Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T15:50:27.394Z Has data issue: false hasContentIssue false

8 - Mycorrhizas and the terrestrial carbon cycle: roles in global carbon sequestration and plant community composition

from III - Mutualistic interactions in the environment

Published online by Cambridge University Press:  03 November 2009

Jonathan R. Leake
Affiliation:
Department of Animal & Plant Sciences, University of Sheffield
Geoffrey Gadd
Affiliation:
University of Dundee
Sarah C. Watkinson
Affiliation:
University of Oxford
Paul S. Dyer
Affiliation:
University of Nottingham
Get access

Summary

Introduction

The mycorrhizal symbiosis is characterized by a reciprocal exchange of photosynthetically-fixed plant carbon in return for the main plant-growth-limiting nutrients, nitrogen or phosphorus. Studies of mycorrhizal functioning have focused on their roles in providing nutrients to plants, but their importance as a significant component of the terrestrial carbon (C) cycle has generally been overlooked. However, over 80% of plant species invest substantial amounts of their below-ground C flow into these fungal symbionts (Smith & Read, 1997; Leake et al., 2004). At the global scale, the annual C flux through soil respiration is ten times greater than fossil fuel combustion and recycles c. 10% of atmospheric CO2 (Raich et al., 2002). Roots and associated mycorrhizas are the single most important component of this flux. Knowledge of the mycorrhizal contribution to the C cycle is of increasingly paramount importance, as this component is likely to be among the most sensitive to ongoing anthropogenic disturbance of both C (Staddon et al., 2002) and nitrogen (N) biogeochemical cycles (Nilsson & Wallander, 2003).

The major biomes are dominated by plants with one of three kinds of mycorrhiza (Fig. 8.1), each of which is adapted to the particular vegetation and soil characteristics of the bioclimatic regions in which it is most important (Read et al., 2004). Central to understanding the contributions of mycorrhizas to the plant–soil–atmosphere continuum of the C cycle is appreciation of the properties and functions of these three major types of mycorrhiza and the ecosystems in which they are of greatest importance.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. A. (1986). Nitrification and ammonification in acid forest litter and humus as affected by peptone and ammonium N amendment. Soil Biology and Biochemistry 18, 45–51.CrossRefGoogle Scholar
Anderson, J. P. E. & Domsch, K. H. (1978). A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry 10, 215–21.CrossRefGoogle Scholar
Bååth, E., Nilsson, L. O., Goransson, H. & Wallander, H. (2004). Can the extent of degradation of soil fungal mycelium during soil incubation be used to estimate ectomycorrhizal biomass in soil? Soil Biology and Biochemistry 36, 2105–9.CrossRefGoogle Scholar
Bending, G. D. & Read, D. J. (1995). The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. The foraging behaviour of ectomycorrhizal mycelium and the translocation of nutrients from exploited litter. New Phytologist 130, 401–9.CrossRefGoogle Scholar
Bidartondo, M. I. & Bruns, T. D. (2002). Fine-level mycorrhizal specificity in the Monotropoideae (Ericaceae): specificity for fungal species groups. Molecular Ecology 11, 557–69.CrossRefGoogle ScholarPubMed
Bidartondo, M. I., Redecker, D., Hijri, I., Wiemken, A., Bruns, T. D., Dominguez, L., Sérsic, A., Leake, J. R. & Read, D. J. (2002). Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature 419, 389–92.CrossRefGoogle ScholarPubMed
Bidartondo, M. I., Bruns, T. D., Weiss, M., Sérgio, C. & Read, D. J. (2003). Specialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proceedings of the Royal Society of London B270, 835–42.CrossRefGoogle ScholarPubMed
Bidartondo, M. I., Burghardt, B., Gebauer, G., Bruns, T. D. & Read, D. J. (2004). Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proceedings of the Royal Society of London B271, 1799–806.CrossRefGoogle ScholarPubMed
Carey, E. V., Marler, M. J. & Callaway, R. M. (2004). Mycorrhizae transfer carbon from a native grass to an invasive weed: evidence from stable isotopes and physiology. Plant Ecology 172, 133–41.CrossRefGoogle Scholar
Cornelissen, J. H. C., Aerts, R., Cerabolini, B., Werger, M. J. A. & Heijden, M. G. A. (2001). Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129, 611–19.CrossRefGoogle ScholarPubMed
de Ruiter, P. C., Griffiths, B. & Moore, J. C. (2002). Biodiversity and stability in soil ecosystems: patterns, processes and the effects of disturbance. In Biodiversity and Ecosystem Functioning, Synthesis and Perspectives, ed. Loreau, M., Naeem, S. & Inchausti, P., pp. 102–13. Oxford: Oxford University Press.Google Scholar
Donnelly, D. P., Boddy, L. & Leake, J. R. (2004). Development, persistence and regeneration of ectomycorrhizal mycelial systems in soil microcosms. Mycorrhiza 14, 37–45.CrossRefGoogle ScholarPubMed
Ek, H. (1997). The influence of nitrogen fertilization on the carbon economy of Paxillus involutus in ectomycorrhizal association with Betula pendula. New Phytologist 135, 133–42.CrossRefGoogle Scholar
Francis, R. & Read, D. J. (1994). The contributions of mycorrhizal fungi to the determination of plant community structure. Plant and Soil 159, 11–25.CrossRefGoogle Scholar
Gange, A. (2000). Arbuscular mycorrhizal fungi, Collembola and plant growth. Trends in Ecology and Evolution 15, 369–72.CrossRefGoogle ScholarPubMed
Gebauer, G. & Meyer, M. (2003). N-15 and C-13 natural abundance of autotrophic and mycoheterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytologist 160, 209–23.CrossRefGoogle Scholar
Grime, J. P., Mackey, J. M. L., Hillier, S. H. & Read, D. J. (1987). Floristic diversity in a model system using experimental microcosms. Nature 328, 420–2.CrossRefGoogle Scholar
Hartnett, D. C. & Wilson, G. W. T. (2002). The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant and Soil 244, 319–31.CrossRefGoogle Scholar
Högberg, M. N. & Högberg, P. (2002). Extramatrical ectomycorrhizal mycelium contributes one- third microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytologist 154, 791–5.CrossRefGoogle Scholar
Högberg, P., Plamboeck, A. H., Taylor, A. F. S. & Fransson, P. M. A. (1999). Natural 13C abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests. Proceedings of the National Academy of Sciences of the USA 96, 8534–9.CrossRefGoogle Scholar
Jakobsen, I. & Rosendahl, L. (1990). Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist 115, 77–83.CrossRefGoogle Scholar
Jalal, M. A. F. & Read, D. J. (1983). The organic acid composition of Calluna heathland soil with special reference to phytotoxicity and fungitoxicity. 2. Monthly quantitative determination of the organic acid content of Calluna and Spruce dominated soils. Plant and Soil 70, 273–86.CrossRefGoogle Scholar
Jalal, M. A. F., Read, D. J. & Haslam, E. (1982). Phenolic composition and its seasonal variation in Calluna vulgaris. Phytochemistry 21, 1397–401.CrossRefGoogle Scholar
Johnson, D., Leake, J. R., Ostle, N., Ineson, P. & Read, D. J. (2002a). In situ13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytologist 153, 327–34.CrossRefGoogle Scholar
Johnson, D., Leake, J. R. & Read, D. J. (2002b). Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of 14C. Soil Biology and Biochemistry 34, 1521–4.CrossRefGoogle Scholar
Jones, M. B., & Donnelly, A. (2004). Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytologist 164, 423–39.CrossRefGoogle Scholar
Kårén, O. & Nylund, J. E. (1997). Effects of ammonium sulphate on the community structure and biomass of ectomycorrhizal fungi in a Norway spruce stand in South West Sweden. Canadian Journal of Botany 75, 1628–43.CrossRefGoogle Scholar
Kerley, S. J. & Read, D. J. (1998). The biology of mycorrhiza in the Ericaceae. XX. Plant and mycorrhizal necromass as nitrogenous substrates for the ericoid mycorrhizal fungus Hymenoscyphus ericae and its host. New Phytologist 139, 353–60.CrossRefGoogle Scholar
Klironomus, J. N. & Hart, M. (2001). Animal nitrogen swap for plant carbon. Nature 410, 651–2.CrossRefGoogle Scholar
Koide, R. T. & Wu, T. (2003). Ectomycorrhizas and retarded decomposition in a Pinus resinosa plantation. New Phytologist 158, 401–7.CrossRefGoogle Scholar
Kuzyakov, Y., Ehrensberger, H. & Stahr, K. (2001). Carbon partitioning and below-ground translocation by Lolium perenne. Soil Biology and Biochemistry 33, 61–74.CrossRefGoogle Scholar
Lan, J., Xu, J. T. & Li, J. S. (1994). Study on symbiotic relation between Gastrodia elata and Armillariella mellea by autoradiography. Acta Mycologica Sinica 13, 219–22.Google Scholar
Langley, J. A. & Hungate, B. A. (2003). Mycorrhizal controls on belowground litter quality. Ecology 84, 2302–12.CrossRefGoogle Scholar
Leake, J. R. (1994). The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytologist 127, 171–216.CrossRefGoogle Scholar
Leake, J. R. (2004). Myco-heterotroph/epiparasitic plant interactions with ectomycorrhizal and arbuscular mycorrhizal fungi. Current Opinion in Plant Biology 7, 422–8.CrossRefGoogle ScholarPubMed
Leake, J. R. & Read, D. J. (1991a). Experiments with ericoid mycorrhiza. Methods in Microbiology 23, 435–59.CrossRefGoogle Scholar
Leake, J. R. & Read, D. J. (1991b). Chitin as a nitrogen source for mycorrhizal fungi. Mycological Research 94, 993–5.CrossRefGoogle Scholar
Leake, J. R. & Read, D. J. (1997). Mycorrhizal fungi in terrestrial habitats. In The Mycota, vol. IV, Environmental and Microbial Relationships, ed. Wicklow, D. T. & Söderström, B., pp. 281–301. Berlin: Springer-Verlag.Google Scholar
Leake, J. R., Donnelly, D. P. & Boddy, L. (2002). Interactions between ectomycorrhizal fungi and saprotrophic fungi. Ecological Studies 157, 346–72.Google Scholar
Leake, J. R., Johnson, D., Donnelly, D., Muckle, G. E., Boddy, L. & Read, D. J. (2004). Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agro-ecosystem functioning. Canadian Journal of Botany 82, 1016–45.CrossRefGoogle Scholar
Lindahl, B., Stenlid, J., Olsson, S. & Finlay, R. D. (1999). Translocation of 32P between interacting mycelia of a wood-decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytologist 144, 183–93.CrossRefGoogle Scholar
Mallik, A. U. (2003). Conifer regeneration problems in boreal and temperate forests with ericaceous understory: role of disturbance, seedbed limitation, and keystone species change. Critical Reviews in Plant Sciences 22, 341–66.CrossRefGoogle Scholar
McKendrick, S. L., Leake, J. R. & Read, D. J. (2000). Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytologist 145, 539–48.CrossRefGoogle Scholar
McKendrick, S. L., Leake, J. R., Taylor, D. L. & Read, D. J. (2002). Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytologist 154, 233–47.CrossRefGoogle Scholar
Meyer, F. H. (1964). The role of the fungus Cenococcum graniforme (Sow.) Ferd. et Winge in the formation of mor. In Soil Micromorphology, ed. Jongerius, J., pp. 67–87. Amsterdam: Elsevier.Google Scholar
Meyer, F. H. (1987). Extreme site conditions and ectomycorrhizas (especially Cenococcum geophilum). Angewandte Botanik 61, 39–46.Google Scholar
Miller, R. M. & Kling, M. (2000). The importance of integration and scale in the arbuscular mycorrhizal symbiosis. Plant and Soil 226, 295–309.CrossRefGoogle Scholar
Myers, M. D. & Leake, J. R. (1996). Phosphodiesters as mycorrhizal P sources II. Ericoid mycorrhiza and the utilization of nuclei as a phosphorus source by Vaccinium macrocarpon. New Phytologist 132, 445–51.CrossRefGoogle ScholarPubMed
Nicholson, T. H. (1959). Mycorrhiza in the Gramineae. I. Vesicular-arbuscular endophytes with special reference to the external phase. Transactions of the British Mycological Society 42, 421–38.Google Scholar
Nilsson, L. O. & Wallander, H. (2003). Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phytologist 158, 409–16.CrossRefGoogle Scholar
Northup, R., Yu, Z., Dahlgren, R. A. & Vogt, K. (1995). Polyphenol control of nitrogen release from pine litter. Nature 377, 227–9.CrossRefGoogle Scholar
Olsrud, M. (2004). Mechanisms of below-ground carbon cycling in subarctic ecosystems. Ph.D thesis, Lund University.
Olsrud, M. & Christensen, T. R. (2004). Carbon cycling in subarctic tundra; seasonal variation in ecosystem partitioning based on in situ14C pulse-labelling. Soil Biology and Biochemistry 36, 245–53.CrossRefGoogle Scholar
Olsrud, M., Melillo, J. M., Christensen, T. R., Michelsen, A., Wallender, H. & Olsson, P. A. (2004). Response of ericoid mycorrhizal colonization and functioning to global change factors. New Phytologist 162, 459–69.CrossRefGoogle Scholar
Olsson, P. A. & Wilhelmsson, P. (2000). The growth of external AM fungal mycelium in sand dunes and in experimental systems. Plant and Soil 226, 161–9.CrossRefGoogle Scholar
Pearson, J. N. & Jakobsen, I. (1993). Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi. New Phytologist 124, 481–8.CrossRefGoogle Scholar
Perez-Moreno, J. & Read, D. J. (2000). Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytologist 145, 301–9.CrossRefGoogle Scholar
Pfeffer, P. E., Douds, D. D. Jr., Bécard, G. & Shachar-Hill, Y. (1999). Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiology 120, 587–98.CrossRefGoogle Scholar
Raich, J. W. & Tufekcioglu, A. (2000). Vegetation and soil respiration: correlations and controls. Biogeochemistry 48, 71–90.CrossRefGoogle Scholar
Raich, J. W., Potter, C. S. & Bhagawati, D. (2002). Interannual variability in global soil respiration, 1980–94. Global Change Biology 8, 800–12.CrossRefGoogle Scholar
Rasmussen, H. N. (2002). Recent developments in the study of orchid mycorrhizas. Plant and Soil 244, 149–63.CrossRefGoogle Scholar
Read, D. J. (1991). Mycorrhizas in ecosystems. Experientia 47, 376–91.CrossRefGoogle Scholar
Read, D. J. (1996). The structure and function of the ericoid mycorrhizal root. Annals of Botany 77, 365–91.CrossRefGoogle Scholar
Read, D. J., Leake, J. R. & Perez-Moreno, J. (2004). Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Canadian Journal of Botany 82, 1243–63.CrossRefGoogle Scholar
Rillig, M. C., Wright, S. F., Nichols, K. A., Schmidt, W. F. & Torn, M. S. (2001). Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant and Soil 233, 167–77.CrossRefGoogle Scholar
Rillig, M. C., Wright, S. F. & Eviner, V. T. (2002). The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant and Soil 238, 325–33.CrossRefGoogle Scholar
Selosse, M.-A., Weiss, M., Jany, J. L. & Tillier, A. (2002). Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) LCM Rich. and neighbouring tree ectomycorrhizae. Molecular Ecology 11, 1831–44.CrossRefGoogle Scholar
Selosse, M.-A., Faccio, A., Scappaticci, G. & Bonfante, P. (2004). Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neotteae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microbial Ecology 47, 416–26.CrossRefGoogle ScholarPubMed
Simard, S. W. & Durall, D. M. (2004). Mycorrhizal networks: a review of their extent, function and importance. Canadian Journal of Botany 82, 1140–65.CrossRefGoogle Scholar
Smith, S. E. & Read, D. J. (1997). Mycorrhizal Symbiosis. London: Academic Press.Google Scholar
Söderström, B. & Read, D. J. (1987). Respiratory activity of intact and excised ectomycorrhizal mycelial systems growing in unsterilised soil. Soil Biology and Biochemistry 19, 231–6.CrossRefGoogle Scholar
Staddon, P. L., Heinemeyer, A. & Fitter, A. H. (2002). Mycorrhizas and global environmental change: research at different scales. Plant and Soil 244, 253–61.CrossRefGoogle Scholar
Staddon, P. L., Ramsey, C. B., Ostle, N., Ineson, P. & Fitter, A. H. (2003). Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science 300, 1138–40.CrossRefGoogle ScholarPubMed
Stewart, D. P. C. & Metherell, A. K. (1999). Carbon (13C) uptake and allocation in pasture plants following field-pulse-labelling. Plant and Soil 210, 61–73.CrossRefGoogle Scholar
Taylor, D. L., & Bruns, T. D. (1997). Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proceedings of the National Academy of Sciences of the USA 94, 4510–15.CrossRefGoogle ScholarPubMed
Taylor, D. L. & Bruns, T. D. (1999). Population, habitat and genetic correlates of mycorrhizal specialization in the cheating orchids Corallorhiza maculata and C. mertensiana. Molecular Ecology 8, 1719–32.CrossRefGoogle Scholar
Taylor, D. L., Bruns, T. D., Leake, J. R. & Read, D. J. (2002). Mycorrhizal specificity and function in myco-heterotrophic plants. Ecological Studies 157, 375–413.CrossRefGoogle Scholar
Taylor, D. L., Bruns, T. D., Szaro, T. M. & Hodges, S. A. (2003). Divergence in mycorrhizal specialization within Hexalectris spicata (Orchidaceae), a nonphotosynthetic desert orchid. American Journal of Botany 90, 1168–79.CrossRefGoogle Scholar
Toal, M. E., Yeomans, C., Killham, K. & Meharg, A. A. (2000). A review of rhizosphere carbon flow modelling. Plant and Soil 222, 263–81.CrossRefGoogle Scholar
Trudell, S. A., Rygiewicz, P. T. & Edmonds, R. L. (2003). Nitrogen and carbon stable isotope abundances support the myco-heterotrophic nature and host specificity of certain myco-heterotrophic plants. New Phytologist 160, 391–401.CrossRefGoogle Scholar
Wallander, H., Nilsson, L. O., Hagerberg, D. & Bååth, E. (2001). Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytologist 151, 753–60.CrossRefGoogle Scholar
Wallander, H., Johansson, L. & Pallon, J. (2002). PIXE analysis to estimate the elemental composition of ectomycorrhizal rhizomorphs grown in contact with different minerals in forest soil. FEMS Microbiology Ecology 39, 147–56.CrossRefGoogle ScholarPubMed
Wallander, H., Nilsson, L. O., Hagerberg, D. & Rosengren, U. (2003). Direct estimates of C:N ratios of ectomycorrhizal mycelia collected from Norway spruce forest soilsSoil Biology and Biochemistry 35, 997–9.CrossRefGoogle Scholar
Wallander, H., Göransson, H. & Rosengren, U. (2004). Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia 139, 89–97.CrossRefGoogle ScholarPubMed
Warcup, J. H. (1991). The Rhizoctonia endophytes of Rhizanthella (Orchidaceae). Mycological Research 95, 656–9.CrossRefGoogle Scholar
Weber, A., Karst, J., Gilbert, B. & Kimmins, J. P. (2005). Thuja plicata exclusion in ectomycorrhiza-dominated forests: testing the role of inoculum potential of arbuscular mycorrhizal fungi. Oecologia 143, 148–56.CrossRefGoogle ScholarPubMed
Wu, T. H., Sharda, J. N. & Koide, R. T. (2003). Exploring interactions between saprotrophic microbes and ectomycorrhizal fungi using a protein-tannin complex as an N source by red pine (Pinus resinosa). New Phytologist 159, 131–9.CrossRefGoogle Scholar
Yamato, M. (2001). Identification of a mycorrhizal fungus in the roots of achlorophyllous Sciaphila tosaensis Makino (Triuridaceae). Mycorrhiza 11, 83–8.CrossRefGoogle Scholar
Young, B. W., Massicotte, H. B., Tackaberry, L. E., Baldwin, Q. F. & Egger, K. N. (2002). Monotropa uniflora: morphological and molecular assessment of mycorrhizae retrieved from sites in the Sub-Boreal Spruce biogeoclimatic zone in central British Columbia. Mycorrhiza 12, 75–82.CrossRefGoogle ScholarPubMed
Zhu, Y.-G. & Miller, R. M. (2003). Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends in Plant Sciences 8, 407–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×