Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Self-integration – an emerging concept from the fungal mycelium
- 2 Nutrient translocation and electrical signalling in mycelia
- 3 Colony development in nutritionally heterogeneous enviromnents
- 4 Circadian rhythms in filamentous fungi
- 5 Growth, branching and enzyme production by filamentous fungi in submerged culture
- 6 Metabolism and hyphal differentiation in large basidiomycete colonies
- 7 Role of phosphoinositides and inositol phosphates in the regulation of mycelial branching
- 8 Stress responses of fungal colonies towards toxic metals
- 9 Cellularization in Aspergillus nidulans
- 10 Genetic control of polarized growth and branching in filamentous fungi
- 11 Mating and sexual interactions in fungal mycelia
- 12 Genetic stability in fungal mycelia
- 13 Nuclear distribution and gene expression in the secondary mycelium of Schizophyllum commune
- Index
1 - Self-integration – an emerging concept from the fungal mycelium
Published online by Cambridge University Press: 22 January 2010
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Self-integration – an emerging concept from the fungal mycelium
- 2 Nutrient translocation and electrical signalling in mycelia
- 3 Colony development in nutritionally heterogeneous enviromnents
- 4 Circadian rhythms in filamentous fungi
- 5 Growth, branching and enzyme production by filamentous fungi in submerged culture
- 6 Metabolism and hyphal differentiation in large basidiomycete colonies
- 7 Role of phosphoinositides and inositol phosphates in the regulation of mycelial branching
- 8 Stress responses of fungal colonies towards toxic metals
- 9 Cellularization in Aspergillus nidulans
- 10 Genetic control of polarized growth and branching in filamentous fungi
- 11 Mating and sexual interactions in fungal mycelia
- 12 Genetic stability in fungal mycelia
- 13 Nuclear distribution and gene expression in the secondary mycelium of Schizophyllum commune
- Index
Summary
Introduction
For so long neglected in the development and promulgation of evolutionary theory, there are increasing signs that mycelial fungi can bring new insights into the origins of phenotypic diversity and change. They challenge some of our most fundamental assumptions about natural selection and its significance relative to other processes in determining the direction of evolutionary pathways. This is because of the way mycelia are physically organized as versatile systems of interconnected tubes that can span heterogeneous environments in which energy is often invery variable supply (Rayner 1994; Rayner, Griffith & Ainsworth, 1995a).
Current models of evolutionary change effectively treat the boundaries of living systems and their components as fixed (that is, determinate). Consequently, the dynamic processes underlying change are assumed to be driven by purely external forces acting on discrete objects – genes and individuals (see Dawkins, 1995). However, such discretist models of evolutionary and ecological dynamics are potentially very misleading because all known life forms, from single cells to communities, are dynamic systems which assimilate supplies of free energy from their surroundings and distribute this energy into growth, development, reproduction and movement. They achieve this by possessing boundaries through which they regulate energy exchange with their surrounding and other life forms (Rayner, 1997a). For life forms to thrive and survive as energy supplies wax and wane, these boundaries have to be capable of enhancing gains through the proliferation of assimilative free surface in energy-rich environments whilst minimizing losses by various means of containment in inhospitable environments.
- Type
- Chapter
- Information
- The Fungal Colony , pp. 1 - 24Publisher: Cambridge University PressPrint publication year: 1999
- 12
- Cited by