Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T14:48:38.413Z Has data issue: false hasContentIssue false

Part II - Abstractness and Language

Published online by Cambridge University Press:  20 July 2023

Anna M. Borghi
Affiliation:
University of Rome
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Freedom of Words
Abstractness and the Power of Language
, pp. 151 - 290
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Albiero, P., Ingoglia, S., & Lo Coco, A. (2006). Contributo all’adattamento italiano dell’Interpersonal Reactivity Index. Testing Psicometria Metodologia, 13(2), 107125.Google Scholar
Alderson-Day, B., Mitrenga, K., Wilkinson, S., McCarthy-Jones, S., & Fernyhough, C. (2018). The Varieties of Inner Speech Questionnaire–Revised (VISQ-R): Replicating and refining links between inner speech and psychopathology. Consciousness and Cognition, 65, 4858.Google Scholar
Altarriba, J., & Bauer, L. M. (2004). The distinctiveness of emotion concepts: A comparison between emotion, abstract, and concrete words. The American Journal of Psychology, 117(3), 389410.Google Scholar
Altarriba, J., Bauer, L. M., & Benvenuto, C. (1999). Concreteness, context availability, and imageability ratings and word associations for abstract, concrete, and emotion words. Behavior Research Methods, Instruments, & Computers, 31(4), 578602.Google Scholar
Asmuth, J., & Gentner, D. (2017). Relational categories are more mutable than entity categories. Quarterly Journal of Experimental Psychology, 70(10), 20072025.Google Scholar
Banks, B., & Connell, L. (2022a). Category production norms for 117 concrete and abstract categories, Behavior Research Methods. doi:10.3758/s13428-021-01787-zCrossRefGoogle Scholar
Banks, B., & Connell, L. (2022b). Multidimensional sensorimotor grounding of concrete and abstract categories. Philosophical Transactions of the Royal Society B. 378: 20210366. https://doi.org/10.1098/rstb.2021.0366Google Scholar
Banks, B., Borghi, A.M., Fargier, R., Fini, C., Jonauskaite, D., Mazzuca, C., … Woodlin, G. (in press). Consensus paper: Current perspectives on abstract concepts and future research directions. Journal of Cognition.Google Scholar
Barca, L., Candidi, M., Lancia, G.L., Maglianella, V., & Pezzulo, G. (2023). Mapping the mental space of emotional concepts through kinematic measures of decision uncertainty. Philosophical Transactions of the Royal Society B, Biological Sciences, 378(1870), 20210367.CrossRefGoogle ScholarPubMed
Barca, L., Mazzuca, C., & Borghi, A. M. (2020). Overusing the pacifier during infancy sets a footprint on abstract words processing. Journal of Child Language, 47(5), 10841099.Google Scholar
Barsalou, L. W. (1999). Perceptions of perceptual symbols. Behavioral and Brain Sciences, 22(4), 637660.Google Scholar
Barsalou, L. W. (2003). Abstraction in perceptual symbol systems. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358(1435), 11771187. https://doi.org/10.1098/rstb.2003.1319Google Scholar
Barsalou, L. W., Dutriaux, L., & Scheepers, C. (2018). Moving beyond the distinction between concrete and abstract concepts. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0144Google Scholar
Barsalou, L. W., & Wiemer-Hastings, K. (2005). Situating abstract concepts. In Pecher, D., & Zwaan, R., eds., Grounding cognition: The role of perception and action in memory, language, and thought. Cambridge University Press, pp. 129163.CrossRefGoogle Scholar
Bergelson, E., & Swingley, D. (2013). The acquisition of abstract words by young infants. Cognition, 127(3), 391397.Google Scholar
Borghi, A. M. (2019). Linguistic relativity and abstract words. Paradigmi, 3. https://doi.org/10.30460/95137Google Scholar
Borghi, A. M. (2020). A future of words: Language and the challenge of abstract concepts. Journal of Cognition, 3(1), 1–18.CrossRefGoogle ScholarPubMed
Borghi, A. M. (2022). Concepts for which we need others more: The case of abstract concepts. Current Directions in Psychological Science, 31(3), 238246. https://doi.org/10.1177/09637214221079625Google Scholar
Borghi, A. M., Barca, L., Binkofski, F., Castelfranchi, C., Pezzulo, G., & Tummolini, L. (2019a). Words as social tools: Language, sociality and inner grounding in abstract concepts. Physics of Life Reviews, 29, 120153.CrossRefGoogle ScholarPubMed
Borghi, A. M., Barca, L., Binkofski, F., Castelfranchi, C., Pezzulo, G., & Tummolini, L. (2019b). Words as social tools: Flexibility, situatedness, language and sociality in abstract concepts. Reply to comments on “Words as social tools: Language, sociality and inner grounding in abstract concepts.” Physics of Life Reviews, 7, 8.Google Scholar
Borghi, A. M., & Binkofski, F. (2014). Words as social tools: An embodied view on abstract concepts. Springer.Google Scholar
Borghi, A. M., Barca, L., Binkofski, F., & Tummolini, L. (2018a). Abstract concepts, language and sociality: From acquisition to inner speech. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0134Google Scholar
Borghi, A. M., Barca, L., Binkofski, F., & Tummolini, L. (2018b). Varieties of abstract concepts: Development, use and representation in the brain. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0121Google Scholar
Borghi, A. M., & Cimatti, F. (2009). Words as tools and the problem of abstract word meanings. 31. http://escholarship.org/uc/item/58m9n8rp.pdfGoogle Scholar
Borghi, A. M., & Fernyhough, C. (2023). Concepts, abstractness, and inner speech. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(202103712021037). http://doi.org/10.1098/rstb.2021.0371Google Scholar
Borghi, A. M., Fini, C., & Tummolini, L. (2021). Abstract concepts and metacognition: Searching for meaning in self and others. In Robinson, M. D. & Thomas, L. E., eds., Handbook of embodied psychology: Thinking, feeling, and acting. Springer, pp. 197220.Google Scholar
Catricalà, E., Conca, F., Fertonani, A., Miniussi, C., & Cappa, S. F. (2020). State-dependent TMS reveals the differential contribution of ATL and IPS to the representation of abstract concepts related to social and quantity knowledge. Cortex, 123, 3041.Google Scholar
Conca, F., Borsa, V. M., Cappa, S. F., & Catricalà, E. (2021). The multidimensionality of abstract concepts: A systematic review. Neuroscience & Biobehavioral Reviews, 127, 474491.Google Scholar
Conca, F., Catricalà, E., Canini, M., Petrini, A., Vigliocco, G., Cappa, S. F., & Della Rosa, P. A. (2021). In search of different categories of abstract concepts: A fMRI adaptation study. Scientific Reports, 11(1), 22587. https://doi.org/10.1038/s41598-021-02013-8Google Scholar
Connell, L., Lynott, D., & Banks, B. (2018). Interoception: The forgotten modality in perceptual grounding of abstract and concrete concepts. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0143Google ScholarPubMed
Crutch, S. J., Troche, J., Reilly, J., & Ridgway, G. R. (2013). Abstract conceptual feature ratings: The role of emotion, magnitude, and other cognitive domains in the organization of abstract conceptual knowledge. Frontiers in Human Neuroscience, 7, 186. https://doi.org/10.3389/fnhum.2013.00186Google Scholar
Davis, C. P., Altmann, G. T., & Yee, E. (2020). Situational systematicity: A role for schema in understanding the differences between abstract and concrete concepts. Cognitive Neuropsychology, 37(1–2), 142153.Google Scholar
Della Rosa, P. A., Catricalà, E., Vigliocco, G., & Cappa, S. F. (2010). Beyond the abstract – concrete dichotomy: Mode of acquisition, concreteness, imageability, familiarity, age of acquisition, context availability, and abstractness norms for a set of 417 Italian words. Behavior Research Methods, 42(4), 10421048.Google Scholar
Desai, R. H., Reilly, M., & van Dam, W. (2018). The multifaceted abstract brain. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0122Google Scholar
Dove, G. (2018). Language as a disruptive technology: Abstract concepts, embodiment and the flexible mind. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0135Google Scholar
Dove, G. (2020). More than a scaffold: Language is a neuroenhancement. Cognitive Neuropsychology, 37(5–6), 288311.Google Scholar
Dove, G. (2022). Abstract concepts and the embodied mind: Rethinking grounded cognition. Oxford University Press.Google Scholar
Dove, G., Barca, L., Tummolini, L., & Borghi, A. M. (2020). Words have a weight: Language as a source of inner grounding and flexibility in abstract concepts. Psychological Research. 86, 24512467. https://doi.org/10.1007/s00426-020-01438-6Google Scholar
Dreyer, F. R., & Pulvermüller, F. (2018). Abstract semantics in the motor system? An event-related fMRI study on passive reading of semantic word categories carrying abstract emotional and mental meaning. Cortex, 100, 5270. https://doi.org/10.1016/j.cortex.2017.10.021CrossRefGoogle Scholar
Falandays, J. B., & Spivey, M. J. (2019). Abstract meanings may be more dynamic, due to their sociality: Comment on “Words as social tools: Language, sociality and inner grounding in abstract concepts” by Anna M. Borghi et al. Physics of Life Reviews, 29, 175177. https://doi.org/10.1016/j.plrev.2019.02.011Google Scholar
Falcinelli, I., Fini, C., & Borghi, A. M. (2021). Lavarsi le mani riduce il senso di colpa: Evidenze con un compito semantico implicito. Giornale Italiano Di Psicologia, 48(1), 263271.Google Scholar
Fingerhut, J., & Prinz, J. J. (2018). Grounding evaluative concepts. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0142Google Scholar
Fini, C., Era, V., Da Rold, F., Candidi, M., & Borghi, A. M. (2021). Abstract concepts in interaction: The need of others when guessing abstract concepts smooths dyadic motor interactions. Royal Society Open Science, 8(7), 201205.Google Scholar
Fini, C., Falcinelli, I., Cuomo, G., Era, V., Candidi, M., Tummolini, L., … Borghi, A. M. (2023). Breaking the ice in a conversation: Abstract words prompt dialogues more easily than concrete words. Language and Cognition.Google Scholar
Fischer, M. H. (2008). Finger counting habits modulate spatial-numerical associations. Cortex, 44(4), 386392. https://doi.org/10.1016/j.cortex.2007.08.004Google Scholar
Fischer, M. H., & Brugger, P. (2011). When digits help digits: Spatial–numerical associations point to finger counting as prime example of embodied cognition. Frontiers in Psychology, 2, 260.Google Scholar
Fischer, M. H., Kaufmann, L., & Domahs, F. (2012). Finger counting and numerical cognition. Frontiers in Psychology, 3, 108. https://doi.org/10.3389/fpsyg.2012.00108Google Scholar
Flumini, A., Ranzini, M., & Borghi, A. M. (2014). Nomina sunt consequentia rerum – Sound–shape correspondences with everyday objects figures. Journal of Memory and Language, 76, 4760.Google Scholar
Gentner, D., & Asmuth, J. (2019). Metaphoric extension, relational categories, and abstraction. Language, Cognition and Neuroscience, 34(10), 12981307.Google Scholar
Ghio, M., Vaghi, M. M. S., & Tettamanti, M. (2013). Fine-grained semantic categorization across the abstract and concrete domains. PLoS ONE, 8(6), e67090. https://doi.org/10.1371/journal.pone.0067090Google Scholar
Gilhooly, K. J., & Logie, R. H. (1980). Age-of-acquisition, imagery, concreteness, familiarity, and ambiguity measures for 1,944 words. Behavior Research Methods & Instrumentation, 12(4), 395427.Google Scholar
Harpaintner, M., Sim, E.-J., Trumpp, N. M., Ulrich, M., & Kiefer, M. (2020). The grounding of abstract concepts in the motor and visual system: An fMRI study. Cortex, 124, 122. https://doi.org/10.1016/j.cortex.2019.10.014Google Scholar
Harpaintner, M., Trumpp, N. M., & Kiefer, M. (2018). The semantic content of abstract concepts: A property listing study of 296 abstract words. Frontiers in Psychology, 9, 116.Google Scholar
Henningsen-Schomers, M. R., & Pulvermüller, F. (2022). Modelling concrete and abstract concepts using brain-constrained deep neural networks. Psychological Research, 127, 86(8), 2533–2559.Google Scholar
Jamrozik, A., & Gentner, D. (2020). Relational labeling unlocks inert knowledge. Cognition, 196, 104146.Google Scholar
Kazanas, S. A., & Altarriba, J. (2015). The automatic activation of emotion and emotion-laden words: Evidence from a masked and unmasked priming paradigm. The American Journal of Psychology, 128(3), 323336.CrossRefGoogle ScholarPubMed
Keaton, S. A. (2017). Interpersonal Reactivity Index (IRI). In Worthington, D. L., Bodie, G. D., eds., The sourcebook of listening research. John Wiley & Sons, pp. 340347. https://doi.org/10.1002/9781119102991.ch34Google Scholar
Kiefer, M., & Harpaintner, M. (2020). Varieties of abstract concepts and their grounding in perception or action. Open Psychology, 2(1), 119137. https://doi.org/10.1515/psych-2020-0104Google Scholar
Kousta, S.-T., Vigliocco, G., Vinson, D. P., Andrews, M., & Del Campo, E. (2011). The representation of abstract words: Why emotion matters. Journal of Experimental Psychology: General, 140(1), 14.Google Scholar
Langland-Hassan, P., Faries, F. R., Gatyas, M., Dietz, A., & Richardson, M. J. (2021). Assessing abstract thought and its relation to language with a new nonverbal paradigm: Evidence from aphasia. Cognition, 211, 104622.Google Scholar
Lund, T. C., Sidhu, D. M., & Pexman, P. M. (2019). Sensitivity to emotion information in children’s lexical processing. Cognition, 190, 6171. https://doi.org/10.1016/j.cognition.2019.04.017Google Scholar
Lupyan, G., & Mirman, D. (2013). Linking language and categorization: Evidence from aphasia. Cortex, 49(5), 11871194. https://doi.org/10.1016/j.cortex.2012.06.006Google Scholar
Lupyan, G., & Winter, B. (2018). Language is more abstract than you think, or, why aren’t languages more iconic? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0137Google Scholar
Malt, B., & Wolff, P. (2010). Words and the mind: How words capture human experience. Oxford University Press.Google Scholar
Mazzuca, C., Barca, L., & Borghi, A. M. (2017). The peculiarity of emotional words: A grounded approach. Rivista Internazionale Di Filosofia e Psicologia, 8(2), 124133.Google Scholar
Mazzuca, C., Falcinelli, I., Michalland, A.-H., Tummolini, L., & Borghi, A. M. (2022). Bodily, emotional, and public sphere at the time of COVID-19. An investigation on concrete and abstract concepts. Psychological Research, 112, 86(7), 2266–2277.Google Scholar
Mazzuca, C., Lugli, L., Nicoletti, R., & Borghi, A. M. (2018). Abstract, emotional and concrete concepts and the activation of mouth-hand effectors. PeerJ, 6, e5987Google Scholar
Mazzuca, C., & Santarelli, M. (2022). Making it abstract, making it contestable: Politicization at the intersection of political and cognitive science. Review of Philosophy and Psychology, 1–22.Google Scholar
Mellem, M. S., Jasmin, K. M., Peng, C., & Martin, A. (2016). Sentence processing in anterior superior temporal cortex shows a social-emotional bias. Neuropsychologia, 89, 217224. https://doi.org/10.1016/j.neuropsychologia.2016.06.019Google Scholar
Miller, G. A. (1998). WordNet: An electronic lexical database. MIT Press.Google Scholar
Moffat, M., Siakaluk, P. D., Sidhu, D. M., & Pexman, P. M. (2015). Situated conceptualization and semantic processing: Effects of emotional experience and context availability in semantic categorization and naming tasks. Psychonomic Bulletin & Review, 22(2), 408419. https://doi.org/10.3758/s13423–014-0696-0Google Scholar
Moseley, R., Carota, F., Hauk, O., Mohr, B., & Pulvermüller, F. (2011). A role for the motor system in binding abstract emotional meaning. Cerebral Cortex, 22(7), 16341647.Google Scholar
Muraki, E. J., Cortese, F., Protzner, A. B., & Pexman, P. M. (2020). Heterogeneity in abstract verbs: An ERP study. Brain and Language, 211, 104863. https://doi.org/10.1016/j.bandl.2020.104863Google Scholar
Muraki, E. J., Sidhu, D. M., & Pexman, P. M. (2020). Heterogenous abstract concepts: Is “ponder” different from “dissolve”? Psychological Research, 1–17.Google Scholar
Murphy, G. L. (2002). The big book of concepts. MIT Press.CrossRefGoogle Scholar
Newcombe, P. I., Campbell, C., Siakaluk, P. D., & Pexman, P. M. (2012). Effects of emotional and sensorimotor knowledge in semantic processing of concrete and abstract nouns. Frontiers in Human Neuroscience, 6, 275. https://doi.org/10.3389/fnhum.2012.00275Google Scholar
Pexman, P. M., Heard, A., Lloyd, E., & Yap, M. J. (2017). The Calgary semantic decision project: Concrete/abstract decision data for 10,000 English words. Behavior Research Methods, 49(2), 407417. https://doi.org/10.3758/s13428–016-0720-6Google Scholar
Ponari, M., Norbury, C. F., & Vigliocco, G. (2018). Acquisition of abstract concepts is influenced by emotional valence. Developmental Science, 21(2). https://doi.org/10.1111/desc.12549Google Scholar
Ponari, M., Norbury, C. F., & Vigliocco, G. (2020). The role of emotional valence in learning novel abstract concepts. Developmental Psychology, 56(10), 1855.Google Scholar
Pulvermüller, F. (2018). The case of CAUSE: Neurobiological mechanisms for grounding an abstract concept. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0129Google Scholar
Roversi, C., Borghi, A. M., & Tummolini, L. (2013). A marriage is an artefact and not a walk that we take together: An experimental study on the categorization of artefacts. Review of Philosophy and Psychology, 4(3), 527542.Google Scholar
Schnall, S., Benton, J., & Harvey, S. (2008). With a clean conscience: Cleanliness reduces the severity of moral judgments. Psychological Science, 19(12), 12191222.Google Scholar
Schwanenflugel, P. J., Akin, C., & Luh, W.-M. (1992). Context availability and the recall of abstract and concrete words. Memory & Cognition, 20(1), 96104.CrossRefGoogle ScholarPubMed
Searle, J. (2010). Making the social world: The structure of human civilization. Oxford University Press.Google Scholar
Setti, A., & Caramelli, N. (2005). Different domains in abstract concepts. Proceedings of the XXVII Annual Conference of Cognitive Science Society, Stresa, July 21–23.Google Scholar
Shea, N. (2018). Metacognition and abstract concepts. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0133Google Scholar
Siakaluk, P. D., Newcombe, P. I., Duffels, B., Li, E., Sidhu, D. M., Yap, M. J., & Pexman, P. M. (2016). Effects of emotional experience in lexical decision. Frontiers in Psychology, 7, 1157. https://doi.org/10.3389/fpsyg.2016.01157Google Scholar
Siev, J., Zuckerman, S. E., & Siev, J. J. (2018). The relationship between immorality and cleansing. Social Psychology, 49(5), 303309.Google Scholar
Topolinski, S., Lindner, S., & Freudenberg, A. (2014). Popcorn in the cinema: Oral interference sabotages advertising effects. Journal of Consumer Psychology, 24(2), 169176.Google Scholar
Topolinski, S., & Strack, F. (2009). Motormouth: Mere exposure depends on stimulus-specific motor simulations. Journal of Experimental Psychology. Learning, Memory, and Cognition, 35(2), 423433. https://doi.org/10.1037/a0014504Google Scholar
Troche, J., Crutch, S. J., & Reilly, J. (2017). Defining a conceptual topography of word concreteness: Clustering properties of emotion, sensation, and magnitude among 750 English words. Frontiers in Psychology, 8, 1787. https://doi.org/10.3389/fpsyg.2017.01787Google Scholar
Tummolini, L., & Mannella, F. (2023). Kick-starting concept formation with intrinsically motivated learning: The grounding by competence acquisition hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1870), 20210370.Google Scholar
Vigliocco, G., Kousta, S.-T., Della Rosa, P. A., Vinson, D. P., Tettamanti, M., Devlin, J. T., & Cappa, S. F. (2014). The neural representation of abstract words: The role of emotion. Cerebral Cortex, 24(7), 17671777. https://doi.org/10.1093/cercor/bht025Google Scholar
Villani, C., D’Ascenzo, S., Borghi, A. M., Roversi, C., Benassi, M., & Lugli, L. (2022). Is justice grounded? How expertise shapes conceptual representation of institutional concepts. Psychological Research, 1–17, 2434–2450.Google Scholar
Villani, C., Lugli, L., Liuzza, M. T., & Borghi, A. M. (2019a). Le sotto-categorie dei concetti astratti: Uno studio empirico. Sistemi Intelligenti, 31(2), 235252.Google Scholar
Villani, C., Lugli, L., Liuzza, M. T., & Borghi, A. M. (2019b). Varieties of abstract concepts and their multiple dimensions. Language and Cognition, 11(3), 403430.Google Scholar
Villani, C., Lugli, L., Liuzza, M. T., Nicoletti, R., & Borghi, A. M. (2021). Sensorimotor and interoceptive dimensions in concrete and abstract concepts. Journal of Memory and Language, 116, 104173.Google Scholar
Villani, C., Orsoni, M., Lugli, L., Benassi, M., & Borghi, A. M. (2022, in press). Abstract and concrete concepts in conversation. Scientific Report 12, 17572. https://doi.org/10.1038/s41598–022-20785-5.CrossRefGoogle ScholarPubMed
Wauters, L. N., Tellings, A. E., Van Bon, W. H., & Van Haaften, A. W. (2003). Mode of acquisition of word meanings: The viability of a theoretical construct. Applied Psycholinguistics, 24(3), 385406.Google Scholar
Wiemer-Hastings, K., Krug, J., & Xu, X. (2001). Imagery, context availabilty, contextual constraint and abstractness. Proceedings of the Annual Meeting of the Cognitive Science Society, Edinburgh, August 1–4, p. 23.Google Scholar
Winter, B. (2023). Abstract concepts and emotion: Cross-linguistic evidence and arguments against affective embodiment. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1870), 20210368.Google Scholar
Yao, B., Keitel, A., Bruce, G., Scott, G. G., O’Donnell, P. J., & Sereno, S. C. (2018). Differential emotional processing in concrete and abstract words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(7), 1064.Google Scholar
Zhong, C.-B., & Liljenquist, K. (2006). Washing away your sins: Threatened morality and physical cleansing. Science, 313(5792), 14511452. https://doi.org/10.1126/science.1130726Google Scholar

References

Arshamian, A., Gerkin, R. C., Kruspe, N., Wnuk, E., Floyd, S., O’Meara, C., … Majid, A. (2022). The perception of odor pleasantness is shared across cultures. Current Biology, 32(9), 2061–2066.e3. https://doi.org/10.1016/j.cub.2022.02.062Google Scholar
Athanasopoulos, P., Bylund, E., & Casasanto, D. (2016). Introduction to the Special Issue: New and interdisciplinary approaches to linguistic relativity. Language Learning, 66(3), 482486. https://doi.org/10.1111/lang.12196Google Scholar
Barrett, L. F. (2017). The theory of constructed emotion: An active inference account of interoception and categorization. Social Cognitive and Affective Neuroscience, 12(1), 123. https://doi.org/10.1093/scan/nsw154Google Scholar
Barsalou, L. W., Dutriaux, L., & Scheepers, C. (2018). Moving beyond the distinction between concrete and abstract concepts. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0144Google Scholar
Barsalou, L. W., & Wiemer-Hastings, K. (2005). Situating abstract concepts. In Pecher, D., & Zwaan, R., eds., Grounding cognition: The role of perception and action in memory, language, and thought. Cambridge University Press, pp. 129163.Google Scholar
Batisti, F. (2021). An argument for languages in languaging. Rivista Italiana Di Filosofia Del Linguaggio, 15(2).Google Scholar
Berlin, B. (1992/2002/2014). Ethnobiological classification: Principles of categorization of plants and animals in traditional societies. Princeton University Press.Google Scholar
Borghi, A. M., Barca, L., Binkofski, F., & Tummolini, L. (2018). Varieties of abstract concepts: Development, use and representation in the brain. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0121Google Scholar
Borghi, A. M., Binkofski, F., Castelfranchi, C., Cimatti, F., Scorolli, C., & Tummolini, L. (2017). The challenge of abstract concepts. Psychological Bulletin, 143(3), 263292. https://doi.org/10.1037/bul0000089Google Scholar
Borghi, A. M., Capirci, O., Gianfreda, G., & Volterra, V. (2014). The body and the fading away of abstract concepts and words: A sign language analysis. Frontiers in Psychology, 5, 811. https://doi.org/10.3389/fpsyg.2014.00811Google Scholar
Boroditsky, L. (2001). Does language shape thought?: Mandarin and English speakers’ conceptions of time. Cognitive Psychology, 43(1), 122.Google Scholar
Boroditsky, L. (2018). Language and the construction of time through space. Trends in Neurosciences, 41(10), 651653. https://doi.org/10.1016/j.tins.2018.08.004Google Scholar
Boroditsky, L., Fuhrman, O., & McCormick, K. (2011). Do English and Mandarin speakers think about time differently? Cognition, 118(1), 123129. https://doi.org/10.1016/j.cognition.2010.09.010Google Scholar
Boroditsky, L., & Gaby, L. (2010). Remembrances of times East: Absolute spatial representations of time in an Australian aboriginal community. Psychological Science, 21(11), 16351639.Google Scholar
Boroditsky, L., & Ramscar, M. (2002). The roles of body and mind in abstract thought. Psychological Science, 13(2), 185189.Google Scholar
Bylund, E., & Athanasopoulos, P. (2017). The Whorfian time warp: Representing duration through the language hourglass. Journal of Experimental Psychology. General, 146(7), 911916. https://doi.org/10.1037/xge0000314Google Scholar
Callizo-Romero, C., Tutnjević, S., Pandza, M., Ouellet, M., Kranjec, A., Ilić, S., … Casasanto, D. (2020). Temporal focus and time spatialization across cultures. Psychonomic Bulletin & Review, 27(6), 12471258.Google Scholar
Casasanto, D. (2008). Similarity and proximity: When does close in space mean close in mind? Memory & Cognition, 36(6), 10471056. https://doi.org/10.3758/MC.36.6.1047Google Scholar
Casasanto, D. (2016). Linguistic relativity. Routledge handbook of semantics. Routledge, pp. 158174.Google Scholar
Casasanto, D., & Gordon, P. (2005). Crying “Whorf.” Science, 307(5716), 17211722. https://doi.org/10.1126/science.307.5716.1721Google Scholar
Conca, F., Borsa, V. M., Cappa, S. F., & Catricalà, E. (2021). The multidimensionality of abstract concepts: A systematic review. Neuroscience & Biobehavioral Reviews, 127, 474491.CrossRefGoogle ScholarPubMed
Connell, L., Lynott, D., & Banks, B. (2018). Interoception: The forgotten modality in perceptual grounding of abstract and concrete concepts. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0143Google Scholar
Cowley, S. J. (2019). The return of languaging. Chinese Semiotic Studies, 15(4), 483512.Google Scholar
Crow, K. M., van Mersbergen, M., & Payne, A. E. (2021). Vocal congruence: The voice and the self measured by interoceptive awareness. Journal of Voice, 35(2), 324e15.Google Scholar
Davis, C. P., Altmann, G. T., & Yee, E. (2020). Situational systematicity: A role for schema in understanding the differences between abstract and concrete concepts. Cognitive Neuropsychology, 37(1–2), 142153.Google Scholar
De la Fuente, J., Santiago, J., Román, A., Dumitrache, C., & Casasanto, D. (2014). When you think about it, your past is in front of you: How culture shapes spatial conceptions of time. Psychological Science, 25(9), 16821690. https://doi.org/10.1177/0956797614534695Google Scholar
De Livio, C., Fini, C., Mazzuca, C., & Borghi, A. M. (2022). The role of voice self-perception in the conceptual representation of gender. 18th Annual Conference of the Italian Association of Cognitive Sciences, Rovereto, Trento, December 15–17.Google Scholar
Dove, G. (2009). Beyond perceptual symbols: A call for representational pluralism. Cognition, 110(3), 412431. https://doi.org/10.1016/j.cognition.2008.11.016Google Scholar
Dove, G. (2020). More than a scaffold: Language is a neuroenhancement. Cognitive Neuropsychology, 37(5–6), 288311.Google Scholar
Dove, G. (2021). The challenges of abstract concepts. In Robinson, M. D. & Thomas, L. E., eds., Handbook of embodied psychology. Springer, 171195.CrossRefGoogle Scholar
Dove, G. (2022). Abstract concepts and the embodied mind: Rethinking grounded cognition. Oxford University Press.Google Scholar
Dove, G., Barca, L., Tummolini, L., & Borghi, A. M. (2020). Words have a weight: Language as a source of inner grounding and flexibility in abstract concepts. Psychological Research. https://doi.org/10.1007/s00426-020-01438-6Google Scholar
Ekman, P. (1992). An argument for basic emotions. Cognition & Emotion, 6(3–4), 169200.Google Scholar
Enfield, N. J., Majid, A., & Van Staden, M. (2006). Cross-linguistic categorisation of the body: Introduction. Language Sciences, 28(2–3), 137147.Google Scholar
Falandays, J. B., & Spivey, M. J. (2019). Abstract meanings may be more dynamic, due to their sociality: Comment on “Words as social tools: Language, sociality and inner grounding in abstract concepts” by Anna M. Borghi et al. Physics of Life Reviews. https://doi.org/10.1016/j.plrev.2019.02.011Google Scholar
Farias, A. R., Garrido, M. V., & Semin, G. R. (2013). Converging modalities ground abstract categories: The case of politics. PLoS ONE, 8(4), e60971. https://doi.org/10.1371/journal.pone.0060971Google Scholar
Fuhrman, O., & Boroditsky, L. (2010). Cross-cultural differences in mental representations of time: Evidence from an implicit nonlinguistic task. Cognitive Science, 34(8), 14301451. https://doi.org/10.1111/j.1551-6709.2010.01105.xGoogle Scholar
Gallese, V., & Cuccio, V. (2018). The neural exploitation hypothesis and its implications for an embodied approach to language and cognition: Insights from the study of action verbs processing and motor disorders in Parkinson’s disease. Cortex, 100, 215225. https://doi.org/10.1016/j.cortex.2018.01.010Google Scholar
Gennari, S. P., Sloman, S. A., Malt, B. C., & Fitch, W. T. (2002). Motion events in language and cognition. Cognition, 83(1), 4979.Google Scholar
Gentner, D., & Boroditsky, L. (2001). Individuation, relativity, and early word learning. Language Acquisition and Conceptual Development, 3, 215256.Google Scholar
Ghandhari, M., Fini, C., Da Rold, F., & Borghi, A. M. (2020). Different kinds of embodied language: A comparison between Italian and Persian languages. Brain and Cognition, 142, 105581.Google Scholar
Gibbs, R. W. Jr, Lima, P. L. C., & Francozo, E. (2004). Metaphor is grounded in embodied experience. Journal of Pragmatics, 36(7), 11891210.Google Scholar
Gibbs, R. W. (2021). Metaphorical embodiment. In Robinson, M. D. & Thomas, L. E., eds., Handbook of embodied psychology. Springer, pp. 101123.Google Scholar
Gillette, J., Gleitman, H., Gleitman, L., & Lederer, A. (1999). Human simulations of vocabulary learning. Cognition, 73(2), 135176.Google Scholar
Hendricks, R. K., & Boroditsky, L. (2015). Constructing mental time without visual experience. Trends in Cognitive Sciences, 19(8), 429430. https://doi.org/10.1016/j.tics.2015.06.011Google Scholar
Hendricks, R. K., & Boroditsky, L. (2017). New space-time metaphors foster new nonlinguistic representations. Topics in Cognitive Science, 9(3), 800818. https://doi.org/10.1111/tops.12279Google Scholar
Huisman, J. L. A., Hout, R. van, & Majid, A. (2021). Patterns of semantic variation differ across body parts: Evidence from the Japonic languages. Cognitive Linguistics, 32(3), 455486. https://doi.org/10.1515/cog-2020-0079Google Scholar
Jackson, J. C., Watts, J., Henry, T. R., List, J.-M., Forkel, R., Mucha, P. J., … Lindquist, K. A. (2019). Emotion semantics show both cultural variation and universal structure. Science, 366(6472), 15171522. https://doi.org/10.1126/science.aaw8160Google Scholar
Jamrozik, A., McQuire, M., Cardillo, E. R., & Chatterjee, A. (2016). Metaphor: Bridging embodiment to abstraction. Psychonomic Bulletin & Review, 23(4), 10801089. https://doi.org/10.3758/s13423–015-0861-0Google Scholar
Kemmerer, D. (2022). Grounded cognition entails linguistic relativity: A neglected implication of a major semantic theory. Topics in Cognitive Science, 1–33. doi:10.1111/tops.12628Google Scholar
Lakens, D., Semin, G. R., & Foroni, F. (2011). Why your highness needs the people: Comparing the absolute and relative representation of power in vertical space. Social Psychology, 42(3), 205213. https://doi.org/10.1027/1864-9335/a000064Google Scholar
Lakoff, G., & Johnson, M. (1980). Conceptual metaphor in everyday language. The Journal of Philosophy, 77(8), 453486.Google Scholar
Lakoff, G., & Johnson, M. (2008). Metaphors we live by. University of Chicago Press.Google Scholar
Langland-Hassan, P. & Davis, C. (2023). A context-sensitive and non-linguistic approach to abstract concepts. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1870), 20210355.Google Scholar
Le Guen, O., & Pool Balam, L. (2012). No metaphorical timeline in gesture and cognition among Yucatec Mayas. Frontiers in Psychology, 3. https://www.frontiersin.org/article/10.3389/fpsyg.2012.00271Google Scholar
Levinson, S. C., & Majid, A. (2013). The island of time: Yélî dnye, the language of Rossel Island. Frontiers in Psychology, 4, 61. https://doi.org/10.3389/fpsyg.2013.00061Google Scholar
Lopez, A., Atran, S., Coley, J. D., Medin, D. L., & Smith, E. E. (1997). The tree of life: Universal and cultural features of folkbiological taxonomies and inductions. Cognitive Psychology, 32(3), 251295.Google Scholar
Lund, T. C., Sidhu, D. M., & Pexman, P. M. (2019). Sensitivity to emotion information in children’s lexical processing. Cognition, 190, 6171. https://doi.org/10.1016/j.cognition.2019.04.017Google Scholar
Majid, A. (2019). Mapping words reveals emotional diversity. Science, 366(6472), 14441445. https://doi.org/10.1126/science.aba1763Google Scholar
Majid, A., Boster, J. S., & Bowerman, M. (2008). The cross-linguistic categorization of everyday events: A study of cutting and breaking. Cognition, 109(2), 235250. https://doi.org/10.1016/j.cognition.2008.08.009Google Scholar
Majid, A., & Burenhult, N. (2014). Odors are expressible in language, as long as you speak the right language. Cognition, 130(2), 266270.Google Scholar
Majid, A., Burenhult, N., Stensmyr, M., De Valk, J., & Hansson, B. S. (2018). Olfactory language and abstraction across cultures. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170139.Google Scholar
Majid, A., Jordan, F., & Dunn, M. (2015). Semantic systems in closely related languages. Language sciences, 49, 118.Google Scholar
Majid, A., Roberts, S. G., Cilissen, L., Emmorey, K., Nicodemus, B., O’Grady, L., … Cansler, B. L. (2018). Differential coding of perception in the world’s languages. Proceedings of the National Academy of Sciences, 115(45), 1136911376.Google Scholar
Malt, B. C., Gennari, S., Imai, M., Ameel, E., Tsuda, N., & Majid, A. (2008). Talking about walking: Biomechanics and the language of locomotion. Psychological Science, 19(3), 232240.Google Scholar
Malt, B. C., & Majid, A. (2013). How thought is mapped into words. Wiley Interdisciplinary Reviews: Cognitive Science, 4(6), 583597.Google Scholar
Malt, B. C., Sloman, S. A., Gennari, S., Shi, M., & Wang, Y. (1999). Knowing versus naming: Similarity and the linguistic categorization of artifacts. Journal of Memory and Language, 40(2), 230262.Google Scholar
Malt, B., & Wolff, P. (2010). Words and the mind: How words capture human experience. Oxford University Press.Google Scholar
Mazzuca, C., Borghi, A. M., van Putten, S., Lugli, L., Nicoletti, R., & Majid, A. (2022). Gender is conceptualized in different ways across cultures. PsyArxiv Preprints. doi: 10.31234/osf.io/dpa8sGoogle Scholar
Mazzuca, C., Falcinelli, I., Michalland, A.-H., Tummolini, L., & Borghi, A. M. (2022). Bodily, emotional, and public sphere at the time of COVID-19. An investigation on concrete and abstract concepts. Psychological Research, 1–12.Google Scholar
Mazzuca, C., Majid, A., Lugli, L., Nicoletti, R., & Borghi, A. M. (2020). Gender is a multifaceted concept: Evidence that specific life experiences differentially shape the concept of gender. Language and Cognition, 12(4), 649678.Google Scholar
Medin, D. L., & Atran, S. (1999). Folkbiology. MIT Press.Google Scholar
Mehling, W. E., Acree, M., Stewart, A., Silas, J., & Jones, A. (2018). The multidimensional assessment of interoceptive awareness, version 2 (MAIA-2). PLoS ONE, 13(12), e0208034.Google Scholar
Narasimhan, B., Kopecka, A., Bowerman, M., Gullberg, M., & Majid, A. (2012). Putting and taking events: A crosslinguistic perspective. Events of Putting and Taking: A Crosslinguistic Perspective, 595, 118.Google Scholar
Núñez, R., Cooperrider, K., Doan, D., & Wassmann, J. (2012). Contours of time: Topographic construals of past, present, and future in the Yupno valley of Papua New Guinea. Cognition, 124(1), 2535. https://doi.org/10.1016/j.cognition.2012.03.007Google Scholar
Núñez, R. E., & Sweetser, E. (2006). With the future behind them: Convergent evidence from Aymara language and gesture in the crosslinguistic comparison of spatial construals of time. Cognitive Science, 30(3), 401450. https://doi.org/10.1207/s15516709cog0000_62Google Scholar
Olofsson, J. K., & Gottfried, J. A. (2015). The muted sense: Neurocognitive limitations of olfactory language. Trends in Cognitive Sciences, 19(6), 314321.Google Scholar
Orsini, A., & Pezzuti, L. (2015). WAIS-4: Contributo alla taratura italiana (70–90 anni). Giunti OS.Google Scholar
Pecher, D. (2018). Curb your embodiment. Topics in Cognitive Science, 10(3), 501517. https://doi.org/10.1111/tops.12311Google Scholar
Pecher, D., Boot, I., & Van Dantzig, S. (2011). Abstract concepts: Sensory-motor grounding, metaphors, and beyond. In Ross, B. H., ed., Psychology of learning and motivation, Elsevier, pp. 217248.Google Scholar
Pezzuti, L., Dawe, J., & Borghi, A. M. (2021). Does mastering of abstract words decline with age? Educational Gerontology, 47(12), 527542.Google Scholar
Rumiati, R. I., & Foroni, F. (2016). We are what we eat: How food is represented in our mind/brain. Psychonomic Bulletin & Review, 23(4), 10431054.Google Scholar
Santiago, J., Lupáñez, J., Pérez, E., & Funes, M. J. (2007). Time (also) flies from left to right. Psychonomic Bulletin & Review, 14(3), 512516.Google Scholar
Sidnell, J., & Enfield, N. J. (2012). Language diversity and social action: A third locus of linguistic relativity. Current Anthropology, 53(3), 302333. https://doi.org/10.1086/665697Google Scholar
Sinha, C., Sinha, V. D. S., Zinken, J., & Sampaio, W. (2011). When time is not space: The social and linguistic construction of time intervals and temporal event relations in an Amazonian culture. Language and Cognition, 3(1), 137169.Google Scholar
Slobin, D. I. (1985). Crosslinguistic evidence for the language-making capacity. The Crosslinguistic Study of Language Acquisition, 2, 11571249.Google Scholar
Slobin, D. I. (1996). From “thought and language” to “thinking for speaking.” In Gumperz, J. J. & Levinson, S. C., eds., Rethinking linguistic relativity Cambridge University Press, pp. 7096. (Reprinted in modified form from Pragmatics, 1, 1991, pp. 7–26.)Google Scholar
Sullivan, K., & Bui, L.T. (2016). With the future coming up behind them: Evidence that time approaches from behind in Vietnamese. Cognitive Linguistics, 7(2), 205233.Google Scholar
Talmy, L. (1988). Force dynamics in language and cognition. Cognitive Science, 12(1), 49100.Google Scholar
Thompson, B., Roberts, S. G., & Lupyan, G. (2020). Cultural influences on word meanings revealed through large-scale semantic alignment. Nature Human Behaviour, 4(10), 10291038.Google Scholar
Ulrich, R., & Maienborn, C. (2010). Left–right coding of past and future in language: The mental timeline during sentence processing. Cognition, 117(2), 126138.Google Scholar
Vigliocco, G., Kousta, S.-T., Della Rosa, P. A., Vinson, D. P., Tettamanti, M., Devlin, J. T., & Cappa, S. F. (2013). The neural representation of abstract words: The role of emotion. Cerebral Cortex, 24(7), 17671777.Google Scholar
Vigliocco, G., Kousta, S.-T., Della Rosa, P. A., Vinson, D. P., Tettamanti, M., Devlin, J. T., & Cappa, S. F. (2014). The neural representation of abstract words: The role of emotion. Cerebral Cortex, 24(7), 17671777. https://doi.org/10.1093/cercor/bht025Google Scholar
Villani, C., Lugli, L., Liuzza, M. T., & Borghi, A. M. (2019a). Le sotto-categorie dei concetti astratti: Uno studio empirico. Sistemi Intelligenti, 31(2), 235252.Google Scholar
Villani, C., Lugli, L., Liuzza, M. T., & Borghi, A. M. (2019b). Varieties of abstract concepts and their multiple dimensions. Language and Cognition, 11(3), 403430.Google Scholar
Villani, C., Lugli, L., Liuzza, M. T., Nicoletti, R., & Borghi, A. M. (2021). Sensorimotor and interoceptive dimensions in concrete and abstract concepts. Journal of Memory and Language, 116, 104173.Google Scholar
Warrington, E. K., & Shallice, T. (1984). Category specific semantic impairments. Brain, 107(3), 829853.Google Scholar
Winter, B. (2023). Abstract concepts and emotion: Cross-linguistic evidence and arguments against affective embodiment. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1870), 20210368.Google Scholar
Winter, B., Marghetis, T., & Matlock, T. (2015). Of magnitudes and metaphors: Explaining cognitive interactions between space, time, and number. Cortex, 64, 209224. https://doi.org/10.1016/j.cortex.2014.10.015Google Scholar
Wolff, P., & Gentner, D. (2011). Structure-mapping in metaphor comprehension. Cognitive Science, 35(8), 14561488.Google Scholar
Yao, B., Keitel, A., Bruce, G., Scott, G. G., O’Donnell, P. J., & Sereno, S. C. (2018). Differential emotional processing in concrete and abstract words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(7), 1064.Google Scholar

References

Alderson-Day, B., McCarthy-Jones, S., Bedford, S., Collins, H., Dunne, H., Rooke, C., & Fernyhough, C. (2014). Shot through with voices: Dissociation mediates the relationship between varieties of inner speech and auditory hallucination proneness. Consciousness and Cognition, 27, 288296.Google Scholar
Alderson-Day, B., Mitrenga, K., Wilkinson, S., McCarthy-Jones, S., & Fernyhough, C. (2018). The Varieties of Inner Speech Questionnaire–Revised (VISQ-R): Replicating and refining links between inner speech and psychopathology. Consciousness and Cognition, 65, 4858.Google Scholar
Alderson-Day, B., Weis, S., McCarthy-Jones, S., Moseley, P., Smailes, D., & Fernyhough, C. (2016). The brain’s conversation with itself: Neural substrates of dialogic inner speech. Social Cognitive and Affective Neuroscience, 11(1), 110120.Google Scholar
Andres, M., Di Luca, S., & Pesenti, M. (2008). Finger counting: The missing tool? Behavioral and Brain Sciences, 31(6), 642643.Google Scholar
Andres, M., Seron, X., & Olivier, E. (2007). Contribution of hand motor circuits to counting. Journal of Cognitive Neuroscience, 19(4), 563576.Google Scholar
Anelli, F., Lugli, L., Baroni, G., Borghi, A. M., & Nicoletti, R. (2014). Walking boosts your performance in making additions and subtractions. Frontiers in Psychology, 5, 1459. https://doi.org/10.3389/fpsyg.2014.01459Google Scholar
Angeleri, R., Bosco, F. M., Gabbatore, I., Bara, B. G., & Sacco, K. (2012). Assessment battery for communication (ABaCo): Normative data. Behavior Research Methods, 44(3), 845861.Google Scholar
Arcara, G., & Bambini, V. (2016). A test for the assessment of pragmatic abilities and cognitive substrates (APACS): Normative data and psychometric properties. Frontiers in Psychology, 7, 70.Google Scholar
Badets, A., & Pesenti, M. (2010). Creating number semantics through finger movement perception. Cognition, 115(1), 4653. https://doi.org/10.1016/j.cognition.2009.11.007Google Scholar
Bahnmueller, J., Maier, C. A., Göbel, S. M., & Moeller, K. (2019). Direct evidence for linguistic influences in two-digit number processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(6), 11421150. https://doi.org/10.1037/xlm0000642Google Scholar
Baixauli, I., Colomer, C., Roselló, B., & Miranda, A. (2016). Narratives of children with high-functioning autism spectrum disorder: A meta-analysis. Research in Developmental Disabilities, 59, 234254. https://doi.org/10.1016/j.ridd.2016.09.007Google Scholar
Bambini, V., Arcara, G., Bechi, M., Buonocore, M., Cavallaro, R., & Bosia, M. (2016). The communicative impairment as a core feature of schizophrenia: Frequency of pragmatic deficit, cognitive substrates, and relation with quality of life. Comprehensive Psychiatry, 71, 106120.CrossRefGoogle ScholarPubMed
Bambini, V., Arcara, G., Bosinelli, F., Buonocore, M., Bechi, M., Cavallaro, R., & Bosia, M. (2020). A leopard cannot change its spots: A novel pragmatic account of concretism in schizophrenia. Neuropsychologia, 139, 107332.Google Scholar
Bang, J., Burns, J., & Nadig, A. (2013). Brief report: Conveying subjective experience in conversation: Production of mental state terms and personal narratives in individuals with high functioning autism. Journal of Autism and Developmental Disorders, 43(7), 17321740. https://doi.org/10.1007/s10803–012-1716-4Google Scholar
Barca, L., Mazzuca, C., & Borghi, A. M. (2017). Pacifier overuse and conceptual relations of abstract and emotional concepts. Frontiers in Psychology, 8, 2014. https://doi.org/10.3389/fpsyg.2017.02014Google Scholar
Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21(1), 3746. https://doi.org/10.1016/0010-0277(85)90022-8Google Scholar
Barsalou, L. W. (1983). Ad hoc categories. Memory & Cognition, 11(3), 211227.Google Scholar
Barsalou, L. W. (1991). Deriving categories to achieve goals. In Bower, G. H., ed., Psychology of learning and motivation, vol. 27. Elsevier, pp. 164.Google Scholar
Barsalou, L. W., Dutriaux, L., & Scheepers, C. (2018). Moving beyond the distinction between concrete and abstract concepts. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170144.Google Scholar
Beauchamp, M. S. (2015). The social mysteries of the superior temporal sulcus. Trends in Cognitive Sciences, 19(9), 489490.Google Scholar
Berkovich-Ohana, A., Noy, N., Harel, M., Furman-Haran, E., Arieli, A., & Malach, R. (2020). Inter-participant consistency of language-processing networks during abstract thoughts. NeuroImage, 211, 116626.Google Scholar
Binder, J. R., Conant, L. L., Humphries, C. J., Fernandino, L., Simons, S. B., Aguilar, M., & Desai, R. H. (2016). Toward a brain-based componential semantic representation. Cognitive Neuropsychology, 33(3–4), 130174. https://doi.org/10.1080/02643294.2016.1147426Google Scholar
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 27672796. https://doi.org/10.1093/cercor/bhp055Google Scholar
Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Springer, J. A., Kaufman, J. N., & Possing, E. T. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10(5), 512528.Google Scholar
Binney, R. J., Hoffman, P., Ralph, L., & Matthew, A. (2016). Mapping the multiple graded contributions of the anterior temporal lobe representational hub to abstract and social concepts: Evidence from distortion-corrected fMRI. Cerebral Cortex, 26(11), 42274241.Google Scholar
Bleuler, E. (1911). Dementia praecox oder Gruppe der Schizophrenien, vol. 4. Deuticke.Google Scholar
Borghi, A. M. (2020). A future of words: Language and the challenge of abstract concepts. Journal of Cognition, 3(1).Google Scholar
Borghi, A. M. (2022a). Concepts for which we need others more: The case of abstract concepts. Current Directions in Psychological Science, 31(3), 238246.Google Scholar
Borghi, A. M. (2022b). Merging affordances and (abstract) concepts. In Djebbara, Z. ed., Affordances in everyday life: A multidisciplinary collection of essays. New York: Springer. OSF Preprint. 10.31219/osf.io/zn8ahGoogle Scholar
Borghi, A. M., Barca, L., Binkofski, F., Castelfranchi, C., Pezzulo, G., & Tummolini, L. (2019). Words as social tools: Language, sociality and inner grounding in abstract concepts. Physics of Life Reviews, 29, 120153.Google Scholar
Borghi, A. M., Barca, L., Binkofski, F., & Tummolini, L. (2018). Abstract concepts, language and sociality: From acquisition to inner speech. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0134Google Scholar
Borghi, A. M., Binkofski, F., Castelfranchi, C., Cimatti, F., Scorolli, C., & Tummolini, L. (2017). The challenge of abstract concepts. Psychological Bulletin, 143(3), 263292. https://doi.org/10.1037/bul0000089Google Scholar
Borghi, A. M., & Fernyhough, C. (2023). Concepts, abstractness and inner speech. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 378(1870), 20210371.Google Scholar
Borghi, A. M., Flumini, A., Cimatti, F., Marocco, D., & Scorolli, C. (2011). Manipulating objects and telling words: A study on concrete and abstract words acquisition. Frontiers in Psychology, 2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3110830/Google Scholar
Borghi, A. M., Mazzuca, C., Da Rold, F., Falcinelli, I., Fini, C., Michalland, A.-H., & Tummolini, L. (2021). Abstract words as social tools: Which necessary evidence? Frontiers in Psychology, 11. https://www.frontiersin.org/article/10.3389/fpsyg.2020.613026Google Scholar
Borghi, A. M., & Zarcone, E. (2016). Grounding abstractness: Abstract concepts and the activation of the mouth. Frontiers in Psychology, 7, 1498. https://doi.org/10.3389/fpsyg.2016.01498Google Scholar
Caselli, M. C., Bello, A., Rinaldi, P., Stefanini, S., & Pasqualetti, P. (2015). Il primo vocabolario del Bambino: Gesti, parole e frasi. Valori di riferimento fra 8 e 36 mesi delle Forme complete e delle Forme brevi del questionario MacArthur-Bates CDI: Valori di riferimento fra 8 e 36 mesi delle Forme complete e delle Forme brevi del questionario MacArthur-Bates CDI. FrancoAngeli.Google Scholar
Champagne-Lavau, M., & Stip, E. (2010). Pragmatic and executive dysfunction in schizophrenia. Journal of Neurolinguistics, 23(3), 285296.Google Scholar
Chojnicka, I., & Wawer, A. (2020). Social language in autism spectrum disorder: A computational analysis of sentiment and linguistic abstraction. PLoS ONE, 15(3), e0229985. https://doi.org/10.1371/journal.pone.0229985Google Scholar
Church, B. A., Rice, C. L., Dovgopoly, A., Lopata, C. J., Thomeer, M. L., Nelson, A., & Mercado, E. (2015). Learning, plasticity, and atypical generalization in children with autism. Psychonomic Bulletin & Review, 22(5), 13421348. https://doi.org/10.3758/s13423–014-0797-9Google Scholar
Daprati, E., Franck, N., Georgieff, N., Proust, J., Pacherie, E., Dalery, J., & Jeannerod, M. (1997). Looking for the agent: An investigation into consciousness of action and self-consciousness in schizophrenic patients. Cognition, 65(1), 7186.Google Scholar
Daprati, E., Nico, D., Delorme, R., Leboyer, M., & Zalla, T. (2013). Memory for past events: Movement and action chains in high-functioning autism spectrum disorders. Experimental Brain Research, 226(3), 325334. https://doi.org/10.1007/s00221–013-3436-1Google Scholar
Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., & Iacoboni, M. (2006). Understanding emotions in others: Mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9(1), 28.Google Scholar
Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284(5416), 970974.Google Scholar
Della Rosa, P. A., Catricalà, E., Canini, M., Vigliocco, G., & Cappa, S. F. (2018). The left inferior frontal gyrus: A neural crossroads between abstract and concrete knowledge. NeuroImage, 175, 449459. https://doi.org/10.1016/j.neuroimage.2018.04.021Google Scholar
D’Esposito, M., Detre, J. A., Aguirre, G. K., Stallcup, M., Alsop, D. C., Tippet, L. J., & Farah, M. J. (1997). A functional MRI study of mental image generation. Neuropsychologia, 35(5), 725730.Google Scholar
Di Luca, S., & Pesenti, M. (2008). Masked priming effect with canonical finger numeral configurations. Experimental Brain Research, 185(1), 2739.Google Scholar
Domahs, F., Moeller, K., Huber, S., Willmes, K., & Nuerk, H.-C. (2010). Embodied numerosity: Implicit hand-based representations influence symbolic number processing across cultures. Cognition, 116(2), 251266. https://doi.org/10.1016/j.cognition.2010.05.007Google Scholar
Dove, G. (2019). Language influences social cognition: Comment on “Words as social tools: Language, sociality and inner grounding in abstract concepts” by Anna M. Borghi et al. Physics of Life Reviews, 29, 169171. https://doi.org/10.1016/j.plrev.2019.03.007Google Scholar
Dove, G., Barca, L., Tummolini, L., & Borghi, A. M. (2020). Words have a weight: Language as a source of inner grounding and flexibility in abstract concepts. Psychological Research, 86, 24512467. https://doi.org/10.1007/s00426-020-01438-6Google Scholar
Dreyer, F. R., & Pulvermüller, F. (2018). Abstract semantics in the motor system? An event-related fMRI study on passive reading of semantic word categories carrying abstract emotional and mental meaning. Cortex, 100, 5270. https://doi.org/10.1016/j.cortex.2017.10.021Google Scholar
Eskes, G. A., Bryson, S. E., & McCormick, T. A. (1990). Comprehension of concrete and abstract words in autistic children. Journal of Autism and Developmental Disorders, 20(1), 6173.Google Scholar
Fabbri-Destro, M., Gizzonio, V., & Avanzini, P. (2013). Autism, motor dysfunctions and mirror mechanism. Clinical Neuropsychiatry, 10, 177187.Google Scholar
Fabbri-Destro, M., Gizzonio, V., Bazzini, M. C., Cevallos, C., Cheron, G., & Avanzini, P. (2019). The relationship between pantomime execution and recognition across typically developing and autistic children. Research in Autism Spectrum Disorders, 61, 2232. https://doi.org/10.1016/j.rasd.2019.01.008Google Scholar
Falandays, J. B., & Spivey, M. J. (2019). Abstract meanings may be more dynamic, due to their sociality: Comment on “Words as social tools: Language, sociality and inner grounding in abstract concepts” by Anna M. Borghi et al. Physics of Life Reviews, 9, 175177. https://doi.org/10.1016/j.plrev.2019.02.011Google Scholar
Ferstl, E. C., Neumann, J., Bogler, C., & von Cramon, D. Y. (2008). The extended language network: A meta-analysis of neuroimaging studies on text comprehension. Human Brain Mapping, 29(5), 581593. https://doi.org/10.1002/hbm.20422Google Scholar
Fiebach, C. J., & Friederici, A. D. (2004). Processing concrete words: FMRI evidence against a specific right-hemisphere involvement. Neuropsychologia, 42(1), 6270.Google Scholar
Fini, C., Zannino, G. D., Orsoni, M., Carlesimo, G. A., Benassi, M., & Borghi, A. M. (2021). Articulatory suppression delays processing of abstract words: The role of inner speech. Quarterly Journal of Experimental Psychology, 75(7). https://doi.org/10.1177/17470218211053623Google Scholar
Fischer, M. H. (2001). Number processing induces spatial performance biases. Neurology, 57(5), 822826.Google Scholar
Fischer, M. H. (2008). Finger counting habits modulate spatial-numerical associations. Cortex, 44(4), 386392. https://doi.org/10.1016/j.cortex.2007.08.004Google Scholar
Fischer, M. H., & Brugger, P. (2011). When digits help digits: Spatial–numerical associations point to finger counting as prime example of embodied cognition. Frontiers in Psychology, 2, 260.Google Scholar
Fischer, M. H., & Shaki, S. (2018). Number concepts: Abstract and embodied. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0125Google Scholar
Frith, C. (2012a). Explaining delusions of control: The comparator model 20 years on. Consciousness and Cognition, 21(1), 5254.Google Scholar
Frith, C. D. (2012b). The role of metacognition in human social interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1599), 22132223.Google Scholar
Frith, C. D., & Frith, U. (2012). Mechanisms of social cognition. Annual Review of Psychology, 63, 287313.Google Scholar
Fusaroli, R., Bahrami, B., Olsen, K., Roepstorff, A., Rees, G., Frith, C., & Tylén, K. (2012). Coming to terms: Quantifying the benefits of linguistic coordination. Psychological Science, 23(8), 931939. https://doi.org/10.1177/0956797612436816Google Scholar
Gastgeb, H. Z., Dundas, E. M., Minshew, N. J., & Strauss, M. S. (2012). Category formation in autism: Can individuals with autism form categories and prototypes of dot patterns? Journal of Autism and Developmental Disorders, 42(8), 16941704. https://doi.org/10.1007/s10803–011-1411-xGoogle Scholar
Gastgeb, H. Z., Rump, K. M., Best, C. A., Minshew, N. J., & Strauss, M. S. (2009). Prototype formation in autism: Can individuals with autism abstract facial prototypes? Autism Research, 2(5), 279284. https://doi.org/10.1002/aur.93Google Scholar
Gentner, D., & Asmuth, J. (2019). Metaphoric extension, relational categories, and abstraction. Language, Cognition and Neuroscience, 34(10), 12981307.Google Scholar
Gentner, D., & Boroditsky, L. (2001). Individuation, relativity, and early word learning. Language Acquisition and Conceptual Development, 3, 215256.Google Scholar
Ghio, M., Vaghi, M. M. S., & Tettamanti, M. (2013). Fine-grained semantic categorization across the abstract and concrete domains. PLoS ONE, 8(6), e67090. https://doi.org/10.1371/journal.pone.0067090Google Scholar
Gianelli, C., Ranzini, M., Marzocchi, M., Rettore Micheli, L., & Borghi, A. M. (2012). Influence of numerical magnitudes on the free choice of an object position. Cognitive Processing, 13 Suppl. 1, S185–188. https://doi.org/10.1007/s10339–012-0483-7Google Scholar
Gordon, P. (2004). Numerical cognition without words: Evidence from Amazonia. Science, 306(5695), 496499.Google Scholar
Granato, G., Borghi, A. M., Mattera, A., & Baldassarre, G. (2022). A computational model of inner speech supporting flexible goal-directed behaviour in Autism. Scientific Reports, 12(1), 14198.Google Scholar
Grandin, T. (2006). Thinking in pictures: And other reports from my life with autism. Vintage.Google Scholar
Granito, C., Scorolli, C., & Borghi, A. M. (2015). Naming a Lego world. The role of language in the acquisition of abstract concepts. PLoS ONE, 10(1), e0114615. https://doi.org/10.1371/journal.pone.0114615Google Scholar
Green, A. E., Kenworthy, L., Mosner, M. G., Gallagher, N. M., Fearon, E. W., Balhana, C. D., & Yerys, B. E. (2014). Abstract analogical reasoning in high-functioning children with autism spectrum disorders. Autism Research, 7(6), 677686.Google Scholar
Happé, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 525. https://doi.org/10.1007/s10803–005-0039-0Google Scholar
Happé, F. G. (1995). The role of age and verbal ability in the theory of mind task performance of subjects with autism. Child Development, 66(3), 843855.Google Scholar
Hein, G., & Knight, R. T. (2008). Superior temporal sulcus – It’s my area: Or is it? Journal of Cognitive Neuroscience, 20(12), 21252136. https://doi.org/10.1162/jocn.2008.20148Google Scholar
Henningsen-Schomers, M. R., & Pulvermüller, F. (2021). Modelling concrete and abstract concepts using brain-constrained deep neural networks. Psychological Research, 86(8), 25332559.Google Scholar
Herrera, G., Jordan, R., & Vera, L. (2006). Abstract concept and imagination teaching through virtual reality in people with autism spectrum disorders. Technology and Disability, 18(4), 173180. https://doi.org/10.3233/TAD-2006-18403Google Scholar
Hobson, R. P., & Lee, A. (1989). Emotion-related and abstract concepts in autistic people: Evidence from the British Picture Vocabulary Scale. Journal of Autism and Developmental Disorders, 19(4), 601623.Google Scholar
Hoffman, P., Binney, R. J., & Lambon Ralph, M. A. (2015). Differing contributions of inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge. Cortex, 63, 250266. https://doi.org/10.1016/j.cortex.2014.09.001Google Scholar
Jessen, F., Heun, R., Erb, M., Granath, D. O., Klose, U., Papassotiropoulos, A., & Grodd, W. (2000). The concreteness effect: Evidence for dual coding and context availability. Brain and Language, 74(1), 103112. https://doi.org/10.1006/brln.2000.2340Google Scholar
Johnson, C. R., & Rakison, D. H. (2006). Early categorization of animate/inanimate concepts in young children with autism. Journal of Developmental and Physical Disabilities, 18(2), 7389.Google Scholar
Kalénine, S., Mirman, D., & Buxbaum, L. J. (2012a). A combination of thematic and similarity-based semantic processes confers resistance to deficit following left hemisphere stroke. Frontiers in Human Neuroscience, 6, 106.Google Scholar
Kalénine, S., Mirman, D., Middleton, E. L., & Buxbaum, L. J. (2012b). Temporal dynamics of activation of thematic and functional knowledge during conceptual processing of manipulable artifacts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(5), 1274.Google Scholar
Kamio, Y., & Toichi, M. (2000). Dual access to semantics in autism: Is pictorial access superior to verbal access? The Journal of Child Psychology and Psychiatry and Allied Disciplines, 41(7), 859867.Google Scholar
Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261276.Google Scholar
Knight, V., McKissick, B. R., & Saunders, A. (2013). A review of technology-based interventions to teach academic skills to students with autism spectrum disorder. Journal of Autism and Developmental Disorders, 43(11), 26282648.Google Scholar
Kousta, S.-T., Vigliocco, G., Vinson, D. P., Andrews, M., & Del Campo, E. (2011). The representation of abstract words: Why emotion matters. Journal of Experimental Psychology: General, 140(1), 14.Google Scholar
Kunda, M., & Goel, A. K. (2011). Thinking in pictures as a cognitive account of autism. Journal of Autism and Developmental Disorders, 41(9), 11571177.Google Scholar
Langland-Hassan, P., Faries, F. R., Gatyas, M., Dietz, A., & Richardson, M. J. (2021). Assessing abstract thought and its relation to language with a new nonverbal paradigm: Evidence from aphasia. Cognition, 211, 104622.Google Scholar
Lemer, C., Dehaene, S., Spelke, E., & Cohen, L. (2003). Approximate quantities and exact number words: Dissociable systems. Neuropsychologia, 41(14), 19421958.Google Scholar
Leslie, A. M., & Thaiss, L. (1992). Domain specificity in conceptual development: Neuropsychological evidence from autism. Cognition, 43(3), 225251.Google Scholar
Levinson, S. C. (1983). Pragmatics. Cambridge University Press.Google Scholar
Liebenthal, E., Desai, R. H., Humphries, C., Sabri, M., & Desai, A. (2014). The functional organization of the left STS: A large scale meta-analysis of PET and fMRI studies of healthy adults. Frontiers in Neuroscience, 8, 289. https://doi.org/10.3389/fnins.2014.00289Google Scholar
Lindemann, O., Abolafia, J. M., Girardi, G., & Bekkering, H. (2007). Getting a grip on numbers: Numerical magnitude priming in object grasping. Journal of Experimental Psychology: Human Perception and Performance, 33(6), 1400.Google Scholar
Lindemann, O., Alipour, A., & Fischer, M. H. (2011). Finger counting habits in Middle Eastern and Western individuals: An online survey. Journal of Cross-Cultural Psychology, 42(4), 566578.Google Scholar
Loetscher, T., Schwarz, U., Schubiger, M., & Brugger, P. (2008). Head turns bias the brain’s internal random generator. Current Biology, 18(2), R60R62.Google Scholar
Lugli, L., Baroni, G., Anelli, F., Borghi, A. M., & Nicoletti, R. (2013). Counting is easier while experiencing a congruent motion. PLoS ONE, 8(5), e64500. https://doi.org/10.1371/journal.pone.0064500Google Scholar
Lupyan, G., & Mirman, D. (2013). Linking language and categorization: Evidence from aphasia. Cortex, 49(5), 11871194. https://doi.org/10.1016/j.cortex.2012.06.006Google Scholar
Lysaker, P. H., Carcione, A., Dimaggio, G., Johannesen, J. K., Nicolò, G., Procacci, M., & Semerari, A. (2005). Metacognition amidst narratives of self and illness in schizophrenia: Associations with neurocognition, symptoms, insight and quality of life. Acta Psychiatrica Scandinavica, 112(1), 6471.Google Scholar
Mahon, B., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology-Paris, 102(1–3), 5970.Google Scholar
Mazzuca, C., Lugli, L., Nicoletti, R., & Borghi, A. M. (2018). Abstract, emotional and concrete concepts and the activation of mouth-hand effectors. PeerJ, 6, e5987.Google Scholar
Mazzuca, C., & Santarelli, M. (2022). Making it abstract, making it contestable: Politicization at the intersection of political and cognitive science. Review of Philosophy and Psychology, 1–22.Google Scholar
Mellem, M. S., Jasmin, K. M., Peng, C., & Martin, A. (2016). Sentence processing in anterior superior temporal cortex shows a social-emotional bias. Neuropsychologia, 89, 217224. https://doi.org/10.1016/j.neuropsychologia.2016.06.019Google Scholar
Minor, K. S., Bonfils, K. A., Luther, L., Firmin, R. L., Kukla, M., MacLain, V. R., … Salyers, M. P. (2015). Lexical analysis in schizophrenia: How emotion and social word use informs our understanding of clinical presentation. Journal of Psychiatric Research, 64, 7478.Google Scholar
Minshew, N. J., Meyer, J., & Goldstein, G. (2002). Abstract reasoning in autism: A disassociation between concept formation and concept identification. Neuropsychology, 16(3), 327334. https://doi.org/10.1037/0894-4105.16.3.327Google Scholar
Molesworth, C. J., Bowler, D. M., & Hampton, J. A. (2008). When prototypes are not best: Judgments made by children with autism. Journal of Autism and Developmental Disorders, 38(9), 17211730. https://doi.org/10.1007/s10803–008-0557-7Google Scholar
Moretto, G., & Di Pellegrino, G. (2008). Grasping numbers. Experimental Brain Research, 188(4), 505515.Google Scholar
Moseley, R. L., Shtyrov, Y., Mohr, B., Lombardo, M. V., Baron-Cohen, S., & Pulvermüller, F. (2015). Lost for emotion words: What motor and limbic brain activity reveals about autism and semantic theory. NeuroImage, 104, 413422.Google Scholar
Nagels, A., Kircher, T., Grosvald, M., Steines, M., & Straube, B. (2019). Evidence for gesture-speech mismatch detection impairments in schizophrenia. Psychiatry Research, 273, 1521.Google Scholar
Narzisi, A. (2020). The challenging heterogeneity of autism: Editorial. Brain Sciences Special Issue: Advances in Autism Research, 10(12), 948.Google Scholar
Nedergaard, J., Wallentin, M., & Lupyan, G. (2022). Verbal interference paradigms: A systematic review investigating the role of language in cognition, Psychonomic Bulletin & Review. doi: 10.3758/s13423-022-02144-7Google Scholar
Negen, J., & Sarnecka, B. W. (2009). Young children’s number-word knowledge predicts their performance on a nonlinguistic number task. Proceedings of the 31st Annual Meeting of the Cognitive Science Society. https://escholarship.org/uc/item/1q03q75zGoogle Scholar
Negen, J., & Sarnecka, B. W. (2012). Number-concept acquisition and general vocabulary development. Child Development, 83(6), 20192027. https://doi.org/10.1111/j.1467-8624.2012.01815.xGoogle Scholar
Niedenthal, P. M., Augustinova, M., Rychlowska, M., Droit-Volet, S., Zinner, L., Knafo, A., & Brauer, M. (2012). Negative relations between pacifier use and emotional competence. Basic and Applied Social Psychology, 34(5), 387394.Google Scholar
Noppeney, U., & Price, C. J. (2004). Retrieval of abstract semantics. NeuroImage, 22(1), 164170. https://doi.org/10.1016/j.neuroimage.2003.12.010Google Scholar
Olson, I. R., McCoy, D., Klobusicky, E., & Ross, L. A. (2013). Social cognition and the anterior temporal lobes: A review and theoretical framework. Social Cognitive and Affective Neuroscience, 8(2), 123133.Google Scholar
Pacherie, E. (2008). The phenomenology of action: A conceptual framework. Cognition, 107(1), 179217.Google Scholar
Paivio, A. (1990). Mental representations: A dual coding approach. Oxford University Press.Google Scholar
Parola, A., Berardinelli, L., & Bosco, F. M. (2018). Cognitive abilities and theory of mind in explaining communicative-pragmatic disorders in patients with schizophrenia. Psychiatry Research, 260, 144151.Google Scholar
Perani, D., Cappa, S. F., Schnur, T., Tettamanti, M., Collina, S., Rosa, M. M., & Fazio, F. (1999). The neural correlates of verb and noun processing. A PET study. Brain, 122 ( Pt. 12), 23372344.Google Scholar
Petrolini, V., Jorba, M., & Vicente, A. (2020). The role of inner speech in executive functioning tasks: Schizophrenia with auditory verbal hallucinations and autistic spectrum conditions as case studies. Frontiers in Psychology, 2452, 11.Google Scholar
Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499503.Google Scholar
Plaisted, K. C. (2001). Reduced Generalization in Autism: An Alternative to Weak Central Coherence. In Burack, J. A., Charman, T., Yirmiya, N., & Zelazo, P. R., eds., The development of autism: Perspectives from theory and research. Erlbaum, pp. 149169.Google Scholar
Pobric, G., Lambon Ralph, M. A., & Zahn, R. (2016). Hemispheric specialization within the superior anterior temporal cortex for social and nonsocial concepts. Journal of Cognitive Neuroscience, 28(3), 351360. https://doi.org/10.1162/jocn_a_00902Google Scholar
Prinz, J. J. (2012). Beyond human nature: How culture and experience shape our lives. Penguin UK.Google Scholar
Ralph, M. A. L., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 18(1), 42.Google Scholar
Ranzini, M., Lugli, L., Anelli, F., Carbone, R., Nicoletti, R., & Borghi, A. M. (2011). Graspable objects shape number processing. Frontiers in Human Neuroscience, 5, 147. https://doi.org/10.3389/fnhum.2011.00147Google Scholar
Rice, G. E., Hoffman, P., Binney, R. J., & Lambon Ralph, M. A. (2018). Concrete versus abstract forms of social concept: An fMRI comparison of knowledge about people versus social terms. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0136Google Scholar
Rizzolatti, G., & Fabbri-Destro, M. (2010). Mirror neurons: From discovery to autism. Experimental Brain Research, 200(3), 223237. https://doi.org/10.1007/s00221–009-2002-3Google Scholar
Rochester, S. (2013). Crazy talk: A study of the discourse of schizophrenic speakers. Springer Science & Business Media.Google Scholar
Roehr, B. (2013). American Psychiatric Association explains DSM-5. BMJ, 346.Google Scholar
Rusconi, E., Walsh, V., & Butterworth, B. (2005). Dexterity with numbers: RTMS over left angular gyrus disrupts finger gnosis and number processing. Neuropsychologia, 43(11), 16091624.Google Scholar
Sabsevitz, D. S., Medler, D. A., Seidenberg, M., & Binder, J. R. (2005). Modulation of the semantic system by word imageability. NeuroImage, 27(1), 188200. https://doi.org/10.1016/j.neuroimage.2005.04.012Google Scholar
Sakreida, K., Scorolli, C., Menz, M. M., Heim, S., Borghi, A. M., & Binkofski, F. (2013). Are abstract action words embodied? An fMRI investigation at the interface between language and motor cognition. Frontiers in Human Neuroscience, 7, 125. https://doi.org/10.3389/fnhum.2013.00125Google Scholar
Sato, M., Cattaneo, L., Rizzolatti, G., & Gallese, V. (2007). Numbers within our hands: Modulation of corticospinal excitability of hand muscles during numerical judgment. Journal of Cognitive Neuroscience, 19(4), 684693.Google Scholar
Schwanenflugel, P. J., & Stowe, R. W. (1989). Context availability and the processing of abstract and concrete words in sentences. Reading Research Quarterly, 114–126.Google Scholar
Scorolli, C., & Borghi, A. M. (2007). Sentence comprehension and action: Effector specific modulation of the motor system. Brain Research, 1130(1), 119124. https://doi.org/10.1016/j.brainres.2006.10.033Google Scholar
Shallice, T., & Cooper, R. P. (2013). Is there a semantic system for abstract words? Frontiers in Human Neuroscience, 7, 175. https://doi.org/10.3389/fnhum.2013.00175Google Scholar
Shea, N. (2018). Metacognition and abstract concepts. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0133Google Scholar
Shea, N., Boldt, A., Bang, D., Yeung, N., Heyes, C., & Frith, C. D. (2014). Supra-personal cognitive control and metacognition. Trends in Cognitive Sciences, 18(4), 186193. https://doi.org/10.1016/j.tics.2014.01.006Google Scholar
Shulman, C., Yirmiya, N., & Greenbaum, C. W. (1995). From categorization to classification: A comparison among individuals with autism, mental retardation, and normal development. Journal of Abnormal Psychology, 104(4), 601609. https://doi.org/10.1037/0021-843X.104.4.601Google Scholar
Siegal, M., & Blades, M. (2003). Language and auditory processing in autism. Trends in Cognitive Sciences, 7(9), 378380.Google Scholar
Simmons, W. K., Reddish, M., Bellgowan, P. S., & Martin, A. (2010). The selectivity and functional connectivity of the anterior temporal lobes. Cerebral Cortex, 20(4), 813825.Google Scholar
Sloutsky, V. M. (2010). From perceptual categories to concepts: What develops? Cognitive Science, 34(7), 12441286.Google Scholar
Slusser, E., Ribner, A., & Shusterman, A. (2019). Language counts: Early language mediates the relationship between parent education and children’s math ability. Developmental Science, 22(3), e12773. https://doi.org/10.1111/desc.12773Google Scholar
Snyder, H. R., Kaiser, R. H., Warren, S. L., & Heller, W. (2015). Obsessive-compulsive disorder is associated with broad impairments in executive function: A meta-analysis. Clinical Psychological Science, 3(2), 301330.Google Scholar
Spaepen, E., Coppola, M., Spelke, E. S., Carey, S. E., & Goldin-Meadow, S. (2011). Number without a language model. Proceedings of the National Academy of Sciences, 108(8), 31633168.Google Scholar
Stoianov, I., Kramer, P., Umiltà, C., & Zorzi, M. (2008). Visuospatial priming of the mental number line. Cognition, 106(2), 770779.Google Scholar
Swaab, T. Y., Boudewyn, M. A., Long, D. L., Luck, S. J., Kring, A. M., Ragland, J. D., … Solomon, M. (2013). Spared and impaired spoken discourse processing in schizophrenia: Effects of local and global language context. Journal of Neuroscience, 33(39), 1557815587.Google Scholar
Tager-Flusberg, H. (1985). Basic level and superordinate level categorization by autistic, mentally retarded, and normal children. Journal of Experimental Child Psychology, 40(3), 450469.Google Scholar
Tager-Flusberg, H. (1992). Autistic children’s talk about psychological states: Deficits in the early acquisition of a theory of mind. Child Development, 63(1), 161172. https://doi.org/10.2307/1130910Google Scholar
Tang, Y., Zhang, W., Chen, K., Feng, S., Ji, Y., Shen, J., … Liu, Y. (2006). Arithmetic processing in the brain shaped by cultures. Proceedings of the National Academy of Sciences, 103(28), 1077510780. https://doi.org/10.1073/pnas.0604416103Google Scholar
Tschentscher, N., Hauk, O., Fischer, M. H., & Pulvermüller, F. (2012). You can count on the motor cortex: Finger counting habits modulate motor cortex activation evoked by numbers. Neuroimage, 59(4), 31393148.Google Scholar
Vicente, A. (2014). The comparator account on thought insertion, alien voices and inner speech: Some open questions. Phenomenology and the Cognitive Sciences, 13(2), 335353.Google Scholar
Vigliocco, G., Kousta, S.-T., Della Rosa, P. A., Vinson, D. P., Tettamanti, M., Devlin, J. T., & Cappa, S. F. (2013). The neural representation of abstract words: The role of emotion. Cerebral Cortex, 24(7), 17671777.Google Scholar
Vigliocco, G., Ponari, M., & Norbury, C. (2018). Learning and processing abstract words and concepts: Insights from typical and atypical development. Topics in Cognitive Science, 10(3), 533549.Google Scholar
Villani, C., Lugli, L., Liuzza, M. T., & Borghi, A. M. (2019). Varieties of abstract concepts and their multiple dimensions. Language and Cognition, 11(3), 403430.Google Scholar
Villani, C., Lugli, L., Liuzza, M. T., Nicoletti, R., & Borghi, A. M. (2021). Sensorimotor and interoceptive dimensions in concrete and abstract concepts. Journal of Memory and Language, 116, 104173.Google Scholar
Vladusich, T., Olu-Lafe, O., Kim, D.-S., Tager-Flusberg, H., & Grossberg, S. (2010). Prototypical category learning in high-functioning autism. Autism Research, 3(5), 226236. https://doi.org/10.1002/aur.148Google Scholar
Wang, J., Conder, J. A., Blitzer, D. N., & Shinkareva, S. V. (2010). Neural representation of abstract and concrete concepts: A meta-analysis of neuroimaging studies. Human Brain Mapping, 31(10), 14591468. https://doi.org/10.1002/hbm.20950Google Scholar
Wang, X., Wu, W., Ling, Z., Xu, Y., Fang, Y., Wang, X., … Bi, Y. (2017). Organizational principles of abstract words in the human brain. Cerebral Cortex, 1–14. https://doi.org/10.1093/cercor/bhx283Google Scholar
Williams, D. M., Peng, C., & Wallace, G. L. (2016). Verbal thinking and inner speech use in autism spectrum disorder. Neuropsychology Review, 26(4), 394419. https://doi.org/10.1007/s11065–016-9328-yGoogle Scholar
Wilson-Mendenhall, C. D., Barrett, L. F., & Barsalou, L. W. (2013). Neural evidence that human emotions share core affective properties. Psychological Science, 24(6), 947956. https://doi.org/10.1177/0956797612464242Google Scholar
Winter, B., Marghetis, T., & Matlock, T. (2015). Of magnitudes and metaphors: Explaining cognitive interactions between space, time, and number. Cortex, 64, 209224. https://doi.org/10.1016/j.cortex.2014.10.015Google Scholar
Winter, B., & Matlock, T. (2017). Primary metaphors are both cultural and embodied. In Hampe, B., ed., Metaphor: Embodied cognition and discourse, Cambridge University Press, pp. 99115.Google Scholar
Woodin, G., & Winter, B. (2018). Placing abstract concepts in space: Quantity, time and emotional valence. Frontiers in Psychology, 2169, 114.Google Scholar
Woodin, G., Winter, B., Perlman, M., Littlemore, J., & Matlock, T. (2020). “Tiny numbers” are actually tiny: Evidence from gestures in the TV News Archive. PLoS ONE, 15(11), e0242142.Google Scholar
Zalla, T., Daprati, E., Sav, A.-M., Chaste, P., Nico, D., & Leboyer, M. (2010). Memory for self-performed actions in individuals with Asperger syndrome. PLoS ONE, 5(10), e13370. https://doi.org/10.1371/journal.pone.0013370Google Scholar

References

Ahl, R. E., Amir, D., & Keil, F. C. (2020). The world within: Children are sensitive to internal complexity cues. Journal of Experimental Child Psychology, 200, 104932. https://doi.org/10.1016/j.jecp.2020.104932Google Scholar
Ahl, R. E., DeAngelis, E., Stephenson, A., Joo, S., Keil, F. C., & Keil, F. (2018). It’s complicated: Children identify relevant information about causal complexity. Proceedings of the 40th Annual Conference of the Cognitive Science Society, Madison, July 25–28, pp. 88–93.Google Scholar
Aron, A., Aron, E. N., & Smollan, D. (1992). Inclusion of Other in the Self scale and the structure of interpersonal closeness. Journal of Personality and Social Psychology, 63(4), 596.Google Scholar
Aureli, T., Grazia, A., Cardone, D., & Merla, A. (2015). Behavioral and facial thermal variations in 3-to 4-month-old infants during the Still-Face Paradigm. Frontiers in Psychology, 6. https://www.frontiersin.org/article/10.3389/fpsyg.2015.01586Google Scholar
Banks, B., & Connell, L. (2023). Multidimensional sensorimotor grounding of concrete and abstract categories. Philosophical Transactions of the Royal Society B. 378(1870), 20210366.Google Scholar
Barca, L. (2021). Toward a speech-motor account of the effect of age of pacifier withdrawal. Journal of Communication Disorders, 90, 106085. https://doi.org/10.1016/j.jcomdis.2021.106085Google Scholar
Barca, L., Mazzuca, C., & Borghi, A. M. (2017). Pacifier overuse and conceptual relations of abstract and emotional concepts. Frontiers in Psychology, 8, 2014. https://doi.org/10.3389/fpsyg.2017.02014Google Scholar
Barca, L., Mazzuca, C., & Borghi, A. M. (2020). Overusing the pacifier during infancy sets a footprint on abstract words processing. Journal of Child Language, 47(5), 10841099.Google Scholar
Barsalou, L. W. (1983). Ad hoc categories. Memory & Cognition, 11(3), 211227.Google Scholar
Barsalou, L. W. (1985). Ideals, central tendency, and frequency of instantiation as determinants of graded structure in categories. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11(4), 629.Google Scholar
Barsalou, L. W. (1993). Flexibility, structure, and linguistic vagary in concepts: Manifestations of a compositional system of perceptual symbols. In Theories of memory. Erlbaum, pp. 29101.Google Scholar
Barsalou, L. W., Dutriaux, L., & Scheepers, C. (2018). Moving beyond the distinction between concrete and abstract concepts. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0144Google Scholar
Barsalou, L. W., & Wiemer-Hastings, K. (2005). Situating abstract concepts. In Pecher, D., & Zwaan, R., eds., Grounding cognition: The role of perception and action in memory, language, and thought. Cambridge University Press, pp. 129163.Google Scholar
Bellagamba, F., Borghi, A. M., Mazzuca, C., Pecora, G., Ferrara, F., & Fogel, A. (2022). Abstractness emerges progressively over the second year of life. Scientific Reports, 12, 20940. https://doi.org/10.1038/s41598-022-25426-5Google Scholar
Bergelson, E. (2020). The comprehension boost in early word learning: Older infants are better learners. Child Development Perspectives, 14(3), 142149. https://doi.org/10.1111/cdep.12373Google Scholar
Bergelson, E., & Swingley, D. (2013). The acquisition of abstract words by young infants. Cognition, 127(3), 391397.Google Scholar
Bolognesi, M. M. (2020). Where words get their meaning: Cognitive processing and distributional modelling of word meaning in first and second language, vol. 23. John Benjamins.Google Scholar
Bolognesi, M. M., & Caselli, T. (2022). Specificity ratings for Italian data. Behavior Research Methods, 1–18.Google Scholar
Borghi, A. A., & Binkofski, F. (2014). Words as social tools: An embodied view on abstract concepts. Springer.Google Scholar
Borghi, A. M. (2022a). Concepts for which we need others more: The case of abstract concepts. Current Directions in Psychological Science, 31(3), 09637214221079625.Google Scholar
Borghi, A. M. (2022b). Merging affordances and (abstract) concepts. In Djebbara, Z., ed., Affordances in everyday life. Springer, pp. 113121.Google Scholar
Borghi, A. M., Barca, L., Binkofski, F., Castelfranchi, C., Pezzulo, G., & Tummolini, L. (2019). Words as social tools: Language, sociality and inner grounding in abstract concepts. Physics of Life Reviews, 29, 120153.Google Scholar
Borghi, A. M., & Cimatti, F. (2009). Words as tools and the problem of abstract words meanings. Proceedings of the 31st Annual Conference of the Cognitive Science Society, 31, 23042309.Google Scholar
Borghi, A. M., Fini, C., & Tummolini, L. (2021). Abstract concepts and metacognition: Searching for meaning in self and others. In Robinson, M. D. & Thomas, L. E., eds., Handbook of Embodied Psychology. Springer, pp. 197220.Google Scholar
Borghi, A. M., & Setti, A. (2017). Abstract concepts and aging: An embodied and grounded perspective. Frontiers in Psychology, 8, 430. https://doi.org/10.3389/fpsyg.2017.00430Google Scholar
Borghi, A. M., & Tummolini, L. (2020). Touch me if you can: The intangible but grounded nature of abstract concepts. Behavioral and Brain Sciences, 43.Google Scholar
Brown, R. W. (1957). Linguistic determinism and the part of speech. The Journal of Abnormal and Social Psychology, 55(1), 15. https://doi.org/10.1037/h0041199Google Scholar
Camaioni, L., Aureli, T., Bellagamba, F., & Fogel, A. (2003). A longitudinal examination of the transition to symbolic communication in the second year of life. Infant and Child Development, 12(1), 126. https://doi.org/10.1002/icd.333Google Scholar
Caselli, M. C., Bello, A., Rinaldi, P., Stefanini, S., & Pasqualetti, P. (2015). Il Primo Vocabolario del Bambino: Gesti, Parole e Frasi. Valori di riferimento fra 8 e 36 mesi delle Forme complete e delle Forme brevi del questionario MacArthur-Bates CDI: Valori di riferimento fra 8 e 36 mesi delle Forme complete e delle Forme brevi del questionario MacArthur-Bates CDI. FrancoAngeli.Google Scholar
Costello, M. C., & Bloesch, E. K. (2017). Are older adults less embodied? A review of age effects through the lens of embodied cognition. Frontiers in Psychology, 8, 267.Google Scholar
Davis, C. P., Altmann, G. T., & Yee, E. (2020). Situational systematicity: A role for schema in understanding the differences between abstract and concrete concepts. Cognitive Neuropsychology, 37(1–2), 142153.Google Scholar
De Livio, C., Fini, C., Mazzuca, C., & Borghi, A. M. (2022). The role of voice self-perception in the conceptual representation of gender. 18th Annual Conference of the Italian Association of Cognitive Sciences, Rovereto, Trento, December 15–17.Google Scholar
Di Paolo, E. A., Cuffari, E. C., & De Jaegher, H. (2018). Linguistic bodies: The continuity between life and language. MIT Press.Google Scholar
Dove, G. (2016). Three symbol ungrounding problems: Abstract concepts and the future of embodied cognition. Psychonomic Bulletin & Review, 23(4), 11091121. https://doi.org/10.3758/s13423–015-0825-4Google Scholar
Falandays, J. B., & Spivey, M. J. (2019). Abstract meanings may be more dynamic, due to their sociality: Comment on “Words as social tools: Language, sociality and inner grounding in abstract concepts” by Anna M. Borghi et al. Physics of Life Reviews, 29, 175177. https://doi.org/10.1016/j.plrev.2019.02.011Google Scholar
Fini, C., & Borghi, A. M. (2019). Sociality to reach objects and to catch meaning. Frontiers in Psychology, 10, 19.Google Scholar
Fini, C., Falcinelli, I., Cuomo, G., Era, V., Candidi, M., Tummolini, L., … Borghi, A. M. (2023). Breaking the ice in a conversation: Abstract words prompt dialogues more easily than concrete words. Language and Cognition.Google Scholar
Fini, C., Era, V., da Rold, F., Candidi, M., & Borghi, A. M. (2021). Abstract concepts in interaction: The need of others when guessing abstract concepts smooths dyadic motor interactions. Royal Society Open Science, 8(7), 201205.Google Scholar
Frank, M. C., Braginsky, M., Yurovsky, D., & Marchman, V. A. (2017). Wordbank: An open repository for developmental vocabulary data*. Journal of Child Language, 44(3), 677694. https://doi.org/10.1017/S0305000916000209Google Scholar
Gilead, M., Trope, Y., & Liberman, N. (2020). Above and beyond the concrete: The diverse representational substrates of the predictive brain. Behavioral and Brain Sciences, 43.Google Scholar
Gleitman, L. R., Cassidy, K., Nappa, R., Papafragou, A., & Trueswell, J. C. (2005). Hard words. Language Learning and Development, 1(1), 2364.Google Scholar
Glenberg, A. M. (2019). Turning social tools into tools for action: Comment on “Words as social tools: Language, sociality and inner grounding in abstract concepts” by Anna M. Borghi et al. Physics of Life Reviews, 29, 172174. https://doi.org/10.1016/j.plrev.2019.02.009Google Scholar
Grimminger, A., Rohlfing, K. J., Lüke, C., Liszkowski, U., & Ritterfeld, U. (2020). Decontextualized talk in caregivers’ input to 12-month-old children during structured interaction. Journal of Child Language, 47(2), 418434. https://doi.org/10.1017/S0305000919000710Google Scholar
Higgins, E. T., Rossignac-Milon, M., & Echterhoff, G. (2021). Shared reality: From sharing-is-believing to merging minds. Current Directions in Psychological Science, 30(2), 103110.Google Scholar
Huettig, F., Rommers, J., & Meyer, A. S. (2011). Using the visual world paradigm to study language processing: A review and critical evaluation. Acta Psychologica, 137(2), 151171.Google Scholar
Karmazyn-Raz, H., & Smith, L. B. (2023). Sampling statistics are like story creation: a network analysis of parent–toddler exploratory play. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 378(1870), 20210358.Google Scholar
Kim, J. M., Sidhu, D. M., & Pexman, P. M. (2020). Effects of emotional valence and concreteness on children’s recognition memory. Frontiers in Psychology, 11. https://www.frontiersin.org/article/10.3389/fpsyg.2020.615041Google Scholar
Kominsky, J. F., Langthorne, P., & Keil, F. C. (2016). The better part of not knowing: Virtuous ignorance. Developmental Psychology, 52(1), 3145. https://doi.org/10.1037/dev0000065Google Scholar
Kominsky, J. F., Zamm, A. P., & Keil, F. C. (2018). Knowing when help is needed: A developing sense of causal complexity. Cognitive Science, 42(2), 491523.Google Scholar
Koselleck, R. (2004). Futures past: On the semantics of historical time. Columbia University Press.Google Scholar
Lahnakoski, J. M., Forbes, P. A., McCall, C., & Schilbach, L. (2020). Unobtrusive tracking of interpersonal orienting and distance predicts the subjective quality of social interactions. Royal Society Open Science, 7(8), 191815.Google Scholar
Lakoff, G. (2006). Conceptual metaphor. Cognitive Linguistics: Basic Readings. Berlin, 185239.Google Scholar
Lakoff, G., & Johnson, M. (2008). Metaphors we live by. University of Chicago Press.Google Scholar
Lewis, M., Colunga, E., & Lupyan, G. (2021). Superordinate word knowledge predicts longitudinal vocabulary growth. Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43).Google Scholar
Lucariello, J., & Nelson, K. (1985). Slot-filler categories as memory organizers for young children. Developmental Psychology, 21(2), 272.Google Scholar
Lund, T. C., Sidhu, D. M., & Pexman, P. M. (2019). Sensitivity to emotion information in children’s lexical processing. Cognition, 190, 6171. https://doi.org/10.1016/j.cognition.2019.04.017Google Scholar
Lupyan, G., & Mirman, D. (2013). Linking language and categorization: Evidence from aphasia. Cortex, 49(5), 11871194. https://doi.org/10.1016/j.cortex.2012.06.006Google Scholar
Lupyan, G., & Winter, B. (2018). Language is more abstract than you think, or, why aren’t languages more iconic? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0137Google Scholar
Maass, A. (1999). Linguistic intergroup bias: Stereotype perpetuation through language. In Advances in experimental social psychology, vol. 31. Elsevier, pp. 79121.Google Scholar
Maass, A., Salvi, D., Arcuri, L., & Semin, G. R. (1989). Language use in intergroup contexts: The linguistic intergroup bias. Journal of Personality and Social Psychology, 57(6), 981.Google Scholar
Mazzuca, C., Falcinelli, I., Michalland, A.-H., Tummolini, L., & Borghi, A. M. (2022). Bodily, emotional, and public sphere at the time of COVID-19. An investigation on concrete and abstract concepts. Psychological Research, 1–12.Google Scholar
Mazzuca, C., Majid, A., Lugli, L., Nicoletti, R., & Borghi, A. M. (2020). Gender is a multifaceted concept: Evidence that specific life experiences differentially shape the concept of gender. Language and Cognition, 12(4), 649678.Google Scholar
Mazzuca, C., & Santarelli, M. (2022). Making it abstract, making it contestable: Politicization at the intersection of political and cognitive science. Review of Philosophy and Psychology, 1–22.Google Scholar
McRae, K., Nedjadrasul, D., Pau, R., Lo, B. P.-H., & King, L. (2018). Abstract concepts and pictures of real-world situations activate one another. Topics in Cognitive Science, 10(3), 518532.Google Scholar
Nelson, K. (1988). Where do taxonomic categories come from? Human Development, 31(1), 310.Google Scholar
Paoletti, M., Fini, C., Filippini, C., Massari, G., D’Abundo, E., Merla, A., … Borghi, A. M. (2022). Abstract word processing induces parasympathetic activation: A thermal imaging study. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.932118.Google Scholar
Pickering, M. J., & Garrod, S. (2021). Understanding dialogue: Language use and social interaction. Cambridge University Press.Google Scholar
Ponari, M., Norbury, C. F., & Vigliocco, G. (2018). Acquisition of abstract concepts is influenced by emotional valence. Developmental Science, 21(2). https://doi.org/10.1111/desc.12549Google Scholar
Reitsma-van Rooijen, M., Semin, G. R., & Van Leeuwen, E. (2007). The effect of linguistic abstraction on interpersonal distance. European Journal of Social Psychology, 37(5), 817823.Google Scholar
Rossignac-Milon, M., Pinelli, F., & Higgins, E. T. (2020). Shared reality and abstraction: The social nature of predictive models. Behavioral and Brain Sciences, 43.Google Scholar
Schwanenflugel, P. J. (1991). Why are abstract concepts hard to understand. The Psychology of Word Meanings, 11, 223250.Google Scholar
Schwanenflugel, P. J., & Stowe, R. W. (1989). Context availability and the processing of abstract and concrete words in sentences. Reading Research Quarterly, 24, 114126.Google Scholar
Slone, L. K., Smith, L. B., & Yu, C. (2019). Self-generated variability in object images predicts vocabulary growth. Developmental Science, 22(6), e12816.Google Scholar
Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C. (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268(5217), 16321634.Google Scholar
Tomasello, M. (2018). A natural history of human thinking. Harvard University Press.Google Scholar
Tomasello, M., & Carpenter, M. (2007). Shared intentionality. Developmental Science, 10(1), 121125. https://doi.org/10.1111/j.1467-7687.2007.00573.xGoogle Scholar
Troyer, M., & McRae, K. (2021). Thematic and other semantic relations central to abstract (and concrete) concepts. Psychological Research, 86, 23992416. https://doi.org/10.1007/s00426-021-01484-8Google Scholar
Villani, C., Lugli, L., Liuzza, M. T., & Borghi, A. M. (2019). Varieties of abstract concepts and their multiple dimensions. Language and Cognition, 11(3), 403430.Google Scholar
Villani, C., Lugli, L., Liuzza, M. T., Nicoletti, R., & Borghi, A. M. (2021). Sensorimotor and interoceptive dimensions in concrete and abstract concepts. Journal of Memory and Language, 116, 104173.Google Scholar
Villani, C., Orsoni, M., Lugli, L., Benassi, M., & Borghi, A. M. (2022, 2022). Abstract and concrete concepts in conversation. Scientific Report 12, 17572. https://doi.org/10.1038/s41598–022-20785-5.Google Scholar
Winter, B., Marghetis, T., & Matlock, T. (2015). Of magnitudes and metaphors: Explaining cognitive interactions between space, time, and number. Cortex, 64, 209224. https://doi.org/10.1016/j.cortex.2014.10.015Google Scholar
Yee, E., & Thompson-Schill, S. L. (2016). Putting concepts into context. Psychonomic Bulletin & Review, 23(4), 10151027. https://doi.org/10.3758/s13423–015-0948-7Google Scholar
Yu, C., Suanda, S. H., & Smith, L. B. (2019). Infant sustained attention but not joint attention to objects at 9 months predicts vocabulary at 12 and 15 months. Developmental Science, 22(1), e12735.Google Scholar
Yu, C., Zhang, Y., Slone, L. K., & Smith, L. B. (2021). The infant’s view redefines the problem of referential uncertainty in early word learning. Proceedings of the National Academy of Sciences, 118(52), e2107019118.Google Scholar
Zdrazilova, L., Sidhu, D. M., & Pexman, P. M. (2018). Communicating abstract meaning: Concepts revealed in words and gestures. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0138Google Scholar

References

Borghi, A. M. (2022). Concepts for which we need others more: The case of abstract concepts. Current Directions in Psychological Science, Current 31(3), 09637214221079625.Google Scholar
Borghi, A. M., Barca, L., Binkofski, F., Castelfranchi, C., Pezzulo, G., & Tummolini, L. (2019). Words as social tools: Language, sociality and inner grounding in abstract concepts. Physics of Life Reviews, 29, 120153.Google Scholar
Dove, G. (2022). Abstract concepts and the embodied mind. Oxford University Press.Google Scholar
Fodor, J. A. (1998). Concepts: Where cognitive science went wrong. Oxford University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×