio of the ULF geomagnetic field components. Phys. Earth Planet. Inter., 187, 1932, doi: 10.1016/j.pepi.2011.05.001.CrossRefGoogle Scholar
Mathie, R. A., and Mann, I. R. (2001). On the solar wind control of Pc5 ULF pulsation power at mid-latitudes: Implications for MeV electron acceleration in the outer radiation belt. J. Geophys. Res., 106(A12), 29783–96, doi: 10.1029/2001JA000002.Google Scholar
Mathie, R. A., Menk, F. W., Mann, I. R. and Orr, D. (1999a). Discrete field line resonances and the Alfvén continuum in the outer magnetosphere. Geophys. Res. Lett., 26(6), 659–62.Google Scholar
Mathie, R. A., and Mann, I. R. (2000). A correlation between extended intervals of ULF wave power and storm‐time geosynchronous relativistic electron flux enhancements. Geophys. Res. Lett., 27(20), 3261–4.Google Scholar
Mathie, R. A., and Mann, I. R. (2000). Observations of Pc5 field line resonance azimuthal phase speeds: A diagnostic of their excitation mechanism. J. Geophys. Res., 105(A5), 10713–28.Google Scholar
Mathie, R. A., Mann, I. R., Menk, F. W. and Orr, D. (1999b). Pc5 ULF pulsations associated with waveguide modes observed with the IMAGE magnetometer array. J. Geophys. Res., 104(A4), 7025–36.Google Scholar
Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G. and Ukhorskiy, A. (2013). Science objectives and rationale for the radiation belt storm probes mission. Space Sci. Rev., 179(1–4), 327.Google Scholar
McPherron, R. L., Russell, C. T. and Coleman, P. J. (1972). Fluctuating magnetic fields in the magnetosphere. Space Sci. Rev., 13, 411–54.Google Scholar
McPherron, R. L. (2005). Magnetic pulsations: Their sources and relation to solar wind and geomagnetic activity. Surv. Geophys., 26, 545–92.Google Scholar
Menk, F. W., Orr, D., Clilverd, M. A., Smith, A. J., Waters, C. L., Milling, D. K. and Fraser, B. J. (1999). Monitoring spatial and temporal variations in the dayside plasmasphere using geomagnetic field line resonances. J. Geophys. Res., 104(A9), 19955–69, doi: 10.1029/1999JA900205.Google Scholar
Menk, F. W., Kale, Z. C., Sciffer, M., Robinson, P., Waters, C. L., Grew, R., Clilverd, M. and Mann, I. R. (2014). Remote sensing the plasmasphere, plasmapause, plumes and other features using ground-based magnetometers. J. Space Weather Space Clim., 4, A34.Google Scholar
Menk, F. W., and Waters, C. L. (2013). Magnetoseismology: Ground-Based Remote Sensing of Earth’s Magnetosphere. John Wiley, Hoboken, NJ.Google Scholar
Menk, F. W., Fraser, B. J., Hansen, H. J., Newell, P. T., Meng, C.-I. and Morris, R. J. (1992). Identification of the magnetospheric cusp and cleft using Pc1-2 ULF pulsations. J. Atmos. Terr. Phys., 54(7/8), 1021–43.Google Scholar
Meredith, N. P., Thorne, R. M., Horne, R. B., Summers, D., Fraser, B. J. and Anderson, R. R. (2003). Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES. J. Geophys. Res., 108, 1250, doi: 10.1029/2002JA009700.Google Scholar
Millan, R. M., and Thorne, R. M. (2007). Review of radiation belt relativistic electron losses. J. Atmos. Sol. Terr. Phys., 69, 362–77.Google Scholar
Mills, K. J., Wright, A. N. and Mann, I. R. (1999). Kelvin-Helmholtz driven modes of the magnetosphere. Phys. Plasmas, 6(10), 4070–87.Google Scholar
Min, K., Takahashi, K., Ukhorskiy, A. Y. et al. (2017). Second harmonic poloidal waves observed by Van Allen Probes in the dusk‐midnight sector. J. Geophys. Res., 122(3), 3013–39.Google Scholar
Morley, S. K., Sullivan, J. P., Carver, M. R., Kippen, R. M., Friedel, R. H. W., Reeves, G. D. and Henderson, M. G. (2017). Energetic particle data from the Global Positioning System constellation. Space Weather, 15, 283–9, doi: 10.1002/2017SW001604.CrossRefGoogle Scholar
Mourenas, D., Artemyev, A. V., Ma, Q., Agapitov, O. V. and Li, W. (2016). Fast dropouts of multi-MeV electrons due to combined effects of EMIC and whistler mode waves. Geophys. Res. Lett., 43, doi: 10.1002/2016GL068921.Google Scholar
Murphy, K. R., Mann, I. R. and Sibeck, D. G. (2015). On the dependence of storm time ULF wave power on magnetopause location: Impacts for ULF wave radial diffusion. Geophys. Res. Lett., 42, 9676–84, doi: 10.1002/2015GL066592.Google Scholar
Murphy, K. R., Mann, I. R. and Ozeke, L. G. (2014). A ULF wave driver of ring current energization. Geophys. Res. Lett., 41(19), 65956602.Google Scholar
Neudegg, D. A., Fraser, B. J., Menk, F. W., Hansen, H. J., Burns, G. B., Morris, R. J. and Underwood, M. J. (1995). Sources and velocities of Pc1-2 ULF waves at high latitudes. Geophys. Res. Lett., 22(21), 2965–8, doi: 10.1029/95GL02939.Google Scholar
Nickolaenko, A., and Hayakawa, M. (2014). Schumann Resonance for Tyros. Springer Japan, Tokyo.Google Scholar
Norouzi-Sedeh, L. (2013). Doppler clutter in HF radar systems produced by ULF waves, PhD thesis, University of Newcastle, NSW, Australia.Google Scholar
Norouzi-Sedeh, L., Waters, C. L. and Menk, F. W. (2015). Survey of ULF wave signatures seen in the Tasman International Geospace Environment Radar data. J. Geophys. Res., 120, doi: 10.1002/2014JA020652.Google Scholar
Obana, Y., Waters, C. L., Sciffer, M. D., Menk, F. W., Lysak, R. L., Shiokawa, K., Hurst, A. W. and Petersen, T. (2015). Resonance structure and mode transition of quarter-wave ULF pulsations around the dawn terminator. J. Geophys. Res., 120, 41944212, doi: 10.1002/2015JA021096.Google Scholar
Odera, T. J. (1986). Solar wind controlled pulsations: A review. Rev. Geophys., 24, 5574.Google Scholar
Olifer, L., Mann, I. R, Morley, S. K., Ozeke, L. G. and Choi, D. (2018). On the role of last closed drift shell dynamics in driving fast losses and Van Allen radiation belt extinction. J. Geophys. Res., 123, doi: 10.1029/2018JA025190.Google Scholar
Olsen, N. (2007). Natural sources for electromagnetic induction studies, in Encyclopedia of Geomagnetism and Paleomagnetism, ed. Gubbins, D. and Herrero-Bervera, E., pp. 696700, Springer, New York.Google Scholar
Olsen, N., Hulot, G. and Sabaka, T. J. (2010). Sources of the geomagnetic field and the modern data that enable their investigation, in Handbook of Geomathematics, ed. Freeden, W., Nashed, M. Z. and Sonar, T., Springer, Berlin.Google Scholar
Orlova, K., Shprits, Y. and Spasojevic, M. (2016). New global loss model of energetic and relativistic electrons based on Van Allen Probes measurements. J. Geophys. Res., 121, 1308–14, doi: 10.1002/2015JA021878.Google Scholar
Orr, D., and Matthew, J. A. (1971). The variation of geomagnetic micropulsation periods with latitude and the plasmapause. Planet. Space Sci., 19(8), 897905.Google Scholar
Orr, D. (1973). Magnetic pulsations within the magnetosphere: A review. J. Atmos. Terr. Phys., 35, 150.CrossRefGoogle Scholar
Ozeke, L. G., and Mann, I. R. (2008). Energization of radiation belt electrons by ring current ion driven ULF waves. J. Geophys. Res., 113, A02201, doi: 10.1029/2007JA012468.Google Scholar
Ozeke, L. G., Mann, I. R. and Rae, I. J. (2009). Mapping guided Alfvén wave magnetic field amplitudes observed on the ground to equatorial electric field amplitudes in space. J. Geophys. Res., 114, A01214, doi: 10.1029/2008JA013041.Google Scholar
Ozeke, L. G., Mann, I. R., Turner, D. L., Murphy, K. R., Degeling, A. W., Rae, I. J. and Milling, D. K. (2014b). Modeling cross L shell impacts of magnetopause shadowing and ULF wave radial diffusion in the Van Allen belts. Geophys. Res. Lett., 41, 6556–62.Google Scholar
Ozeke, L. G., Mann, I. R., Murphy, K. R., Sibeck, D. G. and Baker, D. N. (2017). Ultra-relativistic radiation belt extinction and ULF wave radial diffusion: Modeling the September 2014 extended dropout event. Geophys. Res. Lett., 44, 2624–33, doi: 10.1002/2017GL072811.Google Scholar
Ozeke, L. G., Mann, I. R., Murphy, K. R., Rae, I. J., Milling, D. K., Elkington, S. R., Chan, A. A. and Singer, H. J. (2012a). ULF wave derived radiation belt radial diffusion coefficients. J. Geophys. Res., 117, A04222.Google Scholar
Ozeke, L. G., Mann, I. R., Murphy, K. R., Jonathan Rae, I. and Milling, D. K. (2014a). Analytic expressions for ULF wave radiation belt radial diffusion coefficients. J. Geophys. Res., 119, 15871605.Google Scholar
Ozeke, L. G., Mann, I. R., Murphy, K. R., Rae, I. J. and Chan, A. A. (2012b). ULF wave–driven radial diffusion simulations of the outer radiation belt, in Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere, ed. Summers, D., Mann, I. R., Baker, D. N. and Schulz, M., American Geophysical Union, Washington, DC, doi: 10.1029/2012GM001332.Google Scholar
Ozeke, L. G., and Mann, I. R. (2001). Modeling the properties of high‐m Alfvén waves driven by the drift‐bounce resonance mechanism. J. Geophys. Res., 106(A8), 15583–97.Google Scholar
Ozeke, L. G., and Mann, I. R. (2005). High and low ionospheric conductivity standing guided Alfvén wave eigenfrequencies: A model for plasma density mapping. J. Geophys. Res., 110(A4), doi: 10.1029/2004JA010719.Google Scholar
Ozeke, L. G., Mann, I. R. and Mathews, J. T. (2005). The influence of asymmetric ionospheric Pedersen conductances on the field‐aligned phase variation of guided toroidal and guided poloidal Alfvén waves. J. Geophys. Res., 110(A8), doi: 10.1029/2005JA011167.Google Scholar
Pilipenko, V. A., Kozyreva, O. V., Engebretson, M. J. and Soloviev, A. A. (2017). ULF wave power index for space weather and geophysical applications: A review. Russ. J. Earth Sci., 17, doi: 10.2205/2017ES000597.Google Scholar
Plaschke, F., Glassmeier, K. H., Auster, H. U. et al. (2009). Standing Alfvén waves at the magnetopause. Geophys. Res. Lett., 36(2), doi: 10.1029/2008GL036411.Google Scholar
Plaschke, F., and Glassmeier, K.-H. (2011). Properties of standing Kruskal-Schwarzschild-modes at the magnetopause. Ann. Geophys., 29, 17931807, doi: 10.5194/angeo-29-1793-2011.Google Scholar
Potapova, A. S., Polyushkina, T. N., Tsegmed, B., Oinats, A. V., Pashinin, A. Yu., Edemskiy, I. K., Mylnikova, A. A. and Ratovsky, K. G. (2017). Considering the potential of IAR emissions for ionospheric sounding. J. Atmos. Sol. Terr. Phys., 164, 229–34.Google Scholar
Pulkkinen, A., Bernabeu, E., Thomson, A., Viljanen, A., Pirjola, R., Boteler, D., Eichner, J., Cilliers, P. J., Welling, D., Savani, N. P., Weigel, R. S., Love, J. J., Balch, C., Ngwira, C. M., Crowley, G., Schultz, A., Kataoka, R., Anderson, B., Fugate, D., Simpson, J. J. and MacAlester, M. (2017). Geomagnetically induced currents: Science, engineering and applications readiness. Space Weather, doi: 10.1002/2016SW001501.Google Scholar
Radoski, H. R. (1967). Highly asymmetric MHD resonances: The guided poloidal mode. J. Geophys. Res., 72(15), 4026–7.Google Scholar
Rae, I. J., Mann, I. R., Murphy, K. R., Ozeke, L. G., Milling, D. K., Chan, A. A., Elkington, S. R. and Honary, F. (2012). Ground-based magnetometer determination of in situ Pc4–5 ULF electric field wave spectra as a function of solar wind speed. J. Geophys. Res., 117, A04221, doi: 10.1029/2011JA017335.Google Scholar
Rae, I. J., Donovan, E. F., Mann, I. R. et al. (2005). Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval. J. Geophys. Res., 110(A12), doi: 10.1029/2005JA011007.Google Scholar
Reeves, G. D., Chen, Y., Cunningham, G. S., Friedel, R. W. H., Henderson, M. G., Jordanova, V. K., Koller, J., Morley, S. K., Thomsen, M. F. and Zaharia, S. (2012). Dynamic Radiation Environment Assimilation Model: DREAM. Space Weather, 10, S03006, doi: 10.1029/2011SW000729.Google Scholar
Reeves, G., McAdams, K., Friedel, R. and O’Brien, T. (2003). Acceleration and loss of relativistic electrons during small geomagnetic storms. Geophys. Res.Lett., 30, doi: 10.1002/2015GL066376.Google Scholar
Reeves, G. D., Spence, H. E., Henderson, M. G., Morley, S. K., Friedel, R. H. W., Funsten, H. O., Baker, D. N., Kanekal, S. G., Blake, J. B., Fennell, J. F. and Claudepierre, S. G. (2013). Electron acceleration in the heart of the Van Allen radiation belts. Science, 341(6149), 991–4.Google Scholar
Rickard, G. J., and Wright, A. N. (1995). ULF pulsations in a magnetospheric waveguide: Comparison of real and simulated satellite data. J. Geophys. Res., 100(A3), 3531–7.Google Scholar
Rickard, G. J., and Wright, A. N. (1994). Alfvén resonance excitation and fast wave propagation in magnetospheric waveguides. J. Geophys. Res., 99(A7), 13455–64.Google Scholar
Rostoker, G., Skone, S. and Baker, D. N. (1998). On the origin of relativistic electrons in the magnetosphere associated with some geomagnetic storms. Geophys. Res. Lett., 25(19), 3701–4.Google Scholar
Ruohoniemi, J. M., Greenwald, R. A., Baker, K. B. and Samson, J. C. (1991). HF radar observations of Pc 5 field line resonances in the midnight/early morning MLT sector. J. Geophys. Res., 96(A9), 15697–710, doi: 10.1029/91JA00795.Google Scholar
Sabaka, T. J., Hulot, G. and Olsen, N. (2010). Mathematical Properties Relevant to Geomagnetic Field Modeling, in Handbook of Geomathematics, pp. 503–38, Springer, Berlin.Google Scholar
Saito, T. (1969). Geomagnetic pulsations. Space Sci. Rev., 10, 319412.Google Scholar
Samson, J. C., Greenwald, R. A., Ruohoniemi, J. M., Hughes, T. J. and Wallis, D. D. (1991). Magnetometer and radar observations of magnetohydrodynamic cavity modes in the Earth’s magnetosphere. Can. J. Phys., 69, 929.Google Scholar
Samson, J. C., Harrold, B. G., Ruohoniemi, J. M., Greenwald, R. A. and Walker, A. D. M. (1992). Field line resonances associated with MHD waveguides in the magnetosphere. Geophys. Res. Lett., 19, 441–4, doi: 10.1029/92GL00116.Google Scholar
Samson, J. C. (1991). Geomagnetic pulsations and plasma waves in the Earth’s magnetosphere, in Geomagnetism, vol. 4, ed. Jacobs, J. A., chapter 4, Academic Press, London.Google Scholar
Samson, J. C., Jacobs, J. A. and Rostoker, G. (1971). Latitude‐dependent characteristics of long‐period geomagnetic micropulsations. J. Geophys. Res., 76(16), 3675–83.Google Scholar
Samson, J. C. (1983). Pure states, polarized waves, and principal components in the spectra of multiple, geophysical time series. Geophys. J. R. Astron. Soc., 72, 647–64.Google Scholar
Schulz, M., and Lanzerotti, L. J. (1974). Particle Diffusion in the Radiation Belts, Physics and Chemistry in Space 7, Springer, Berlin.Google Scholar
Sciffer, M. D., and Waters, C. L. (2011). Relationship between ULF wave mode mix, equatorial electric fields, and ground magnetometer data. J. Geophys. Res., 116, A06202, doi: 10.1029/2010JA016307.Google Scholar
Sciffer, M. D., Waters, C. L. and Menk, F. W. (2005). A numerical model to investigate the polarisation azimuth of ULF waves through an ionosphere with oblique magnetic fields. Ann. Geophys., 23, 3457–71.Google Scholar
Sciffer, M. D., Waters, C. L. and Menk, F. W. (2004). Propagation of ULF waves through the ionosphere: Inductive effect for oblique magnetic fields. Ann. Geophys., 22, 1155–69.Google Scholar
Serson, P. H. (1973). Instrumentation for induction studies on land. Phys. Earth Planet. Inter., 7, 313–22.Google Scholar
Shah, A. S., Waters, C. L., Sciffer, M. D. and Menk, F. W. (2016). Energization of outer radiation belt electrons during storm recovery phase. J. Geophys. Res., 121, 10845–60, doi: 10.1002/2016JA023245.Google Scholar
Shprits, Y. Y., Thorne, R. M., Friedel, R., Reeves, G. D., Fennell, J., Baker, D. N. and Kanekal, S. G. (2006). Outward radial diffusion driven by losses at magnetopause. J. Geophys. Res., 111, A11214, doi: 10.1029/2006JA011657.Google Scholar
Shprits, Y. Y., Subbotin, D., Drozdov, A., Usanova, M. E., Kellerman, A., Orlova, K., Baker, D. N., Turner, D. L. and Kim, K. C. (2013). Unusual stable trapping of the ultrarelativistic electrons in the Van Allen radiation belts. Nat. Phys., 9(11), 699.Google Scholar
Shvets, A., and Hayakawa, M. (2011). Global lightning activity on the basis of inversions of natural ELF electromagnetic data observed at multiple stations around the world. Surv. Geophys., 32(6), 705–32.Google Scholar
Sibeck, D. G. (1990). A model for the transient magnetospheric response to sudden solar wind dynamic pressure variations. J. Geophys. Res., 95(A4), 3755–71.Google Scholar
Sibeck, D. G., Borodkova, N. L., Schwartz, S. J. et al. (1999). Comprehensive study of the magnetospheric response to a hot flow anomaly. J. Geophys. Res., 104(A3), 4577–93.Google Scholar
Silin, I., Mann, I. R., Sydora, R. D., Summers, D. and Mace, R. L. (2011). Warm plasma effects on electromagnetic ion cyclotron wave MeV electron interactions in the magnetosphere. J. Geophys. Res., 116, A05215, doi: 10.1029/2010JA016398.Google Scholar
Siscoe, G. L., and Chen, C. K. (1975). The paleomagnetosphere. J. Geophys. Res., 80(34), 4675–80.Google Scholar
Southwood, D. J. (1974). Some features of field line resonances in the magnetosphere. Planet. Space Sci., 22(3), 483–91.Google Scholar
Southwood, D. J. (1976). A general approach to low‐frequency instability in the ring current plasma. J. Geophys. Res., 81(19), 3340–48.Google Scholar
Southwood, D. J., and Hughes, W. J. (1983). Theory of hydromagnetic waves in the magnetosphere. Space Sci. Rev., 35(4), 301–66.Google Scholar
Southwood, D. J., Dungey, J. W. and Etherington, R. J. (1969). Bounce resonant interaction between pulsations and trapped particles. Planet. Space Sci., 17(3), 349–61.Google Scholar
Spence, H. E., Reeves, G. D., Baker, D. N., Blake, J. B., Bolton, M., Bourdarie, S., Chan, A. A., Claudepierre, S. G., Clemmons, J. H., Cravens, J. P. and Elkington, S. R. (2013). Science goals and overview of the radiation belt storm probes (RBSP) energetic particle, composition, and thermal plasma (ECT) suite on NASA’s Van Allen probes mission. Space Sci. Rev., 179(1–4), 311–36.Google Scholar
Stadelmann, A., Vogt, J., Glassmeier, K.-H., Kallenrode, M.-B. and Voigt, G.-H. (2010). Cosmic ray and solar energetic particle flux in paleomagnetospheres. Earth Planets Space, 62(3), 333–45.Google Scholar
Subbotin, D. A., Shprits, Y. Y. and Ni, B. (2011). Long-term radiation belt simulation with the VERB 3-D code: Comparison with CRRES observations. J. Geophys. Res., 116, A12210, doi: 10.1029/2011JA017019.Google Scholar
Summers, D., Ni, B. and Meredith, N. P. (2007). Timescales for radiation belt electron acceleration and loss due to resonant wave‐particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves. J. Geophys. Res., 112(A4), doi: 10.1029/2006JA01180.Google Scholar
Surkov, V., and Hayakawa, M. (2014b). Ionospheric Alfven Resonator (IAR) in Ultra and Extremely Low Frequency Electromagnetic Fields, Springer, Tokyo.Google Scholar
Surkov, V., and Hayakawa, M. (2014a). Ultra and Extremely Low Frequency Electromagnetic Fields, Springer, Tokyo.Google Scholar
Takahashi, K., and Ukhorski, A. Y. (2007). Solar wind control of Pc5 pulsation power at geosynchronous orbit. J. Geophys. Res., 112, A11205, doi: 10.1029/2007JA012483.Google Scholar
Takahashi, K., Waters, C. L., Glassmeier, K.-H., Kletzing, C. A., Kurth, W. S. and Smith, C. W. (2015). Multifrequency compressional magnetic field oscillations and their relation to multiharmonic toroidal mode standing Alfvén waves. J. Geophys. Res., 120, 10384–403, doi: 10.1002/2015JA021780.Google Scholar
Takahashi, K., et al. (2010). Multipoint observation of fast mode waves trapped in the dayside plasmasphere. J. Geophys. Res., 115, A12247, doi: 10.1029/2010JA015956.Google Scholar
Takahashi, K., Hartinger, M. D., Angelopoulos, V., Glassmeier, K. H. and Singer, H. J. (2013). Multispacecraft observations of fundamental poloidal waves without ground magnetic signatures. J. Geophys. Res., 118(7), 4319–34.Google Scholar
Takahashi, K., Oimatsu, S., Nosé, M., Min, K., Claudepierre, S. G. et al. (2018). Van Allen Probes observations of second-harmonic poloidal standing Alfvén waves. J. Geophys. Res., 123, doi: 10.1002/2017JA024869.Google Scholar
Takahashi, K., Chi, P. J., Denton, R. E. and Lysak, R. L., eds. (2006). Magnetospheric ULF Waves: Synthesis and New Directions, AGU Monograph 169, American Geophysical Union, Washington, DC.Google Scholar
Takahashi, K., Denton, R. E. and Singer, H. J. (2010). Solar cycle variation of geosynchronous plasma mass density derived from the frequency of standing Alfvén waves. J. Geophys. Res., 115, A07207, doi: 10.1029/2009JA015243.Google Scholar
Takahashi, K. (1990). Response of energetic particles to magnetospheric ultra-low-frequency waves. Johns Hopkins APL Tech. Digest, 11, 255–63.Google Scholar
Tamao, T. (1964). The structure of three-dimensional hydromagnetic waves in a uniform cold plasma. J. Geomagn. Geoelectr., 18, 89114.Google Scholar
Tamao, T. (1966). Transmission and coupling resonance of hydromagnetic disturbances in the non-uniform Earth’s magnetosphere. Sci. Rep. Tohoku Univ. Ser. 5, 17, 43.Google Scholar
Tarduno, J. A., Cottrell, R. D., Davis, W. J., Nimmo, F. and Bono, R. K. (2015). A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science, 349(6247), 521–4.Google Scholar
Tarduno, J. A., Cottrell, R. D., Watkeys, M. K., Hofmann, A., Doubrovine, P. V., Mamajek, E. E., Liu, D., Sibeck, D. G., Neukirch, L. P. and Usui, Y. (2010). Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science, 327(5970), 1238–40.Google Scholar
Tauxe, L. (2010). Essentials of Paleomagnetism. University of California Press, Berkeley.Google Scholar
Tu, W., Elkington, S. R., Li, X., Liu, W. and Bonnell, J. (2012). Quantifying radial diffusion coefficients of radiation belt electrons based on global MHD simulation and spacecraft measurements. J. Geophys. Res., 117, A10210, doi: 10.1029/2012JA017901.Google Scholar
Turner, D. L., Shprits, Y., Hartinger, M. and Angelopoulos, V. (2012). Explaining sudden losses of outer radiation belt electrons during geomagnetic storms. Nat. Phys., 8(3), 208.Google Scholar
Ukhorskiy, A. Y., Anderson, B. J., Brandt, P. C. and Tsyganenko, N. A. (2006). Storm time evolution of the outer radiation belt: Transport and losses. J. Geophys. Res., 111, A11S03, doi: 10.1029/2006JA011690.Google Scholar
Usanova, M. E., Drozdov, A., Orlova, K., Mann, I. R., Shprits, Y. et al. (2014). Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground‐based and Van Allen Probes observations. Geophys. Res. Lett., 41, 1375–81.Google Scholar
Usanova, M. E., Mann, I. R., Rae, I. J., Kale, Z. C., Angelopoulos, V., Bonnell, J. W., Glassmeier, K.-H., Auster, H. U. and Singer, H. J. (2008). Multipoint observations of magnetospheric compression related EMIC Pc1 waves by THEMIS and CARISMA. Geophys. Res. Lett., 35, L17S25, doi: 10.1029/2008GL034458.Google Scholar
Vallee, M. A., Newitt, L., Dumont, R. and Keating, P. (2005). Correlation between aeromagntic data rejection and geomagnetic indices. Geophysics, 70, J33–8, doi: 10.1190/1.2057982.Google Scholar
Walker, A. D. M. (2000). Reflection and transmission at the boundary between two counterstreaming MHD plasmas – active boundaries or negative-energy waves? J. Plasma Phys., 63(3), 203–19.Google Scholar
Waters, C. L. and Cox, S. P. (2009). ULF wave effects on high frequency signal propagation through the ionosphere. Ann. Geophys., 27, 2779–88, doi: 10.5194/angeo-27-2779-2009.Google Scholar
Waters, C. L., Gjerloev, J. W., Dupont, M. and Barnes, R. J. (2015). Global maps of ground magnetometer data. J. Geophys. Res., 120, doi: 10.1002/2015JA021596.Google Scholar
Waters, C. L., Kabin, K., Rankin, R., Donovan, E. and Samson, J. C. (2007). Effects of the magnetic field model and wave polarisation on the estimation of proton number densities in the magnetosphere using field line resonances. Planet. Space Sci., 55, 809–19.Google Scholar
Waters, C. L., Lysak, R. L. and Sciffer, M. D. (2013). On the coupling of fast and shear Alfvén wave modes by the ionospheric Hall conductance. Earth Planets Space, 65, 385–96, doi: 10.5047/eps.2012.08.002.Google Scholar
Waters, C. L., Menk, F. W. and Fraser, B. J. (1991). The resonance structure of low latitude Pc3 geomagnetic pulsations. Geophys. Res. Lett., 18, 2293–6, doi: 10.1029/91GL02550.Google Scholar
Waters, C. L., Takahashi, K., Lee, D. H. and Anderson, B. J. (2002). Detection of ultralow‐frequency cavity modes using spacecraft data. J. Geophys. Res., 107(A10).Google Scholar
Webb, D. F., and Allen, J. H. (2004). Spacecraft and ground anomalies related to the October–November 2003 solar activity. Space Weather, 2(3).Google Scholar
Wright, A. N., and Mann, I. R. (2006). Global MHD eigenmodes of the outer magnetosphere, in Magnetospheric ULF Waves: Synthesis and New Directions, ed. Takahashi, K., Chi, P. J., Denton, R. E. and Lysak, R. L., pp. 5172, American Geophysical Union, Washington, DC, doi: 10.1029/169GM06.Google Scholar
Wright, A. N. (1994). Dispersion and wave coupling in inhomogeneous MHD waveguides. J. Geophys. Res., 99(A1), 159–67.Google Scholar
Wright, D. M., and Yeoman, T. K. (1999). High resolution bistatic HF radar observations of ULF waves in artificially generated backscatter. Geophys. Res. Lett., 26(18), 2825–8.Google Scholar
Wright, D. M., Yeoman, T. K. and Jones, T. B. (1999). ULF wave occurrence statistics in a high-latitude HF Doppler sounder. Ann. Geophys., 17, 749–58.Google Scholar
Yeoman, T. K. and Wright, D. M. (2001). ULF waves with drift resonance and drift-bounce resonance energy sources as observed in artificially-induced HF radar backscatter. Ann. Geophys., 19, 159–70, doi: 10.5194/angeo-19-159-2001.Google Scholar
Yeoman, T. K., James, M. K., Klimushkin, D. Y. and Mager, P. N. (2016). Energetic particle‐driven ULF waves in the ionosphere, in Low-Frequency Waves in Space Plasmas, ed. A. Keiling, D.-H. Lee and V. Nakariakov, Geophys. Monogr. 216, American Geophysical Union, Washington, DC.Google Scholar
Yeoman, T. K., Wright, D. M., Robinson, T. R., Davies, J. A. and Rietveld, M. (1997). High spatial and temporal resolution observations of an impulse-driven field line resonance in radar backscatter artificially generated with the Tromsø heater. Ann. Geophys., 15(6), 634–44.Google Scholar
Yoshikawa, A., and Itonaga, M. (2000). The nature of reflection and mode conversion of MHD waves in the inductive ionosphere: Multistep mode conversion between divergent and rotational electric fields. J. Geophys. Res., 105, 10565–84.Google Scholar
Zhou, X.-Z., Wang, Z.-H., Zong, Q.-G., Rankin, R., Kivelson, M. G., Chen, X.-R., Blake, J. B., Wygant, J. R. and Kletzing, C. A. (2016). Charged particle behavior in the growth and damping stages of ultralow frequency waves: Theory and Van Allen Probes observations. J. Geophys. Res., 121, 3254–63, doi: 10.1002/2016JA022447.Google Scholar
Ziegler, L. B., Constable, C. G., Johnson, C. L. and Tauxe, L. (2011). PADM2 M: Penalized maximum likelihood model of the 0–2 Ma palaeomagnetic axial dipole moment. Geophys. J. Int., 184(3), 1069–89.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×