Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T16:53:07.934Z Has data issue: false hasContentIssue false

14 - Gamma-ray burst cosmology

Published online by Cambridge University Press:  05 December 2012

Volker Bromm
Affiliation:
Department of Astronomy, University of Texas, 2511 Speedway, RLM 15.306, Austin, TX 78712, USA
Abraham Loeb
Affiliation:
Astronomy Department, Harvard University, 60 Garden Street, MS-51, Cambridge, MA 02138, USA
Chryssa Kouveliotou
Affiliation:
NASA-Marshall Space Flight Center, Huntsville
Ralph A. M. J. Wijers
Affiliation:
Universiteit van Amsterdam
Stan Woosley
Affiliation:
University of California, Santa Cruz
Get access

Summary

Introduction

One of the important goals in modern cosmology is to understand how the first stars formed at the end of the cosmic dark ages, and how they transformed the initially simple, homogeneous Universe into a state of ever-increasing complexity (e.g., Barkana & Loeb 2001, Miralda-Escudé 2003, Bromm & Larson 2004, Ciardi & Ferrara 2005, Loeb 2006, Bromm et al. 2009). The first stars (so-called Population III [Pop III]) are predicted, based on results from numerical simulations, to have started forming at redshifts z> 20, and to have been predominantly very massive with M* > 100 M (e.g., Bromm et al. 1999, 2002, Abel et al. 2000, 2002, Nakamura & Umemura 2001, Bromm & Loeb 2004, Yoshida et al. 2006, Gao et al. 2007, O'Shea & Norman 2007). They had likely played a crucial role in driving early cosmic evolution by producing ionizing photons and heavy elements. The initial stages in the reionization of the intergalactic medium (IGM) have recently been investigated in great detail with one- and three-dimensional simulations, showing the expansion of individual HII regions around the first stars (Kitayama et al. 2004, Whalen et al. 2004, Alvarez et al. 2006, Johnson et al. 2007). In addition, the first stars were responsible for the initial metal enrichment of the IGM, because the first supernova (SN) explosions rapidly dispersed the heavy elements that were produced during the short (several Myr) lifetime of Pop III stars into the environment.

Type
Chapter
Information
Gamma-ray Bursts , pp. 291 - 310
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, T., Bryan, G., & Norman, M. L. (2000). ApJ 540, 39.
Abel, T., Bryan, G., & Norman, M. L. (2002). Science 295, 93.
Alvarez, M. A., Bromm, V., & Shapiro, P. R. (2006). ApJ 639, 621.
Baraffe, I., Heger, A., & Woosley, S. E. (2001). ApJ 550, 890.
Barkana, R. & Loeb, A. (2001). Phys. Rep. 349, 125.
Barkana, R. & Loeb, A. (2004). ApJ 601, 64.
Belczynski, K., Bulik, T., Heger, A., & Fryer, C. L. (2007). ApJ 664, 986.
Belczynski, K. et al. (2010). ApJ 708, 117.
Berger, E. et al. (2005). ApJ 634, 501.
Blain, A. W. & Natarajan, P. (2000). MNRAS 312, L35.
Bloom, J. S., Kulkarni, S. R., & Djorgovski, S. G. (2002). AJ 123, 1111.
Bromm, V., Coppi, P. S., & Larson, R. B. (1999). ApJ 527, L5.
Bromm, V., Kudritzki, R. P., & Loeb, A. (2001). ApJ 552, 464.
Bromm, V., Ferrara, A., Coppi, P. S., & Larson, R. B. (2001). MNRAS 328, 969.
Bromm, V. & Loeb, A. (2002). ApJ 575, 111.
Bromm, V., Coppi, P. S., & Larson, R. B. (2002). ApJ 564, 23.
Bromm, V., Yoshida, N., & Hernquist, L. (2003). ApJ 596, L135.
Bromm, V. & Loeb, A. (2003a). Nature 425, 812.
Bromm, V. & Loeb, A. (2003b). ApJ 596, 34.
Bromm, V. & Larson, R. B. (2004). ARA&A 42, 79.
Bromm, V. & Loeb, A. (2004). New Astron. 9, 353.
Bromm, V. & Loeb, A. (2006). ApJ 642, 382.
Bromm, V., Yoshida, N., Hernquist, L., & McKee, C. F. (2009). Nature 459, 49.
Butler, N. R., Kocevski, D., Bloom, J. S., & Curtis, J. L. (2007). ApJ 671, 656.
Campana, S. et al. (2007). ApJ 654, L17.
Carilli, C. L., Gnedin, N. Y., & Owen, F. (2002). ApJ 577, 22.
Cen, R. (2003). ApJ 591, L5.
Ciardi, B. & Loeb, A. (2000). ApJ 540, 687.
Ciardi, B., Ferrara, A., & White, S. D. M. (2003). MNRAS 344, L7.
Ciardi, B. & Ferrara, A. (2005). Sp. Sci. Rev. 116, 625.
Daigne, F., Olive, K. A., Vangioni-Flam, E., Silk, J., & Audouze, J. (2004). ApJ 617, 693.
Daigne, F., Olive, K. A., Silk, J., Stoehr, F., & Vangioni, E. (2006a). ApJ 647, 773.
Daigne, F., Rossi, E. M., & Mochkovitch, R. (2006b). MNRAS 372, 1034.
Draine, B. T. & Hao, L. (2002). ApJ 569, 780
Dwek, E., Arendt, R. G., & Krennrich, F. (2005). ApJ 635, 784.
Frebel, A., Johnson, J. L., & Bromm, V. (2007). MNRAS, 380, L40.
Fruchter, A., Krolik, J. H., & Rhoads, J. E. (2001). ApJ 563, 597
Fruchter, A. et al. (2006). Nature 441, 463.
Furlanetto, S. R. & Loeb, A. (2002). ApJ 579, 1.
Furlanetto, S. R. & Loeb, A. (2003). ApJ 588, 18.
Furlanetto, S. R. & Loeb, A. (2005). ApJ 634, 1.
Gao, L. et al. (2007). MNRAS 378, 449.
Gehrels, N. et al. (2004). ApJ 611, 1005.
Gehrels, N., Ramirez-Ruiz, E., & Fox, D. B. (2009). ARA&A 47, 567.
Ghirlanda, G., Ghisellini, G., Lazzati, D., & Firmani, C. (2004). ApJ 613, L13.
Gou, L. J., Mészáros, P., Abel, T., & Zhang, B. (2004). ApJ 604, 508.
Greif, T. H. & Bromm, V. (2006). MNRAS 373, 128.
Greif, T. H., Johnson, J. L., Bromm, V., & Klessen, R. S. (2007). ApJ 670, 1.
Greif, T. H., Glover, S. C. O., Bromm, V., & Klessen, R. S. (2010). ApJ 716, 510.
Guetta, D. & Piran, T. (2007). JCAP 7, 3.
Gunn, J. E. & Peterson, B. A. (1965). ApJ 142, 1633.
Haiman, Z. & Holder, G. P. (2003). ApJ 595, 1.
Haislip, J. et al. (2006). Nature 440, 181.
Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H. (2003). ApJ 591, 288.
Hjorth, J. et al. (2003). Nature 423, 847.
Inoue, S., Omukai, K., & Ciardi, B. (2007). MNRAS 380, 1715.
Ioka, K. & Mészáros, P. (2005). ApJ 619, 684.
Johnson, J. L., Greif, T. H., & Bromm, V. (2007). ApJ 665, 85.
Kashlinsky, A., Arendt, R. G., Mather, J., & Moseley, S. H. (2005). Nature 438, 45.
Kawai, N. et al. (2006). Nature 440, 184.
Kitayama, T., Yoshida, N., Susa, H., & Umemura, M. (2004). ApJ 613, 631.
Kudritzki, R. P. & Puls, J. (2000). ARA&A 38, 613.
Kudritzki, R. P. (2002). ApJ 577, 389.
Kulkarni, S. R. et al. (2000). Proc. SPIE 4005, 9.
Lamb, D. Q. & Reichart, D. E. (2000). ApJ 536, 1.
Langer, N. & Norman, C. A. (2006). ApJ 638, L63.
Larson, R. B. (2003). Rep. Prog. Phys. 66, 1651.
Li, L.-X. (2007). MNRAS 379, L55.
Loeb, A. (2006). In SAAS-Fee Lecture Notes 36, eds: A Loeb, A. Ferrara, & R. S., Ellis, 1. see also Loeb, A. (2006). The dark ages of the Universe, Sci. Am. 295, 46.
MacFadyen, A. I., Woosley, S. E., & Heger, A. (2001). ApJ 550, 410.
Mackey, J., Bromm, V., & Hernquist, L. (2003). ApJ 586, 1.
Madau, P., Ferrara, A., & Rees, M. J. (2001). ApJ 555, 92.
Madau, P. & Silk, J. (2005). MNRAS 359, L37.
Matheson, T. et al. (2003). ApJ 599, 394.
Mesinger, A., Perna, R., & Haiman, Z. (2005). ApJ 623, 1.
Miralda-Escudé, J. (1998). ApJ 501, 15.
Miralda-Escudé, J. (2003). Science 300, 1904.
Mori, M., Ferrara, A., & Madau, P. (2002). ApJ 571, 40.
Nakamura, F. & Umemura, M. (2001). ApJ 548, 19.
Naoz, S. & Bromberg, O. (2007). MNRAS 380, 757.
Natarajan, P. et al. (2005). MNRAS 364, L8.
Norman, M. L., O'Shea, B. W., & Paschos, P. (2004). ApJ 601, L115.
Omukai, K. & Nishi, R. (1998). ApJ 508, 141.
Omukai, K. (2000). ApJ 534, 809.
Omukai, K. & Palla, F. (2001). ApJ 561, L55.
Omukai, K. & Inutsuka, S. (2002). MNRAS 332, 59.
Omukai, K. & Palla, F. (2003). ApJ 589, 677.
O'Shea, B. W. & Norman, M. L. (2007). ApJ 654, 66.
Palla, F., Salpeter, E. E., & Stahler, S. W. (1983). ApJ 271, 632.
Perna, R. & Loeb, A. (1998). ApJ 501, 467
Petrovic, J., Langer, N., Yoon, S.-C., & Heger, A. (2005). A&A 435, 247.
Porciani, C. & Madau, P. (2001). ApJ 548, 522.
Prochaska, J. X., Chen, H.-W., Dessauges-Zavadsky, M., & Bloom, J. S. (2007). ApJ 666, 267.
Ricotti, M. & Ostriker, J. P. (2004). MNRAS 350, 539.
Ripamonti, E., Haardt, F., Ferrara, A., & Colpi, M. (2002). MNRAS 334, 401.
Ruiter, A. J., Belczynski, K., & Fryer, C. L., (2009). ApJ 699, 2026.
Ruiz-Velasco, A. E. et al. (2007). ApJ 669, 1.
Salvaterra, R. & Ferrara, A. (2003). MNRAS 339, 973.
Salvaterra, R. S.Campana, S., Chincarini, G., Tagliaferri, G., & Covino, S. (2007). MNRAS 380, L45.
Salvaterra, R. & Chincarini, G. (2007). ApJ 656, L49.
Salvaterra, R. et al. (2009). Nature 461, 1258.
Santos, M. R., Bromm, V., & Kamionkowski, M. (2002). MNRAS 336, 1082.
Savaglio, S., Fall, S. M., & Fiore, F. (2003). ApJ 585, 638.
Savaglio, S. & Fall, S. M. (2004). ApJ 614, 293.
Savaglio, S. (2006). New J. Phys. 8, 195.
Scannapieco, E., Ferrara, A., & Madau, P. (2002). ApJ 574, 590.
Scannapieco, E., Schneider, R., & Ferrara, A., (2003). ApJ 589, 35.
Scannapieco, E., Madau, P., Woosley, S., Heger, A., & Ferrara, A. (2005). ApJ 633, 1031.
Schaefer, B. E. (2003). ApJ 583, L67.
Schaefer, B. E. (2007). ApJ 660, 16.
Schaye, J. et al. (2003). ApJ 596, 768.
Schneider, R., Ferrara, A., Natarajan, P., & Omukai, K. (2002). ApJ 571, 30.
Schneider, R., Ferrara, A., Salvaterra, R., Omukai, K., & Bromm, V. (2003). Nature 422, 869.
Schneider, R., Salvaterra, R., Ferrara, A., & Ciardi, B. (2006). MNRAS 369, 825.
Shu, F. H., Lizano, S., Galli, D., Cantó, J., & Laughlin, G. (2002). ApJ 580, 969.
Simcoe, R. A., Sargent, W. L. W., & Rauch, M. (2004). ApJ 606, 92.
Smith, B. D. & Sigurdsson, S. (2007). ApJ 661, L5.
Sokasian, A., Yoshida, N., Abel, T., Hernquist, L., & Springel, V. (2004). MNRAS 350, 47.
Somerville, R. S. & Livio, M. (2003). ApJ 593, 611.
Spergel, D. N. et al. (2007). ApJS 170, 377.
Stanek, K. Z. et al. (2003). ApJ 591, L17.
Stanek, K. Z. et al. (2006). Acta Astron. 56, 333.
Tan, J. C. & McKee, C. F. (2004). ApJ 603, 383
Tanvir, N. R. et al. (2009). Nature 461, 1254.
Tegmark, M. et al. (1997). ApJ 474, 1.
Thacker, R. J., Scannapieco, E., & Davis, M. (2002). ApJ 581, 836.
Totani, T. (1997). ApJ 486, L71.
Totani, T. et al. (2006). PASJ 58, 485.
Vedrenne, G. & Atteia, J.-L. (2009). Gamma-Ray Bursts: The Brightest Explosions in the Universe. Berlin: Springer.
Venkatesan, A. (2006). ApJ 641, L81.
Wada, K. & Venkatesan, A. (2003). ApJ 591, 38.
Waxman, E. & Draine, B. T. (2000). ApJ 537, 796
Whalen, D., Abel, T., & Norman, M. L. (2004). ApJ 610, 14.
Wijers, R. A. M. J., Bloom, J. S., Bagla, J. S., & Natarajan, P. (1998). MNRAS 294, L13.
Wolfire, M. G. & Cassinelli, J. P. (1987). ApJ 319, 850.
Woosley, S. E. (1993). ApJ 405, 273.
Woosley, S. E. & Bloom, J. S. (2006). ARA&A 44, 507.
Woosley, S. E. & Heger, A. (2006). ApJ 637, 914.
Wyithe, J. S. B. & Loeb, A. (2002). ApJ 581, 886.
Wyithe, J. S. B. & Loeb, A. (2003). ApJ 588, L69.
Yoon, S.-C. & Langer, N. (2005). A&A 443, 643.
Yoon, S.-C., Langer, N., & Norman, C. A. (2006). A&A 460, 199.
Yoshida, N., Abel, T., Hernquist, L., & Sugiyama, N. (2003). ApJ 592, 645.
Yoshida, N., Bromm, V., & Hernquist, L. (2004). ApJ 605, 579.
Yoshida, N., Omukai, K., Hernquist, L., & Abel, T. (2006). ApJ 652, 6.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Gamma-ray burst cosmology
    • By Volker Bromm, Department of Astronomy, University of Texas, 2511 Speedway, RLM 15.306, Austin, TX 78712, USA, Abraham Loeb, Astronomy Department, Harvard University, 60 Garden Street, MS-51, Cambridge, MA 02138, USA
  • Edited by Chryssa Kouveliotou, NASA-Marshall Space Flight Center, Huntsville, Ralph A. M. J. Wijers, Universiteit van Amsterdam, Stan Woosley, University of California, Santa Cruz
  • Book: Gamma-ray Bursts
  • Online publication: 05 December 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511980336.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Gamma-ray burst cosmology
    • By Volker Bromm, Department of Astronomy, University of Texas, 2511 Speedway, RLM 15.306, Austin, TX 78712, USA, Abraham Loeb, Astronomy Department, Harvard University, 60 Garden Street, MS-51, Cambridge, MA 02138, USA
  • Edited by Chryssa Kouveliotou, NASA-Marshall Space Flight Center, Huntsville, Ralph A. M. J. Wijers, Universiteit van Amsterdam, Stan Woosley, University of California, Santa Cruz
  • Book: Gamma-ray Bursts
  • Online publication: 05 December 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511980336.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Gamma-ray burst cosmology
    • By Volker Bromm, Department of Astronomy, University of Texas, 2511 Speedway, RLM 15.306, Austin, TX 78712, USA, Abraham Loeb, Astronomy Department, Harvard University, 60 Garden Street, MS-51, Cambridge, MA 02138, USA
  • Edited by Chryssa Kouveliotou, NASA-Marshall Space Flight Center, Huntsville, Ralph A. M. J. Wijers, Universiteit van Amsterdam, Stan Woosley, University of California, Santa Cruz
  • Book: Gamma-ray Bursts
  • Online publication: 05 December 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511980336.015
Available formats
×