Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T22:00:54.639Z Has data issue: false hasContentIssue false

4 - Drops and bubbles

Published online by Cambridge University Press:  25 January 2010

M. Samimy
Affiliation:
Ohio State University
K. S. Breuer
Affiliation:
Brown University, Rhode Island
L. G. Leal
Affiliation:
University of California, Santa Barbara
P. H. Steen
Affiliation:
Cornell University, New York
Get access

Summary

The collision of a droplet with a solid surface

The photographs displayed above show the impact, spreading, and boiling history of n-heptane droplets on a stainless steel surface. The impact velocity, Weber number, and initial droplet diameter are constant (values of 1 m/s, 43 and 1.5 mm respectively), and the view is looking down on the surface at an angle of about 30°. The photographs were taken using a spark flash method and the flash duration was 0.5 μs. The dynamic behavior illustrated in the photographs is a consequence of varying the initial surface temperature.

The effect of surface temperature on droplet shape may be seen by reading across any row; the evolution of droplet shape at various temperatures may be seen by reading down any column. An entrapped air bubble can be seen in the drop when the surface temperature is 24°C. At higher temperatures vigorous bubbling, rather like that of a droplet sizzling on a frying pan, is seen (the boiling point of n-heptane is 98°C) but the bubbles disappear as the Leidenfrost temperature of n-heptane (about 200°C) is exceeded because the droplet become levitated above a cushion of its own vapor and does not make direct contact with the surface. The droplet shape is unaffected by surface temperature in the early stage of the impact process (t≤0.8 ms) but is affected by temperature at later time (cf. t≥ 1.6 ms) because of the progressive influence of intermittent solid-liquid contact as temperature is increased.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×