Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-06T04:14:09.221Z Has data issue: false hasContentIssue false

10 - The Global Lithospheric Magnetic Field

World Magnetic Anomaly Maps and Models

from Part III - Spatial and Temporal Variations of the Geomagnetic Field

Published online by Cambridge University Press:  25 October 2019

Mioara Mandea
Affiliation:
Centre National d'études Spatiales, France
Monika Korte
Affiliation:
GeoforschungsZentrum, Helmholtz-Zentrum, Potsdam
Andrew Yau
Affiliation:
University of Calgary
Eduard Petrovsky
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

The magnetic field generated in the Earth’s lithosphere carries information on the Earth history and tectonics. It is therefore worthwhile studying, but gathering magnetic data for this purpose is a task requiring time and significant ressources. This has been the main objective of the World Digital Magnetic Anomaly Map (WDMAM) project. We recall here the main steps that led to the first and second versions of the map. We further discuss the models that have been derived from the map, and finally describe recent works to interpret these models in term of magnetisation of the crust. We see these recent developments as major steps forward for an efficient exploitation of the magnetic data collected near the surface of the Earth.

Type
Chapter
Information
Geomagnetism, Aeronomy and Space Weather
A Journey from the Earth's Core to the Sun
, pp. 133 - 140
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Besse, J. & Courtillot, V. (2002), ‘Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 myr’, J. Geophys. Res. B11(107).Google Scholar
Blakely, R. (1995), Potentiel Theory in Gravity and Magnetic Applications, Cambridge University Press, Cambridge.Google Scholar
Bouligand, C., Glen, J. & Blakely, R. (2009), ‘Mapping curie temperature depth in the western united states with a fractal model for crustal magnetization’, J. Geophys. Res. 114, B11104.CrossRefGoogle Scholar
Catalán, M., Dyment, J., Lesur, V., Thébault, E., Hamoudi, M., Choi, Y., Santis, A. D., Takemi, I., Korhonen, J., Litvinova, T., Luís, J., Meyer, B., Milligan, P., Masao, N., Okuma, S., Pilkington, M., Purucker, M., Ravat, D., Gaina, C., Maus, S., Quesnel, Y., Saltus, R. & Taylor, P. (2016), ‘Making a better magnetic map’, EOS 97.CrossRefGoogle Scholar
Counil, J.-L., Cohen, Y. & Achache, J. (1991), ‘A global continent-ocean magnetization contrast: spherical harmonic analysis’, Earth Planet. Sci. Lett. 103, 354–64.Google Scholar
Dyment, J. & Arkani-Hamed, J. (1998), ‘Contribution of lithospheric remanent magnetization to satellite magnetic anomalies over the world’s oceans’, J. Geophys. Res. 103, 15423–42.Google Scholar
Dyment, J., Choi, Y., Hamoudi, M., Lesur, V. & Thébault, E. (2015), ‘Global equivalent magnetization of the oceanic lithosphere’, Earth Planet. Sci. Lett. 430, 5465.Google Scholar
Fox Maule, C., Purucker, M. E., Olsen, N. & Mosegaard, K. (2005), ‘Heat flux anomalies in Antarctica revealed by satellite magnetic data’, Science 309, 464‒67.Google Scholar
Fox Maule, C., Purucker, M. & Olsen, N. (2005), ‘The magnetic crustal thickness of Greenland’, in Reigber, C., Lhr, H., Schwintzer, P. & Wickert, J., eds., Earth Observation with CHAMP, Results from Three Years in Orbit, Springer.Google Scholar
Gubbins, D., Ivers, D., Masterton, S. M. & Winch, D. E. (2011), ‘Analysis of lithospheric magnetization in vector spherical harmonics’, Geophys. J. Int. 187, 99117.Google Scholar
Gubbins, D., Ivers, D. & Williams, S. (2017), ‘Analysis of regional crustal magnetization in vector cartesian harmonics’, Geophys. J. Int. 211, 1285–95.CrossRefGoogle Scholar
Hamoudi, M., Thébault, E., Lesur, V. & Mandea, M. (2007), ‘Geoforschungszentrum anomaly magnetic map (gamma): A candidate model for the world digital magnetic anomaly map’, Geochem Geophys. Geosyst. 8.Google Scholar
Hemant, K., Thébault, E., Mandea, M., Ravat, D. & Maus, S. (2007), ‘Magnetic anomaly map of the world: merging satellite, airborne, marine and ground-based magnetic data sets’, Earth Planet Sci. Lett. 260, 5671.Google Scholar
Jackson, A. (1994), ‘Statistical treatment of crustal magnetization’, Geophys. J. Int. 119, 991–8.Google Scholar
Korhonen, J., Fairhead, J., Hamoudi, M., Hemant, K., Lesur, V., Mandea, M., Maus, S., Purucker, M., Ravat, D., Sazonova, T. & Th_ebault, E. (2007), Magnetic Anomaly Map of the World/Carte des anomalies magnetiques du monde, 1st edn., Commission for the Geological Map of the World, Paris.Google Scholar
Lesur, V. (2006), ‘Introducing localized constraints in global geomagnetic field modelling’, Earth Planets Space 58, 477–83.Google Scholar
Lesur, V., Hamoudi, M., Choi, Y., Dyment, J. & Thébault, E. (2016), ‘Building the second version of the world digital magnetic anomaly map (WDMAM)’, Earth Planets Space 68, 27.Google Scholar
Lesur, V., Rother, M., Vervelidou, F., Hamoudi, M. & Thébault, E. (2013), ‘Post-processing scheme for modeling the lithospheric magnetic field’, Solid Earth 4, 105–18.CrossRefGoogle Scholar
Maus, S., Lühr, H., Hemant, K., Balasis, G., Ritter, P. & Stolle, C. (2007), ‘Fifth generation lithospheric magnetic field model from CHAMP satellite measurements’, Geochem. Geophys. Geosys. 8, Q05013, doi: 10.1029/2006GC001521.CrossRefGoogle Scholar
Maus, S., Sazonova, T., Hemant, K., Fairhead, J. & Ravat, D. (2007), ‘National geophysical data center candidate for the world digital magnetic anomaly map’, Geochem. Geophys. Geosyst. 8, Q06017.Google Scholar
Mayhew, M. (1979), ‘Inversion of satellite magnetic anomaly data’, J. Geophys. 45, 119–28.Google Scholar
Parker, R. L., Shure, L. & Hildebrand, J. A. (1987), ‘The application of inverse theory to seamount magnetism’, Rev. Geophys. 25, 1740.Google Scholar
Purucker, M., Langlais, B., Olsen, N., Hulot, G. & Mandea, M. (2002), ‘The southern edge of cratonic north america: Evidence from new stallite magnetometer observations’, Geophys. Res. Lett. 29(15), 8000.Google Scholar
Quesnel, Y., Cataláan, M. & Ishihara, T. (2009), ‘A new global marine magnetic anomaly data set’, J. Geophys. Res. 114, B04106.CrossRefGoogle Scholar
Ravat, D., Finn, C., Hill, P., Kucks, R., Phillips, J., Blakely, R., Bouligand, C., Sabaka, T., Elshayat, A., Aref, A. & Elawadi, E. (2009), A preliminary, full spectrum, magnetic anomaly grid of the united states with improved long wavelengths for studying continental dynamics, Open-File Report 2009 1258, US Geological Survey.CrossRefGoogle Scholar
Ravat, D., Hildenbrand, T. & Roest, W. (2003), ‘New way of processing near-surface magnetic data: the utility of the comprehensive model of the magnetic field’, Leadind Edge 22, 784–5.Google Scholar
Ravat, D., Wang, B., Wildermuth, E. & Taylor, P. (2002), ‘Gradients in the interpretation of satellite-altitude magnetic data: An example from central Africa’, J. Geodyn. 33(1–2), 131–42.Google Scholar
Runcorn, S. K. (1975), ‘On the interpretation of lunar magnetism’, Phys. Earth Planet. Inter. 10, 327–35.Google Scholar
Sabaka, T. J., Olsen, N. & Purucker, M. E. (2004), ‘Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data’, Geophys. J. Int. 159, 521–47.Google Scholar
Spector, A. & Grant, F. (1970), ‘Statistical models for interpreting aeromagnetic data’, Geophysics 35, 293302.Google Scholar
Thébault, E. & Vervelidou, F. (2015), ‘A statistical spatial power spectrum of the Earth’s lithospheric magnetic field’, Geophys. J. Int. 201(2), 605–20.Google Scholar
Thébault, E., Vigneron, P., Langlais, B. & Hulot, G. (2016), ‘A swarm lithospheric magnetic field model to SH degree 80’, Earth Planets Space 68(1), 126.Google Scholar
Vervelidou, F., Lesur, V., Grott, M., Morschhauser, A. & Lillis, R. J. (2017b), ‘Constraining the date of the martian dynamo shutdown by means of craters’ magnetization signatures’, J. Geophys. Res. Planets 122.Google Scholar
Vervelidou, F., Lesur, V., Morschhauser, A. & Grott, M. (2017a), ‘On the accuracy of paleopole estimations from magnetic measurements’, Geophys. J. Int. 211, 1669–78.Google Scholar
Vervelidou, F. & Thébault, E. (2015), ‘Global maps of the magnetic thickness and magnetization of the earth’s lithosphere’, Earth Planets Space 67(1), 119.Google Scholar
Voorhies, C. V., Sabaka, T. & Purucker, M. (2002), ‘On magnetic spectra of Earth and Mars’, J. Geophy. Res. 107 (E6), 5034.CrossRefGoogle Scholar
Wonik, T., Trippler, K., Geipel, H., Greinwald, S. & Pashkevitch, I. (2001), ‘Magnetic anomaly map for northern, western, and eastern Europe’, Terra Nova 13(3), 203–13.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×