Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-09T06:57:00.419Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  05 June 2012

R. J. Beerends
Affiliation:
Ministry of Defence, The Hague
H. G. ter Morsche
Affiliation:
Technische Universiteit Eindhoven, The Netherlands
J. C. van den Berg
Affiliation:
Agricultural University, Wageningen, The Netherlands
E. M. van de Vrie
Affiliation:
Open Universiteit
Get access

Summary

This book arose from the development of a course on Fourier and Laplace transforms for the Open University of the Netherlands. Originally it was the intention to get a suitable course by revising part of the book Analysis and numerical analysis, part 3 in the series Mathematics for higher education by R. van Asselt et al. (in Dutch). However, the revision turned out to be so thorough that in fact a completely new book was created. We are grateful that Educaboek was willing to publish the original Dutch edition of the book besides the existing series.

In writing this book, the authors were led by a twofold objective:

  1. - the ‘didactical structure’ should be such that the book is suitable for those who want to learn this material through self-study or distance teaching, without damaging its usefulness for classroom use;

  2. - the material should be of interest to those who want to apply the Fourier and Laplace transforms as well as to those who appreciate a mathematically sound treatment of the theory.

We assume that the reader has a mathematical background comparable to an undergraduate student in one of the technical sciences. In particular we assume a basic understanding and skill in differential and integral calculus. Some familiarity with complex numbers and series is also presumed, although chapter 2 provides an opportunity to refresh this subject.

The material in this book is subdivided into parts. Each part consists of a number of coherent chapters covering a specific part of the field of Fourier and Laplace transforms.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×