from Part III - Applications
Published online by Cambridge University Press: 05 May 2015
A very successful and important application of gauge/gravity duality has emerged in the context of hydrodynamics. In generalisation of the dynamics of fluids, the term hydrodynamics generically refers to an effective field theory describing long-range, low-energy fluctuations about equilibrium.
Recently, experimental evidence has accumulated that the quark–gluon plasma observed in heavy-ion collision experiments is best described by a strongly coupled relativistic fluid, rather than by a gas of weakly interacting particles. Strongly coupled fluids are intrinsically difficult to describe by standard methods. This explains the success of applying gauge/gravity duality to this area of physics. In particular, gauge/gravity duality has made predictions of universal values of certain transport coefficients in strongly coupled fluids. The most famous example of this is the ratio of shear viscosity over entropy density, which takes a very small value. Beyond these results, gauge/gravity duality has provided a fresh look at relativistic hydrodynamics, for which many new non-trivial properties have been uncovered using the fluid/gravity correspondence.
We will describe these results in some detail. The starting point is to introduce linear response theory and Green's functions which respect the causal structure. Then we move on to an introduction to relativistic hydrodynamics. We consider the energy-momentum tensor and a conserved current and their dissipative contributions in an expansion in derivatives of fluctuations. We define the associated first-order transport coefficients and subsequently relate them to the retarded Green's function by virtue of appropriate Green–Kubo relations. This provides a link between macroscopic hydrodynamic properties and microscopic physics as described by the Green's functions. Using gauge/gravity duality methods to evaluate the relevant Green's functions, we compute the charge diffusion constant and the shear viscosity.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.