Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-20T17:32:22.123Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  10 December 2018

Robert W. Heath Jr.
Affiliation:
University of Texas, Austin
Angel Lozano
Affiliation:
Universitat Pompeu Fabra, Barcelona
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Verdú, S., “Wireless bandwidth in the making,” IEEE Commun. Mag., vol. 38, no. 7, pp. 5358, 2000.Google Scholar
Bondyopadhyay, P. K., “The first application of array antenna,” IEEE Int’l Conf. Phased Array Systems and Techn., pp. 29–32, May 2000.Google Scholar
Schell, A. C., “Antenna developments of the 1950s to the 1980s,” IEEE Int’l Symp. Antennas Propag., vol. 1, pp. 3033, Jul. 2001.Google Scholar
Paulraj, A. J. and Papadias, C. B., “Space–time processing for wireless communications,” IEEE Signal Process. Mag., vol. 14, no. 6, pp. 4983, 1997.CrossRefGoogle Scholar
Kahn, L. R., “Ratio squarer,” Proc. IRE, vol. 42, p. 1704, 1954.Google Scholar
Wittneben, A., “Basestation modulation diversity for digital simulcast,” IEEE Veh. Techn. Conf. (VTC’91), pp. 848–853, May 1991.Google Scholar
Seshadri, N. and Winters, J., “Two signaling schemes for improving the error performance of frequency-division-duplex (FDD) transmission systems using transmitted antenna diversity,” Int’l J. Wireless Inform. Networks, vol. 1, no. 1, pp. 4960, 1994.Google Scholar
Hiroike, A., Adachi, F., and Nakajima, N., “Combined effects of phase sweeping transmitter diversity and channel coding,” IEEE Trans. Veh. Techn., vol. 41, no. 2, pp. 170176, May 1992.Google Scholar
Alamouti, S. M., “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 14511458, 1998.Google Scholar
Jafarkhani, H. and Tarokh, V., “Multiple transmit antenna differential detection from generalized orthogonal designs,” IEEE Trans. Inform. Theory, vol. 47, no. 6, pp. 26262631, 2001.Google Scholar
Winters, J., “Optimum combining in digital mobile radio with cochannel interference,” IEEE J. Sel. Areas Commun., vol. 2, no. 4, pp. 528539, 1984.Google Scholar
Tsybakov, B. S., “The capacity of a memoryless Gaussian vector channel,” Prob. Inform. Transm., vol. 1, no. 1, pp. 1829, 1965.Google Scholar
Root, W. L. and Varaiya, P. P., “Capacity of classes of Gaussian channels,” SIAM J. Appl. Math., vol. 16, no. 6, pp. 13501393, 1968.CrossRefGoogle Scholar
Cover, T. and Thomas, J., Elements of information theory. Wiley & Sons, 1991.Google Scholar
Brandenburg, L. H. and Wyner, A. D., “Capacity of the Gaussian channel with memory: the multivariate case,” Bell Labs Tech. J., vol. 53, no. 5, pp. 745778, 1974.Google Scholar
Salz, J., “Digital transmission over cross-coupled linear channels,” Bell Labs Tech. J., vol. 64, no. 6, pp. 11471159, 1985.Google Scholar
Duel-Hallen, A., “Equalizers for multiple input/multiple output channels and PAM systems with cyclostationary input sequences,” IEEE J. Sel. Areas Commun., vol. 10, no. 3, pp. 630639, 1992.CrossRefGoogle Scholar
Yang, J. and Roy, S., “On joint transmitter and receiver optimization for multiple-input–multiple-output (MIMO) transmission systems,” IEEE Trans. Commun., vol. 42, no. 12, pp. 32213231, 1994.Google Scholar
Verdú, S., “Minimum probability of error for asynchronous Gaussian multiple-access channels,” IEEE Trans. Inform. Theory, vol. 32, no. 1, pp. 8596, 1986.CrossRefGoogle Scholar
Verdú, S., Multiuser detection. Cambridge University Press, 1998.Google Scholar
Amitay, N. and Salz, J., “Linear equalization theory in digital data transmission over dually polarized fading radio channels,” Bell Labs Tech. J., vol. 63, no. 10, pp. 22152259, 1984.CrossRefGoogle Scholar
Winters, J., “On the capacity of radio communication systems with diversity in a Rayleigh fading environment,” IEEE J. Sel. Areas Commun., vol. 5, no. 5, pp. 871– 878, 1987.CrossRefGoogle Scholar
Foschini, G. J., “Layered space–time architecture for wireless communication in a fading environment when using multi-element antennas,” Bell Labs Tech. J., vol. 1, no. 2, pp. 4159, 1996.CrossRefGoogle Scholar
Wolniansky, P. W., Foschini, G. J., Golden, G. D., and Valenzuela, R. A., “V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel,” URSI Int’l Symp. Signals, Systems, and Electronics (ISSSE’98), pp. 295– 300, Sep. 1998.Google Scholar
Telatar, I. E., “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecommun., vol. 10, pp. 585595, Nov. 1999.Google Scholar
Paulraj, A. and Kailath, T., “U.S. Patent 5345599: Increasing capacity in wireless broadcast systems using distributed transmission/directional reception (DTDR),” Sep. 1994.Google Scholar
Raleigh, G. G. and Cioffi, J. M., “Spatio-temporal coding for wireless communication,” IEEE Trans. Commun., vol. 46, no. 3, pp. 357366, 1998.Google Scholar
Raleigh, G. G. and Jones, V. K., “Multivariate modulation and coding for wireless communication,” IEEE J. Sel. Areas Commun., vol. 17, no. 5, pp. 851866, 1999.CrossRefGoogle Scholar
Isaacson, W., The innovators: how a group of inventors, hackers, geniuses and geeks created the digital revolution. Simon and Schuster, 2014.Google Scholar
Paulraj, A., Nabar, R., and Gore, D., Introduction to space–time wireless communications. Cambridge University Press, 2003.Google Scholar
Vucetic, B. and Yuan, J., Space–time coding. John Wiley & Sons, 2003.Google Scholar
Duman, T. M. and Ghrayeb, A., Coding for MIMO communication systems. John Wiley & Sons, 2008.Google Scholar
Oestges, C. and Clerckx, B., MIMO wireless communications: from real-world propagation to space–time code design. Academic Press, 2010.Google Scholar
Huang, H. C., Papadias, C. B., and Venkatesan, S., MIMO communication for cellular networks. Springer, 2012.CrossRefGoogle Scholar
Bai, L. and Choi, J., Low complexity MIMO detection. Springer Science & Business Media, 2012.Google Scholar
Hanzo, L., Akhtman, J., Wang, L., and Jiang, M., MIMO-OFDM for LTE, WiFi and WiMAX: coherent versus non-coherent and cooperative turbo transceivers. John Wiley & Sons, 2010.CrossRefGoogle Scholar
Clerckx, B. and Oestges, C., MIMO wireless networks: channels, techniques and standards for multi-antenna, multi-user and multi-cell systems. Academic Press, 2013.Google Scholar
Hampton, J. R., Introduction to MIMO communications. Cambridge University Press, 2013.CrossRefGoogle Scholar
Chockalingam, A. and Rajan, B. S., Large MIMO systems. Cambridge University Press, 2014.Google Scholar
Marzetta, T. L., Larsson, E. G., Yang, H., and Ngo, H. Q., Fundamentals of massive MIMO. Cambridge University Press, 2016.CrossRefGoogle Scholar
Gershman, A. and Sidiropoulos, N., Space–time processing for MIMO communications. John Wiley & Sons, 2005.Google Scholar
Tsoulos, G., MIMO system technology for wireless communications. CRC Press, 2006.Google Scholar
Biglieri, E., Calderbank, R., Constantinides, A., Goldsmith, A., Paulraj, A., and Poor, H. V., MIMO wireless communications. Cambridge University Press, 2007.CrossRefGoogle Scholar
Palomar, D. P. and Jiang, Y., “MIMO transceiver design via majorization theory,” Found. Trends Commun. Inform. Theory, vol. 3, no. 4–5, pp. 331551, 2007.CrossRefGoogle Scholar
Sellathurai, M. and Haykin, S., Space–time layered information processing for wireless communications. John Wiley & Sons, 2009.Google Scholar
Sibille, A., Oestges, C., and Zanella, A., MIMO: from theory to implementation. Academic Press, 2010.Google Scholar
Lozano, A., Farrokhi, F. R., and Valenzuela, R. A., “Lifting the limits on high speed wireless data access using antenna arrays,” IEEE Commun. Mag., vol. 39, no. 9, pp. 156162, 2001.Google Scholar
Goldsmith, A., Jafar, S. A., Jindal, N., and Vishwanath, S., “Capacity limits of MIMO channels,” IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 684702, 2003.CrossRefGoogle Scholar
Gesbert, D., Shafi, M., Shiu, D., Smith, P., and Naguib, A., “From theory to practice: an overview of MIMO space–time coded wireless systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 3, pp. 281302, 2003.Google Scholar
Tse, D. and Viswanath, P., Fundamentals of wireless communication. Cambridge University Press, 2005.Google Scholar
Goldsmith, A., Wireless communications. Cambridge University Press, 2005.CrossRefGoogle Scholar
Massey, J. L., “Information theory: the Copernican system of communications,” IEEE Commun. Mag., vol. 22, no. 12, pp. 2628, 1984.CrossRefGoogle Scholar
Duarte, M. and Sabharwal, A., “Full-duplex wireless communications using off-the-shelf radios: feasibility and first results,” Asilomar Conf. Signals, Systems and Computers, pp. 1558–1562, Nov. 2010.Google Scholar
Choi, J. I., Jain, M., Srinivasan, K., Levis, P., and Katti, S., “Achieving single channel, full duplex wireless communication,” ACM Int’l Conf. Mobile Computing and Networking, pp. 1–12, Sep. 2010.CrossRefGoogle Scholar
Bharadia, D., McMilin, E., and Katti, S., “Full duplex radios,” ACM Int’l Conf. Mobile Computing and Networking, vol. 43, no. 4, pp. 375386, Aug. 2013.Google Scholar
Chang, R. W., “High-speed multichannel data transmission with bandlimited orthogonal signals,” Bell System Tech. J., vol. 45, no. 10, pp. 17751796, 1966.CrossRefGoogle Scholar
Weinstein, S. B., “The history of orthogonal frequency-division multiplexing,” IEEE Commun. Mag., vol. 47, no. 11, 2009.Google Scholar
Shannon, C. E., “A mathematical theory of communication,” Bell System Tech. J., vol. 27, pp. 379423, 1948.CrossRefGoogle Scholar
Gallager, R., Information theory and reliable communication. Wiley, 1968.Google Scholar
MacKay, D. J. C., Information theory, inference, and learning algorithms. Cambridge University Press, 2003.Google Scholar
Guo, D., Shamai, S., and Verdú, S., “The interplay between information and estimation measures,” Found. Trends Signal Process., vol. 6, no. 4, 2012.Google Scholar
Van Trees, H. L., Detection, estimation, and modulation theory. John Wiley & Sons, 2004.Google Scholar
Abou-Faycal, I. C., Trott, M. D., and Shamai, S., “The capacity of discrete-time memoryless Rayleigh-fading channels,” IEEE Trans. Inform. Theory, vol. 47, pp. 12901301, Apr. 2001.Google Scholar
Verdú, S., “Spectral efficiency in the wideband regime,” IEEE Trans. Inform. Theory, vol. 48, no. 6, pp. 13191343, 2002.Google Scholar
Golay, M. J. E., “Note on the theoretical efficiency of information reception with PPM,” Proc. IRE, vol. 37, p. 1031, Sep. 1949.Google Scholar
Win, M. Z. and Scholtz, R. A., “Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications,” IEEE Trans. Commun., vol. 48, no. 4, pp. 679691, 2000.CrossRefGoogle Scholar
Verdú, S., “Fifty years of Shannon theory,” IEEE Trans. Inform. Theory, vol. 44, no. 6, pp. 20572078, 1998.CrossRefGoogle Scholar
Doob, J., Stochastic processes. Wiley, 1990.Google Scholar
Kreer, J. G., “A question of terminology,” IEEE Trans. Inform. Theory, vol. 3, p. 208, Sep. 1957.Google Scholar
Geist, J. M., “Capacity and cutoff rate for dense M-ary constellation,” Proc. IEEE Military Commun. Conf. (MILCOM’90), pp. 768–770, Sep. 1990.Google Scholar
Lozano, A., Tulino, A. M., and Verdú, S., “Optimum power allocation for parallel Gaussian channels with arbitrary input distributions,” IEEE Trans. Inform. Theory, vol. 52, no. 7, pp. 30333051, 2006.CrossRefGoogle Scholar
Richardson, T. J. and Urbanke, R. L., Modern coding theory. Cambridge University Press, 2008.Google Scholar
Davis, P. J. and Rabinowitz, P., Methods of numerical integration. Courier Corporation, 2007.Google Scholar
Ketseoglou, T. and Ayanoglu, E., “Linear precoding gain for large MIMO configurations with QAM and reduced complexity,” IEEE Trans. Commun., vol. 64, no. 10, pp. 41964208, 2016.Google Scholar
Prelov, V. V. and Verdú, S., “Second-order asymptotics of mutual information,” IEEE Trans. Inform. Theory, vol. 50, no. 8, pp. 15671580, 2004.Google Scholar
Ephremides, A., “The historian’s column,IEEE Inform. Theory Newsl., vol. 65, no. 4, p. 35, 2015.Google Scholar
Shannon, C. E., “Communication in the presence of noise,” Proc. IRE, vol. 37, pp. 1021, Jan. 1949.Google Scholar
Pinsker, M. S., Information and information stability of random variables and processes. Holden-Day, 1965.Google Scholar
Verdú, S. and Han, T. S., “A general formula for channel capacity,” IEEE Trans. Inform. Theory, vol. 40, no. 4, pp. 11471157, 1994.Google Scholar
Han, T. S., Information-spectrum methods in information theory. Springer Science & Business Media, 2003.Google Scholar
Wolfowitz, J., Coding theorems of information theory. Springer-Verlag, 1978.Google Scholar
Glisic, S. G. and Leppänen, P. A., Code division multiple access communications. Springer Science & Business Media, 2012.Google Scholar
Biglieri, E., Coding for wireless channels. Kluwer Academic, 2005.Google Scholar
Viterbi, A. J., “Wireless digital communication: a view based on three lessons learned,” IEEE Commun. Mag., vol. 29, pp. 3336, Sep. 1991.Google Scholar
Costello, D. J. Jr., Hagenauer, J., Imai, H., and Wicker, S. B., “Applications of error-control coding,” IEEE Trans. Inform. Theory, vol. 44, no. 6, pp. 25312560, 1998.Google Scholar
Berrou, C. and Glavieux, A., “Near optimum error correcting coding and decoding: turbo-codes,” IEEE Trans. Commun., vol. 44, no. 10, pp. 12611271, 1996.Google Scholar
Declercq, D., Fossorier, M., and Biglieri, E., Channel coding: theory, algorithms, and applications. Academic Press, 2014.Google Scholar
Ungerböck, G., “Channel coding with multilevel/phase signals,” IEEE Trans. Inform. Theory, vol. 28, no. 1, pp. 5567, 1982.Google Scholar
Hagenauer, J., Offer, E., and Papke, L., “Iterative decoding of binary block and convolutional codes,” IEEE Trans. Inform. Theory, vol. 42, no. 2, pp. 429445, 1996.Google Scholar
Bahl, L., Cocke, J., Jelinek, F., and Raviv, J., “Optimal decoding of linear codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. 20, pp. 284287, Mar. 1974.Google Scholar
Boutros, J., Caire, G., Viterbo, E., Sawaya, H., and Vialle, S., “Turbo code at 0.03 dB from capacity limit,” IEEE Int’l Symp. Inform. Theory (ISIT’02), p. 56, 2002.Google Scholar
Richardson, T. J., Shokrollahi, M. A., and Urbanke, R. L., “Design of capacity-approaching irregular low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 619637, Feb. 2001.Google Scholar
Zehavi, E., “8-PSK trellis codes for a Rayleigh channel,” IEEE Trans. Commun., vol. 40, no. 5, pp. 873884, 1992.Google Scholar
Caire, G., Taricco, G., and Biglieri, E., “Bit-interleaved coded modulation,” IEEE Trans. Inform. Theory, vol. 44, no. 3, pp. 927946, 1998.Google Scholar
Agrell, E., Lassing, J., Strom, E. G., and Ottosson, T., “On the optimality of the binary reflected Gray code,” IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 31703182, 2004.Google Scholar
Guillén, A., Martinez, A., and Caire, G., “Bit-interleaved coded modulation,” Found. Trends Commun. Inform. Theory, vol. 5, no. 1–2, 2008.Google Scholar
Li, X. and Ritcey, J. A., “Bit-interleaved coded modulation with iterative decoding,” IEEE Commun. Letters, vol. 1, no. 6, pp. 169171, 1997.Google Scholar
Ten Brink, S., Speidel, J., and Yan, R. H., “Iterative demapping and decoding for multilevel modulation,” IEEE Global Commun. Conf. (GLOBECOM’98), vol. 1, pp. 579584, 1998.Google Scholar
Simoens, F., Wymeersch, H., Bruneel, H., and Moeneclaey, M., “Multidimensional mapping for bit-interleaved coded modulation with BPSK/QPSK signaling,” IEEE Commun. Letters, vol. 9, no. 5, pp. 453455, 2005.Google Scholar
Navazi, H. M. and Hossain, M. J., “Efficient multi-dimensional mapping using QAM constellations for BICM-ID,” IEEE Trans. Wireless Commun., vol. 16, no. 12, pp. 80678076, 2017.Google Scholar
Polyanskiy, Y., Poor, H. V., and Verdú, S., “Channel coding rate in the finite block-length regime,” IEEE Trans. Inform. Theory, vol. 56, pp. 23072359, May 2010.Google Scholar
Erseghe, T., “On the evaluation of the Polyanskiy–Poor–Verdú converse bound for finite block-length coding in AWGN,” IEEE Trans. Inform. Theory, vol. 61, pp. 65786590, Dec. 2015.Google Scholar
Dowla, F., Handbook of RF and wireless technologies. Newnes, 2003.Google Scholar
Richardson, T. and Kudekar, S., “Design of low-density parity check codes for 5G new radio,” IEEE Commun. Mag., vol. 56, no. 3, pp. 2834, 2018.Google Scholar
Andrews, J., Buzzi, S., Choi, W., Hanly, S., Lozano, A., Soong, A., and Zhang, J., “What will 5G be?IEEE J. Sel. Areas Commun., vol. 32, pp. 10651082, 2014.Google Scholar
Boccardi, F., Heath, R. W. Jr., Lozano, A., Marzetta, T., and Popovski, P., “Five disruptive technology directions for 5G,” IEEE Commun. Mag., vol. 52, pp. 7480, 2014.Google Scholar
Sindhu, P. S., “Retransmission error control with memory,” IEEE Trans. Commun., vol. 25, no. 5, pp. 473479, 1977.Google Scholar
Lin, S. and Yu, P. S., “A hybrid ARQ scheme with parity retransmission for error control of satellite channels,” IEEE Trans. Commun., vol. 30, no. 7, pp. 17011719, 1982.Google Scholar
Chase, D., “Code combining—a maximum-likelihood decoding approach for combining an arbitrary number of noisy packets,” IEEE Trans. Commun., vol. 33, no. 5, pp. 385393, 1985.Google Scholar
Biglieri, E., Taricco, G., and Viterbo, E., “Bit-interleaved time-space codes for fading channels,” Proc. Conf. Inform. Science and Systems (CISS’00), pp. 15–17, 2000.Google Scholar
Gresset, N., Brunel, L., and Boutros, J. J., “Space–time coding techniques with bit-interleaved coded modulations for MIMO block-fading channels,” IEEE Trans. Inform. Theory, vol. 54, no. 5, pp. 21562178, 2008.Google Scholar
Tonello, A. M., “Space–time bit-interleaved coded modulation with an iterative decoding strategy,” IEEE Veh. Techn. Conf. (VTC’00 Fall), vol. 1, pp. 473478, 2000.Google Scholar
Hochwald, B. M. and Ten Brink, S., “Achieving near-capacity on a multiple-antenna channel,” IEEE Trans. Commun., vol. 51, no. 3, pp. 389399, 2003.Google Scholar
Kailath, T., Sayed, A. H., and Hassibi, B., Linear estimation. Prentice Hall, 2000.Google Scholar
Kay, S. M., Fundamentals of statistical signal processing, volume I: estimation theory. Prentice Hall, 1993.Google Scholar
Gauss, C. F., Theoria motus corporum coelestium in sectionibus conicis solem ambientium. Friedrich Perthes and I. H. Besser, 1809.Google Scholar
Legendre, A. M., Nouvelles méthodes pour la détermination des orbites des comètes. Courcier, 1806.Google Scholar
Guo, D., Shamai, S., and Verdú, S., “Estimation of non-Gaussian random variables in Gaussian noise: properties of the MMSE,” IEEE Int’l Symp. Inform. Theory (ISIT’08), pp. 1083–1087, 2008.Google Scholar
Guo, D., Wu, Y., Shamai, S., and Verdú, S., “Estimation in Gaussian noise: properties of the minimum mean-square error,” IEEE Trans. Inform. Theory, vol. 57, no. 4, pp. 23712385, 2011.Google Scholar
Wu, Y. and Verdú, S., “MMSE dimension,” IEEE Trans. Inform. Theory, vol. 57, pp. 48574879, Aug. 2011.Google Scholar
Rodrigues, M. R. D., “Multiple-antenna fading channels with arbitrary inputs: characterization and optimization of the information rate,” IEEE Trans. Inform. Theory, vol. 60, pp. 569585, Jan. 2014.Google Scholar
Alvarado, A., Brannstrom, F., Agrell, E., and Koch, T., “High-SNR asymptotics of mutual information for discrete constellations with applications to BICM,” IEEE Trans. Inform. Theory, vol. 60, pp. 10611076, Feb. 2014.Google Scholar
Palomar, D. P., Cioffi, J. M., and Lagunas, M. A., “Joint Tx-Rx beamforming design for multicarrier MIMO channels: a unified framework for convex optimization,” IEEE Trans. Signal Process., vol. 51, no. 9, pp. 23812401, 2003.Google Scholar
Guo, D., Shamai, S., and Verdú, S., “Mutual information and minimum mean-square error in Gaussian channels,” IEEE Trans. Inform. Theory, vol. 51, no. 4, pp. 1261– 1283, 2005.Google Scholar
Palomar, D. P. and Verdú, S., “Gradient of mutual information in linear vector Gaussian channels,” IEEE Trans. Inform. Theory, vol. 52, no. 1, pp. 141154, 2006.Google Scholar
Wiener, N., Extrapolation, interpolation, and smoothing of stationary time series. MIT Press, 1964.Google Scholar
Hayes, M., Statistical digital signal processing and modeling. Wiley, 1996.Google Scholar
Telatar, I. E. and Tse, D. N. C., “Capacity and mutual information of wideband multipath fading channels,” IEEE Trans. Inform. Theory, vol. 46, no. 4, pp. 1384– 1400, 2000.Google Scholar
Durisi, G., Schuster, U. G., Bölcskei, H., and Shamai, S., “Noncoherent capacity of underspread fading channels,” IEEE Trans. Inform. Theory, vol. 56, no. 1, pp. 367– 395, 2010.Google Scholar
Arikan, E., “Capacity bounds for an ultra-wideband channel model,” IEEE Inform. Theory Workshop (ITW’04), pp. 176–181, Oct. 2004.Google Scholar
Lozano, A. and Porrat, D., “Non-peaky signals in wideband fading channels: achievable bit rates and optimal bandwidth,” IEEE Trans. Wireless Commun., vol. 11, no. 1, pp. 246257, 2012.Google Scholar
Razavi, B., RF microelectronics. Prentice Hall, 1997.Google Scholar
Oppenheim, A. V., Schafer, R. W., and Buck, J. R., Discrete-time signal processing, 2nd ed. Prentice Hall, 1999.Google Scholar
Madhow, U., Fundamentals of digital communication. Cambridge University Press, 2008.Google Scholar
Reed, J., Software radio: a modern approach to radio engineering. Prentice Hall, 2002.Google Scholar
Proakis, J. G. and Salehi, M., Communication systems engineering, 2nd ed. Prentice Hall, 2002.Google Scholar
Cheng, C. and Parhi, K., “Hardware efficient fast parallel FIR filter structures based on iterated short convolution,” Int’l Symp. Circuits and Syst., vol. 3, pp. III, 361– 364, May 2004.Google Scholar
Nussbaumer, H. J., Fast Fourier transform and convolution algorithms. Springer Science & Business Media, vol. 2, 2012.Google Scholar
Gray, R. M., “Toeplitz and circulant matrices: a review,” Found. Trends Commun. Inform. Theory, vol. 2, no. 3, 2006.Google Scholar
Rugh, W. J., Linear system theory. Prentice Hall, 1995.Google Scholar
Tarokh, V., Seshadri, N., and Calderbank, A., “Space–time codes for high data rate wireless communication: performance criterion and code construction,” IEEE Trans. Inform. Theory, vol. 44, no. 2, pp. 744765, 1998.Google Scholar
Tarokh, V., Naguib, A., Seshadri, N., and Calderbank, A. R., “Space–time codes for high data rate wireless communication: performance criteria in the presence of channel estimation errors, mobility, and multiple paths,” IEEE Trans. Commun., vol. 47, no. 2, pp. 199207, 1999.Google Scholar
Sampath, H., Stoica, P., and Paulraj, A., “Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion,” IEEE Trans. Commun., vol. 49, pp. 21982206, Dec. 2001.CrossRefGoogle Scholar
Sampath, H. and Paulraj, A., “Linear precoding for space–time coded systems with known fading correlations,” Asilomar Conf. Signals, Systems and Computers, vol. 1, pp. 246251, 2001.Google Scholar
Scaglione, A., Stoica, P., Barbarossa, S., Giannakis, G., and Sampath, H., “Optimal designs for space–time linear precoders and decoders,” IEEE Trans. Signal Processing, vol. 50, no. 5, pp. 10511064, 2002.Google Scholar
Tellado, J., Multicarrier modulation with low PAR: applications to DSL and wireless. Springer, 2000.Google Scholar
Jiang, T. and Wu, Y., “An overview: peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcasting, vol. 54, no. 2, pp. 257268, 2008.Google Scholar
“Cubic metric in 3GPP-LTE,” 3GPP TSG RAN WG1 TDoc R1–060023, Tech. Rep., Jan. 2006.Google Scholar
Zhang, X. and Kung, S.-Y., “Capacity bound analysis for FIR Bézout equalizers in ISI MIMO channels,” IEEE Trans. Signal Processing, vol. 53, no. 6, pp. 2193– 2204, 2005.Google Scholar
Rajagopal, R. and Potter, L., “Multivariate MIMO FIR inverses,” IEEE Trans. Image Process., vol. 12, no. 4, pp. 458465, 2003.Google Scholar
Song, B.-G. and Ritcey, J. A., “Spatial diversity equalization for MIMO ocean acoustic communication channels,” IEEE J. Ocean. Eng., vol. 21, no. 4, pp. 505– 512, 1996.Google Scholar
Falconer, D., Ariyavisitakul, S., Benyamin-Seeyar, A., and Eidson, B., “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag., vol. 40, no. 4, pp. 5866, 2002.CrossRefGoogle Scholar
Deneire, L., Gyselinckx, B., and Engels, M., “Training sequence versus cyclic prefix—a new look on single carrier communication,” IEEE Commun. Letters, vol. 5, no. 7, pp. 292294, 2001.Google Scholar
Hou, Y. and Hase, T., “Improvement on the channel estimation of pilot cyclic prefixed single carrier (PCP-SC) system,” IEEE Signal Process. Letters, vol. 16, no. 8, pp. 719722, 2009.Google Scholar
Muquet, B., Wang, Z., Giannakis, G., de Courville, M., and Duhamel, P., “Cyclic prefixing or zero padding for wireless multicarrier transmissions?IEEE Trans Commun., vol. 50, no. 12, pp. 21362148, 2002.Google Scholar
Li, Y., Minn, H., and Rajatheva, R., “Synchronization, channel estimation, and equalization in MB-OFDM systems,” IEEE Trans. Wireless Commun., vol. 7, no. 11, pp. 43414352, 2008.Google Scholar
Zhu, X. and Murch, R. D., “Layered space–frequency equalization in a single-carrier MIMO system for frequency-selective channels,” IEEE Trans. Wireless Commun., vol. 3, no. 3, pp. 701708, 2004.Google Scholar
Coon, J., Armour, S., Beach, M., and McGeehan, J., “Adaptive frequency-domain equalization for single-carrier multiple-input multiple-output wireless transmissions,” IEEE Trans. Signal Processing, vol. 53, pp. 32473256, Aug. 2005.Google Scholar
Pancaldi, F., Vitetta, G. M., Kalbasi, R., Al-Dhahir, N., Uysal, M., and Mheidat, H., “Single-carrier frequency domain equalization,” IEEE Signal Process. Mag., vol. 25, no. 5, pp. 3756, 2008.CrossRefGoogle Scholar
Stüber, G. L., Barry, J. R., McLaughlin, S. W., Li, Y., Ingram, M. A., and Pratt, T. G., “Broadband MIMO-OFDM wireless communications,” Proc. IEEE, vol. 92, no. 2, pp. 271294, 2004.Google Scholar
van Nee, R. and Prasad, R., OFDM for wireless multimedia communications. Artech House, 2000.Google Scholar
Zhang, L., Ijaz, A., Xiao, P., Molu, M. M., and Tafazolli, R., “Filtered OFDM systems, algorithms, and performance analysis for 5G and beyond,” IEEE Trans. Commun., vol. 66, no. 3, pp. 12051218, 2018.Google Scholar
Sari, H., Karam, G., and Jeanclaude, I., “Transmission techniques for digital terrestrial TV broadcasting,” IEEE Commun. Mag., vol. 33, no. 2, pp. 100109, 1995.Google Scholar
Shi, Q., “OFDM in bandpass nonlinearity,” IEEE Trans. Consum. Electronics, vol. 42, no. 3, pp. 253258, 1996.Google Scholar
Classen, F. and Meyr, H., “Frequency synchronization algorithms for OFDM systems suitable for communication over frequency selective fading channels,” IEEE Veh. Techn. Conf. (VTC’94), pp. 1655–1659, Jun. 1994.Google Scholar
Parot, R. and Harris, F., “Resolving and correcting gain and phase mismatch in transmitters and receivers for wideband OFDM systems,” Asilomar Conf. Signals, Systems and Computers, vol. 2, pp. 10051009, Nov. 2002.Google Scholar
Pollet, T., Van Bladel, M., and Moeneclaey, M., “BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,” IEEE Trans. Commun., vol. 43, no. 2–4, pp. 191193, 1995.Google Scholar
Coon, J., Siew, J., Beach, M., Nix, A., Armour, S., and McGeehan, J., “A comparison of MIMO-OFDM and MIMO-SCFDE in WLAN environments,” IEEE Global Commun. Conf. (GLOBECOM’03), vol. 6, pp. 32963301, Dec. 2003.Google Scholar
Bölcskei, H., “MIMO-OFDM wireless systems: basics, perspectives, and challenges,” IEEE Wireless Communications, vol. 13, no. 4, pp. 3137, 2006.Google Scholar
Yang, H., “A road to future broadband wireless access: MIMO-OFDM-based air interface,” IEEE Commun. Mag., vol. 43, no. 1, pp. 5360, 2005.Google Scholar
Ding, Z. and Qiu, L., “Blind MIMO channel identification from second order statistics using rank deficient channel convolution matrix,” IEEE Trans. Signal Process., vol. 51, no. 2, pp. 535544, 2003.Google Scholar
Bölcskei, H., Heath, R. W. Jr., and Paulraj, A. J., “Blind channel identification and equalization in OFDM-based multiantenna systems,” IEEE Trans. Signal Process., vol. 50, no. 1, pp. 96109, 2002.Google Scholar
Chevreuil, A. and Loubaton, P., “MIMO blind second-order equalization method and conjugate cyclostationarity,” IEEE Trans. Signal Process., vol. 47, no. 2, pp. 572578, 1999.Google Scholar
Shin, C., Heath, R. W. Jr., and Powers, E. J., “Blind channel estimation for MIMOOFDM systems,” IEEE Trans. Veh. Technol., vol. 56, no. 2, pp. 670685, 2007.Google Scholar
Cavers, J. K., “An analysis of pilot symbol assisted modulation for Rayleigh fading channels,” IEEE Trans. Veh. Techn., vol. 40, pp. 686693, Nov 1991.Google Scholar
Negi, R. and Cioffi, J., “Pilot tone selection for channel estimation in a mobile OFDM system,” IEEE Trans. Consumer Electronics, vol. 44, no. 3, pp. 11221128, 1998.Google Scholar
Tong, L., Sadler, B. M., and Dong, M., “Pilot-assisted wireless transmissions: general model, design criteria, and signal processing,” IEEE Signal Proc. Mag., vol. 21, no. 6, pp. 1225, 2004.Google Scholar
Golub, G. H. and Loan, C. F. V., Matrix computations, 3rd ed. Johns Hopkins University Press, 1996.Google Scholar
Frank, R. and Zadoff, S., “Phase shift pulse codes with good periodic correlation properties,” IRE Trans. Inform. Theory, vol. 8, no. 6, pp. 381382, 1962.Google Scholar
Chu, D., “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inform. Theory, vol. 18, no. 4, pp. 531532, 1972.Google Scholar
Popovic, B., “Generalized chirp-like polyphase sequences with optimum correlation properties,” IEEE Trans. Inform. Theory, vol. 38, no. 4, pp. 14061409, 1992.Google Scholar
Barhumi, I., Leus, G., and Moonen, M., “Optimal training design for MIMO OFDM systems in mobile wireless channels,” IEEE Trans. Signal Process., vol. 51, no. 6, pp. 16151624, 2003.Google Scholar
Biguesh, M. and Gershman, A. B., “Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals,” IEEE Trans. Signal Process., vol. 54, no. 3, pp. 884893, 2006.Google Scholar
Kashima, T., Fukawa, K., and Suzuki, H., “Adaptive MAP receiver via the EM algorithm and message passings for MIMO-OFDM mobile communications,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 437447, 2006.Google Scholar
Sayed, A. H., Fundamentals of adaptive filtering. Wiley-IEEE Press, 2003.Google Scholar
Li, Y., Cimini, L. J., and Sollenberger, N. R., “Robust channel estimation for OFDM systems with rapid dispersive fading channels,” IEEE Trans. Commun., vol. 46, no. 7, pp. 902915, 1998.Google Scholar
Li, Y. G., Winters, J. H., and Sollenberger, N. R., “MIMO-OFDM for wireless communications: signal detection with enhanced channel estimation,” IEEE Trans. Commun., vol. 50, no. 9, pp. 14711477, 2002.Google Scholar
Li, Y., Seshadri, N., and Ariyavisitakul, S., “Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels,” IEEE J. Sel. Areas Commun., vol. 17, no. 3, pp. 461471, 1999.Google Scholar
Larsen, M., Swindlehurst, A. L, and Svantesson, T., “A performance bound for interpolation of MIMO-OFDM channels,” Asilomar Conf. Signals, Systems and Computers, pp. 1801–1805, Oct./Nov. 2006.Google Scholar
Bajwa, W. U., Haupt, J., Sayeed, A., and Nowak, R., “Compressed channel sensing: a new approach to estimating sparse multipath channels,” Proc. IEEE, vol. 98, no. 6, pp. 10581076, 2010.Google Scholar
Sayeed, A. M. and Raghavan, V., “Maximizing MIMO capacity in sparse multipath with reconfigurable antenna arrays,” IEEE J. Sel. Topics Signal Process., vol. 1, no. 1, pp. 156166, 2007.Google Scholar
Alkhateeb, A., El Ayach, O., Leus, G., and Heath, R. W. Jr., “Channel estimation and hybrid precoding for millimeter wave cellular systems,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 831846, 2014.Google Scholar
Heath, R. W. Jr., Gonzalez-Prelcic, N., Rangan, S., Roh, W., and Sayeed, A. M., “An overview of signal processing techniques for millimeter wave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 436453, 2016.Google Scholar
Dohler, M., Heath, R. W. Jr., Lozano, A., Papadias, C. B., and Valenzuela, R. A., “Is the PHY layer dead?IEEE Commun. Mag., vol. 49, no. 4, pp. 159165, 2011.Google Scholar
Lozano, A. and Jindal, N., “Are yesterday’s information-theoretic fading models and performance metrics adequate for the analysis of today’s wireless systems?IEEE Commun. Mag., vol. 50, no. 11, pp. 210217, 2012.Google Scholar
Hashemi, H., “The indoor radio propagation channel,” Proc. IEEE, vol. 81, no. 7, pp. 943968, 1993.Google Scholar
Rappaport, T. S., Wireless communications: principles and practice, 2nd ed. Prentice Hall, 2004.Google Scholar
Molisch, A. F., Wireless communications. John Wiley & Sons, 2007.Google Scholar
Yang, C.-F., Wu, B.-C., and Ko, C.-J., “A ray-tracing method for modeling indoor wave propagation and penetration,” IEEE Trans. Antennas Propag., vol. 46, no. 6, pp. 907919, 1998.Google Scholar
Tarng, J., Liu, W.-S., Huang, Y.-F., and Huang, J.-M., “A novel and efficient hybrid model of radio multipath-fading channels in indoor environments,” IEEE Trans. Antennas Propag., vol. 51, no. 3, pp. 585594, 2003.Google Scholar
Zhang, W., “Fast two-dimensional diffraction modeling for site-specific propagation prediction in urban microcellular environments,” IEEE Trans. Veh. Techn., vol. 49, no. 2, pp. 428436, 2000.Google Scholar
Ferrand, P., Amara, M., Valentin, S., and Guillaud, M., “Trends and challenges in wireless channel modeling for evolving radio access,” IEEE Commun. Mag., vol. 54, no. 7, pp. 9399, 2016.Google Scholar
Franceschetti, M., Bruck, J., and Schulman, L. J., “A random walk model of wave propagation,” IEEE Trans. Antennas Propag., vol. 52, no. 5, pp. 13041317, 2004.Google Scholar
Chizhik, D., Ling, J., and Valenzuela, R. A., “Radio wave diffusion indoors and throughput scaling with cell density,” IEEE Trans. Wireless Commun., vol. 11, no. 9, pp. 32843291, 2012.Google Scholar
Turin, G. L., Clapp, F. D., Johnston, T. L., Fine, S. B., and Lavry, D., “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Techn., vol. 21, no. 1, pp. 19, 1972.Google Scholar
Ott, G. D. and Plitkins, A., “Urban path-loss characteristics at 820 MHz,” IEEE Trans. Veh. Techn., vol. 27, no. 4, pp. 189197, 1978.Google Scholar
Cox, D. C., “Universal digital portable radio communications,” Proc. IEEE, vol. 75, no. 4, pp. 436477, 1987.Google Scholar
Gudmunson, M., “Correlation model for shadow fading in mobile radio systems,” Electronics Letters, vol. 27, no. 23, pp. 21452146, 1991.Google Scholar
Jaldén, N., Zetterberg, P., Ottersten, B., Hong, A., and Thomä, R., “Correlation properties of large scale fading based on indoor measurements,” IEEE Wireless Commun. and Networking Conf. (WCNC’07), pp. 1894–1899, 2007.Google Scholar
Graziosi, F. and Santucci, F., “A general correlation model for shadow fading in mobile radio systems,” IEEE Commun. Letters, vol. 6, no. 3, pp. 102104, 2002.Google Scholar
Szyszkowicz, S. S., Yanikomeroglu, H., and Thompson, J. S., “On the feasibility of wireless shadowing correlation models,” IEEE Trans. Veh. Techn., vol. 59, no. 9, pp. 42224236, 2010.Google Scholar
Jakes, W. C., Microwave mobile communications, 2nd ed. Wiley-IEEE Press, 1994.Google Scholar
Erceg, V., Greenstein, L. J., Tjandra, S. Y., Parkoff, S. R., Gupta, A., Kulic, B., Julius, A. A., and Bianchi, R., “An empirically based path loss model for wireless channels in suburban environments,” IEEE J. Sel. Areas Commun., vol. 17, no. 7, pp. 1205– 1211, 1999.Google Scholar
Chu, T. S. and Greenstein, L. J., “A semi-empirical representation of antenna diversity gain at cellular and PCS base stations,” IEEE Trans. Commun., vol. 45, no. 6, pp. 644646, 1997.Google Scholar
Greenstein, L. J., Erceg, V., Yeh, Y. S., and Clark, M. V., “A new path-gain/delay-spread propagation model for digital cellular channels,” IEEE Trans. Veh. Techn., vol. 46, no. 2, pp. 477485, 1997.CrossRefGoogle Scholar
Friis, H. T., “A note on a simple transmission formula,” Proc. IRE, vol. 34, no. 5, pp. 254256, 1946.Google Scholar
Hata, M., “Empirical formula for propagation loss in land mobile radio services,” IEEE Trans. Veh. Techn., vol. 29, no. 3, pp. 317325, 1980.Google Scholar
“Urban transmission loss models for mobile radio in the 900 and 1800 MHz bands,” European Cooperation in the Field of Scientific and Technical Research EURO-COST 231, Tech. Rep. 2, Sep. 1991.Google Scholar
Erceg, V. et al., “IEEE 802.16 broadband wireless access working group—IEEE 802.16.3c-01/29r4,” Tech. Rep., Jul. 2001.Google Scholar
Phillips, C., Sicker, D., and Grunwald, D., “Bounding the error of path loss models,” IEEE Int’l Symp. Dynamic Spectrum Access Networks (DySPAN’11), pp. 71–82, May 2011.Google Scholar
Taricco, G., “On the convergence of multipath fading channel gains to the Rayleigh distribution,” IEEE Wireless Commun. Letters, vol. 4, no. 5, pp. 549552, 2015.Google Scholar
Rice, S. O., “Mathematical analysis of random noise,” Bell System Tech. J., vol. 23, pp. 282332, 1944.Google Scholar
Yacoub, M. D., “The κ-μ distribution and the η-μ distribution,” IEEE Antennas Propag. Mag., vol. 49, no. 1, pp. 6881, 2007.Google Scholar
Correia, L. M., Wireless flexible personalised communications. John Wiley and Sons, 2001.Google Scholar
Clarke, R. H., “A statistical theory of mobile radio reception,” Bell System Tech. J., vol. 47, no. 6, pp. 9571000, 1968.Google Scholar
Lee, W. C. Y., “Correlation between two mobile radio base-station antennas,” IEEE Trans. Commun., vol. 21, no. 11, pp. 12141224, Nov. 1973.Google Scholar
Salz, J. and Winters, J. H., “Effect of fading correlation on adaptive arrays in digital mobile radio,” IEEE Trans. Veh. Techn., vol. 43, no. 4, pp. 10491057, 1994.Google Scholar
Vaughan, R., “Spaced directive antennas for mobile communications by the Fourier transform method,” IEEE Trans. Antennas Propag., vol. 48, no. 7, pp. 10251032, 2000.Google Scholar
Adachi, F., Feeny, M., Williamson, A., and Parsons, J., “Cross-correlation between the envelopes of 900 MHz signals received at a mobile radio base station site,” IEE Proc. Radar and Signal Process., vol. 133, pp. 506512, 1986.Google Scholar
Saleh, A. and Valenzuela, R., “A statistical model for indoor multipath propagation,” IEEE J. Sel. Areas Commun., vol. 5, no. 2, pp. 128137, 1987.Google Scholar
Spencer, Q., Rice, M., Jeffs, B., and Jensen, M., “A statistical model for angle of arrival in indoor multipath propagation,” IEEE Veh. Techn. Conf. (VTC’97), vol. 3, pp. 14151419, May 1997.Google Scholar
Spencer, Q. H., Jeffs, B. D., Jensen, M. A., and Swindlehurst, A. L., “Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel,” IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp. 347360, Mar. 2000.Google Scholar
German, G., Spencer, Q., Swindlehust, L., and Valenzuela, R. A., “Wireless indoor channel modeling: statistical agreement of ray tracing simulations and channel sounding measurements,” IEEE Int’l Conf. Acoustics, Speech and Signal Process. (ICASSP’01), vol. 4, pp. 25012504, May 2001.Google Scholar
Poon, A. S. Y. and Ho, M., “Indoor multiple-antenna channel characterization from 2 to 8 GHz,” IEEE Int’l Conf. Commun. (ICC’03), vol. 5, pp. 35193523, May 2003.Google Scholar
Pedersen, K. I., Mogensen, P. E., and Fleury, B. H., “Power azimuth spectrum in outdoor environments,” Electronics Letters, vol. 33, no. 18, pp. 15831584, 1997.Google Scholar
Pedersen, K. I., Mogensen, P. E., and Fleury, B. H., “Spatial channel characteristics in outdoor environments and their impact on BS antenna system performance,” IEEE Veh. Techn. Conf. (VTC’98), vol. 2, pp. 719723, 1998.Google Scholar
Pedersen, K. I., Mogensen, P. E., and Fleury, B. H., “A stochastic model of the temporal and azimuthal dispersion seen at the base station in outdoor propagation environments,” IEEE Trans. Veh. Techn., vol. 49, no. 2, pp. 437447, 2000.Google Scholar
Schumacher, L., Pedersen, K. I., and Mogensen, P., “From antenna spacings to theoretical capacities—guidelines for simulating MIMO systems,” IEEE Int’l Symp. Personal, Indoor and Mobile Radio Commun. (PIMRC’02), vol. 2, pp. 587592, Sep. 2002.Google Scholar
Chizhik, D., “Slowing the time-fluctuating MIMO channel by beam forming,” IEEE Trans. Wireless Commun., vol. 3, no. 5, pp. 15541565, 2004.Google Scholar
Va, V. and Heath, R. W. Jr., “Basic relationship between channel coherence time and beamwidth in vehicular channels,” IEEE Veh. Techn. Conf. (VTC’15 Fall), Sep. 2015.Google Scholar
Teal, P. D., Abhayapala, T. D., and Kennedy, R. A., “Spatial correlation for general distributions of scatterers,” IEEE Signal Process. Letters, vol. 9, no. 10, pp. 305– 308, 2002.Google Scholar
Cook, R. K., Waterhouse, R. V., Berendt, R. D., Edelman, S., and Thompson, M. C., “Measurement of correlation coefficients in reverberant sound fields,” J. Acoust. Soc. Am., vol. 27, no. 6, pp. 10721077, 1955.Google Scholar
Narasimhan, R. and Cox, D. C., “A generalized Doppler power spectrum for wireless environments,” IEEE Commun. Letters, vol. 3, no. 6, pp. 164165, 1999.Google Scholar
Yamada, W., Nishimori, K., Takatori, Y., and Asai, Y., “Statistical analysis and characterization of Doppler spectrum in large office environment,” Int’l Symp. Antennas Propag. (ISAP’09), pp. 564–567, 2009.Google Scholar
Liang, Y. and Veeravalli, V. V., “Capacity of noncoherent time-selective Rayleigh-fading channels,” IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 30953110, 2004.Google Scholar
Morgenshtern, V. I., Riegler, E., Yang, W., Durisi, G., Lin, S., Sturmfels, B., and Bölcskei, H., “Capacity pre-log of noncoherent SIMO channels via Hironaka’s Theorem,” IEEE Trans. Inform. Theory, vol. 59, pp. 42134229, Jul. 2013.Google Scholar
Fettweis, G., “The development of GSM,” IEEE Int’l Conf. Commun. (ICC’13), 2013.Google Scholar
Stüber, G. L., Principles of mobile communication. Springer, 2011.Google Scholar
“Guidelines for the evaluation of radio-transmission technologies for IMT-2000,” Recommendation ITU-R M.1225, Tech. Rep., 1997.Google Scholar
Bello, P., “Characterization of randomly time-variant linear channels,” IEEE Trans. Commun., vol. 11, no. 4, pp. 360393, 1963.Google Scholar
Kennedy, R. S., Fading dispersive communication channels. Wiley, 1969.Google Scholar
Kailath, T., “Measurements on time-variant communication channels,” IRE Trans. Inform. Theory, vol. 8, pp. 229236, Sep. 1962.Google Scholar
Kozek, W. and Molisch, A. F., “Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 15791589, 1998.Google Scholar
Johnson, D. H. and Dudgeon, D. E., Array signal process. Prentice Hall, 1993.Google Scholar
Stojanovic, M., “Recent advances in high-speed underwater acoustic communications,” IEEE J. Ocean. Eng., vol. 21, no. 2, pp. 125136, 1996.Google Scholar
Li, B., Huang, J., Zhou, S., Ball, K., Stojanovic, M., Freitag, L., and Willett, P., “MIMO-OFDM for high-rate underwater acoustic communications,” IEEE J. Ocean. Eng., vol. 34, no. 4, pp. 634644, 2009.Google Scholar
Heath, R. W. Jr., Peters, S., Wang, Y., and Zhang, J., “A current perspective on distributed antenna systems for the downlink of cellular systems,” IEEE Commun. Mag., vol. 51, no. 4, pp. 161167, 2013.Google Scholar
Jiang, J.-S. and Ingram, M., “Spherical-wave model for short-range MIMO,” IEEE Trans. Commun., vol. 53, no. 9, pp. 15341541, 2005.Google Scholar
Wu, S., Wang, C. X., Haas, H., Aggoune, e.-H. M., Alwakeel, M. M., and Ai, B., “A non-stationary wideband channel model for massive MIMO communication systems,” IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 14341446, 2015.Google Scholar
Forenza, A. and Heath, R. W. Jr., “Impact of antenna geometry on MIMO communication in indoor clustered channels,” IEEE Antennas Propag. Society Int’l Symp., vol. 2, pp. 17001703, 2004.Google Scholar
Orfanidis, S. J., Electromagnetic waves and antennas. S. J. Orfanidis, 2014.Google Scholar
Forenza, A., Perlman, S., Saibi, F., Di Dio, M., van der Laan, R., and Caire, G., “Achieving large multiplexing gain in distributed antenna systems via cooperation with pCell technology,” Asilomar Conf. Signals, Systems and Computers, pp. 286–293, 2015.Google Scholar
Stege, M., Jelitto, J., Bronzel, M., and Fettweis, G., “A multiple input–multiple output channel model for simulation of Tx- and Rx-diversity wireless systems,” IEEE Veh. Techn. Conf. (VTC’00), vol. 2, pp. 833839, 2000.Google Scholar
Pedersen, K. I., Andersen, J. B., Kermoal, J. P., and Mogensen, P., “A stochastic multiple-input–multiple-output radio channel model for evaluation of space–time coding algorithms,” IEEE Veh. Techn. Conf. (VTC’00), vol. 2, pp. 893897, 2000.Google Scholar
Svantesson, T., “A physical MIMO radio channel model for multi-element multi-polarized antenna systems,” IEEE Veh. Techn. Conf. (VTC’01), vol. 2, pp. 1083– 1087, 2001.Google Scholar
Yu, K. and Ottersten, B., “Models for MIMO propagation channels: a review,” Wiley J. Wireless Commun. Mobile Comput., vol. 2, no. 7, pp. 653666, Nov. 2002.Google Scholar
Taparugssanagorn, A., Jasma, T., and Ylitalo, J., “Spatial correlation and eigenvalue statistics investigation of wideband MIMO channel measurements,” Int’l Symp. Personal, Indoor and Mobile Radio Commun. (PIMRC’06), pp. 1–5, 2006.CrossRefGoogle Scholar
Erceg, V., Sampath, H., and Catreux-Erceg, S., “An experimental investigation of wideband MIMO channel characteristics based on outdoor non-LOS measurements at 1.8 GHz,” IEEE Trans. Wireless Commun., vol. 5, no. 1, pp. 2433, 2006.Google Scholar
Almers, P., Bonek, E., Burr, A., Czink, N., Debbah, M., Degli-Esposti, V., Hof-stetter, H., Kyosti, P., Laurenson, D., Matz, G., Molisch, A., Oestges, C., and Ozcelik, H., “Survey of channel and radio propagation models for wireless MIMO systems,” EURASIP J. Wireless Commun. Netw., vol. 2007, 2007.Google Scholar
Driessen, P. F. and Foschini, G. J., “On the capacity formula for multiple input-multiple output wireless channels: a geometric interpretation,” IEEE Trans. Commun., vol. 47, no. 2, pp. 173176, 1999.Google Scholar
Bohagen, F., Orten, P., and Oien, G. E., “Design of optimal high-rank line-of-sight MIMO channels,” IEEE Trans. Wireless Commun., vol. 6, no. 4, pp. 14201425, 2007.Google Scholar
Chuah, C.-N., Kahn, J., and Tse, D., “Capacity of multi-antenna array systems in indoor wireless environment,” IEEE Global Commun. Conf. (GLOBECOM’98), vol. 4, pp. 18941899, 1998.Google Scholar
Chizhik, D., Rashid-Farrokhi, F., Ling, J., and Lozano, A., “Effect of antenna separation on the capacity of BLAST in correlated channels,” IEEE Commun. Letters, vol. 4, no. 11, pp. 337339, 2000.Google Scholar
Shiu, D. S., Foschini, G. J., Gans, M. J., and Kahn, J. M., “Fading correlation and its effect on the capacity of multielement antenna systems,” IEEE Trans. Commun., vol. 48, no. 3, pp. 502513, 2000.Google Scholar
Forenza, A. and Heath, R. W. Jr., “Benefit of pattern diversity via 2-element array of circular patch antennas in indoor clustered MIMO channels,” IEEE Trans. Commun., vol. 54, pp. 943954, 2006.Google Scholar
Brewer, J., “Kronecker products and matrix calculus in system theory,” IEEE Trans. Circuits and Syst., vol. 25, no. 9, pp. 772781, 1978.Google Scholar
Bonek, E., “Experimental validation of analytical MIMO channel models,” Elek-trotechnik und Informationstechnik, pp. 196–205, 2005.Google Scholar
Bengtsson, M. and Ottersten, B., “Low-complexity estimators for distributed sources,” IEEE Trans. Signal Process., vol. 48, no. 8, pp. 21852194, 2000.Google Scholar
Forenza, A., Love, D. J., and Heath, R. W. Jr., “Simplified spatial correlation models for clustered MIMO channels with different array configurations,” IEEE Trans. Veh. Techn., vol. 56, no. 4, pp. 19241934, 2007.Google Scholar
Loyka, S., “Channel capacity of MIMO architecture using the exponential correlation model,” IEEE Commun. Letters, vol. 5, no. 9, pp. 369371, 2001.Google Scholar
Lim, H., Jang, Y., and Yoon, D., “Bounds for eigenvalues of spatial correlation matrices with the exponential model in MIMO systems,” IEEE Trans. Wireless Commun., vol. 16, no. 2, pp. 11961204, 2017.Google Scholar
Kermoal, J., Schumacher, L., Pedersen, K., Mogensen, P., and Frederiksen, F., “A stochastic MIMO radio channel model with experimental validation,” IEEE J. Sel. Areas Commun., vol. 20, no. 6, pp. 12111226, 2002.Google Scholar
Yu, K., Bengtsson, M., Ottersten, B., McNamara, D., Karlsson, P., and Beach, M., “A wideband statistical model for NLOS indoor MIMO channels,” IEEE Veh. Techn. Conf. (VTC’02), vol. 1, pp. 370374, 2002.Google Scholar
Yu, K., Bengtsson, M., Ottersten, B., McNamara, D., Karlsson, P., and Beach, M., “Modeling of wide-band MIMO radio channels based on NLOS indoor measurements,” IEEE Trans. Veh. Techn., vol. 53, no. 3, pp. 655665, 2004.Google Scholar
Chizhik, D., Ling, J., Wolniansky, P. W., Valenzuela, R. A., Costa, N., and Huber, K., “Multiple-input–multiple-output measurements and modeling in Manhattan,” IEEE J. Sel. Areas Commun., vol. 21, no. 3, pp. 321331, 2003.Google Scholar
Abdi, A. and Kaveh, M., “A space–time correlation model for multielement antenna systems in mobile fading channels,” IEEE J. Sel. Areas Commun., vol. 20, no. 3, pp. 550560, 2002.Google Scholar
Ozcelik, H., Herdin, M., Weichselberger, W., Wallace, J., and Bonek, E., “Deficiencies of ‘Kronecker’ MIMO radio channel model,” Electronics Letters, vol. 39, no. 16, pp. 12091210, 2003.Google Scholar
Oestges, C. and Paulraj, A., “Beneficial impact of channel correlations on MIMO capacity,” Electronics Letters, vol. 40, no. 10, pp. 606608, 2004.Google Scholar
Oestges, C., “Validity of the Kronecker model for MIMO correlated channels,” IEEE Veh. Techn. Conf. (VTC’06 Spring), vol. 6, pp. 28182822, 2006.Google Scholar
Raghavan, V., Kotecha, J. H., and Sayeed, A. M., “Why does the Kronecker model result in misleading capacity estimates?IEEE Trans. Inform. Theory, vol. 56, no. 10, pp. 48434864, 2010.Google Scholar
Tulino, A. M., Lozano, A., and Verdú, S., “Capacity-achieving input covariance for single-user multi-antenna channels,” IEEE Trans. Wireless Commun., vol. 5, no. 3, pp. 662671, 2006.Google Scholar
Kotecha, J. H. and Sayeed, A. M., “Optimal signal design for estimation of correlated MIMO channels,” IEEE Int’l Conf. Commun. (ICC’03), vol. 5, pp. 3170– 3174, 2003.Google Scholar
Weichselberger, W., Herdin, M., Ozcelik, H., and Bonek, E., “A stochastic MIMO channel model with joint correlation of both link ends,” IEEE Trans. Wireless Commun., vol. 5, no. 1, pp. 90100, 2006.Google Scholar
Vaughan, R., “Switched parasitic elements for antenna diversity,” IEEE Trans. Antennas Propag., vol. 47, pp. 399405, 1999.Google Scholar
Mattheijssen, P., Herben, M. H. A. J., Dolmans, G., and Leyten, L., “Antenna-pattern diversity versus space diversity for use at handhelds,” IEEE Trans. Veh. Techn., vol. 53, pp. 10351042, 2004.Google Scholar
Dong, L., Ling, H., and Heath, R. W. Jr., “Multiple-input multiple-output wireless communication systems using antenna pattern diversity,” IEEE Global Commun. Conf. (GLOBECOM’02), vol. 1, pp. 9971001, Nov. 2002.Google Scholar
Dietrich, C. B. Jr., Dietze, K., Nealy, J. R., and Stutzman, W. L., “Spatial, polarization, and pattern diversity for wireless handheld terminals,” IEEE Antennas Prop. Symp., vol. 49, pp. 12711281, Sep. 2001.Google Scholar
Vaughan, R. G., “Polarization diversity in mobile communications,” IEEE Trans. Veh. Techn., vol. 39, no. 3, pp. 177186, 1990.Google Scholar
Hamalainen, J., Wichman, R., Nuutinen, J. P., Ylitalo, J., and Jamsa, T., “Analysis and measurements for indoor polarization MIMO in 5.25 GHz band,” IEEE Vehic. Techn. Conf. (VTC’05 Spring), vol. 1, pp. 252256, 2005.Google Scholar
Shafi, M., Zhang, M., Moustakas, A. L., Smith, P. J., Molisch, A. F., Tufvesson, F., and Simon, S. H., “Polarized MIMO channels in 3-D: models, measurements and mutual information,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 514527, 2006.Google Scholar
Anreddy, V. R. and Ingram, M. A., “Capacity of measured Ricean and Rayleigh indoor MIMO channels at 2.4 GHz with polarization and spatial diversity,” IEEE Wireless Commun. and Networking Conf. (WCNC’06), vol. 2, pp. 946951, 2006.Google Scholar
Erceg, V., Sampath, H., and Catreux-Erceg, S., “Dual-polarization versus single-polarization MIMO channel measurement results and modeling,” IEEE Trans. Wireless Commun., vol. 5, no. 1, pp. 2433, 2006.Google Scholar
Nabar, R. U., Bölcskei, H., Erceg, V., Gesbert, D., and Paulraj, A. J., “Performance of spatial-multiplexing in the presence of polarization diversity,” IEEE Int’l Conf. Acoustics, Speech and Signal Proc. (ICASSP’01), vol. 4, pp. 24372440, May 2001.Google Scholar
Martin, C. C., Winters, J. H., and Sollenberger, N. R., “MIMO radio channel measurements: performance comparison of antenna configurations,” IEEE Veh. Techn. Conf. (VTC’01), vol. 2, pp. 12251229, Oct. 2001.Google Scholar
Li, H. J. and Yu, C. H., “Correlation properties and capacity of antenna polarization combinations for MIMO radio channel,” IEEE Antennas Prop. Symp., vol. 2, pp. 503506, Jun. 2003.Google Scholar
Jungnickel, V., Pohl, V., Nguyen, H., Kruger, U., Haustein, T., and Helmolt, C. V., “High capacity antennas for MIMO radio systems,” Int’l Symp. Wireless Personal Commun., vol. 2, pp. 407411, Oct. 2002.Google Scholar
Sayeed, A. M., “Deconstructing multiantenna fading channels,” IEEE Trans. Signal Process., vol. 50, no. 10, pp. 25632579, 2002.Google Scholar
Chizhik, D., Foschini, G. J., and Valenzuela, R. A., “Capacities of multi-element transmit and receive antennas: correlations and keyholes,” Electronics Letters, vol. 36, no. 13, pp. 10991100, 2000.Google Scholar
Chizhik, D., Foschini, G. J., Gans, M. J., and Valenzuela, R. A., “Keyholes, correlations, and capacities of multielement transmit and receive antennas,” IEEE Trans. Wireless Commun., vol. 1, no. 2, pp. 361368, 2002.Google Scholar
Gesbert, D., Bölcskei, H., Gore, D. A., and Paulraj, A. J., “Outdoor MIMO wireless channels: models and performance prediction,” IEEE Trans. Commun., vol. 50, no. 12, pp. 19261934, 2002.Google Scholar
Loyka, S. and Kouki, A., “On MIMO channel capacity, correlations, and keyholes: analysis of degenerate channels,” IEEE Trans. Commun., vol. 50, no. 12, pp. 1886– 1888, 2002.Google Scholar
Erceg, V., Fortune, S. J., Ling, J., Rustako, A. Jr., and Valenzuela, R. A., “Comparisons of a computer-based propagation prediction tool with experimental data collected in urban microcellular environments,” IEEE J. Sel. Areas Commun., vol. 15, no. 4, pp. 677684, 1997.Google Scholar
Almers, P., Tufvesson, F., and Molisch, A. F., “Measurement of keyhole effect in a wireless multiple-input multiple-output (MIMO) channel,” IEEE Commun. Letters, vol. 7, no. 8, pp. 373375, 2003.Google Scholar
Almers, P., Tufvesson, F., and Molisch, A. F., “Keyhole effect in MIMO wireless channels: measurements and theory,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 35963604, 2006.Google Scholar
Petrus, P., Reed, J. H., and Rappaport, T. S., “Geometrical-based statistical macrocell channel model for mobile environments,” IEEE Trans. Commun., vol. 50, no. 3, pp. 495502, 2002.Google Scholar
Mardia, K. V. and Jupp, P. E., Directional statistics. Wiley, 1999.Google Scholar
Byers, G. J. and Takawira, F., “The influence of spatial and temporal correlation on the capacity of MIMO channels,” IEEE Wireless Commun. and Networking (WCNC’03), pp. 359–364, 2003.Google Scholar
Wallace, J. W. and Jensen, M. A., “Statistical characteristics of measured MIMO wireless channel data and comparison to conventional models,” IEEE Veh. Techn. Conf. (VTC’01), vol. 2, pp. 10781082, 2001.Google Scholar
Li, K.-H., Ingram, M., and Van Nguyen, A., “Impact of clustering in statistical indoor propagation models on link capacity,” IEEE Trans. Commun., vol. 50, no. 4, pp. 521523, 2002.Google Scholar
Biglieri, E., Grossi, E., and Lops, M., “Random-set theory and wireless communications,” Found. Trends Commun. Inform. Theory, vol. 7, no. 4, pp. 317462, 2012.Google Scholar
Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D., and Sentz, K., Constructing probability boxes and Dempster–Shafer structures. Sandia National Laboratories Report SAND 20024015, 2002.Google Scholar
Biglieri, E., “Dealing with uncertain models in wireless communications,” IEEE Int’l Conf. Acoustics, Speech and Signal Process. (ICASSP’16), 2016.Google Scholar
Mohammadkarimi, M., Karami, E., Dobre, O. A., and Win, M. Z., “Doppler spread estimation in MIMO frequency-selective fading channels,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 19511965, 2018.Google Scholar
Lozano, A., “Interplay of spectral efficiency, power and Doppler spectrum for reference-signal-assisted wireless communication,” IEEE Trans. Commun., vol. 56, no. 12, pp. 50205029, 2008.Google Scholar
Molisch, A. F., Asplund, H., Heddergot, R., Steinbauer, M., and Zwick, T., “The COST 259 directional channel model—part I: overview and methodology,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 34213433, 2006.Google Scholar
Asplund, H., Glazunov, A. A., Molisch, A. F., Pedersen, K., and Steinbauer, M., “The COST 259 directional channel model—part II: Macrocells,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 34343450, 2006.Google Scholar
Correia, L., COST 273 final report. Springer, 2006.Google Scholar
Baum, D. S., “Final report on link level and system level channel models,” Document IST-2003–507581, Tech. Rep., Nov. 2006.Google Scholar
Kyösti, P., “WINNER II channel models,” Document IST-4–027756, Tech. Rep., Apr. 2008.Google Scholar
3GPP Technical Specification Group, “Spatial channel model, SCM-134 text V6.0,” Spatial Channel Model AHG (Combined ad-hoc from 3GPP and 3GPP2), Tech. Rep., Apr. 2003.Google Scholar
Oestges, C., Erceg, V., and Paulraj, A. J., “A physical scattering model for MIMO macrocellular broadband wireless channels,” IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 721729, 2003.Google Scholar
Lu, M., Lo, T., and Litva, J., “A physical spatio-temporal model of multipath propagation channels,” IEEE Veh. Techn. Conf. (VTC’97), vol. 2, pp. 810814, 1997.Google Scholar
Norklit, O. and Andersen, J. B., “Diffuse channel model and experimental results for array antennas in mobile environments,” IEEE Trans. Antennas Propag., vol. 46, no. 6, pp. 834840, 1998.Google Scholar
Erceg, V. et al., “TGn channel models IEEE 802.11–03/940r4,” Tech. Rep., May 2004.Google Scholar
Rappaport, T. S., Shu, S., Mayzus, R., Hang, Z., Azar, Y., Wang, K., Wong, G. N., Schulz, J. K., Samimi, M., and Gutierrez, F., “Millimeter wave mobile communications for 5G cellular: it will work!IEEE Access, vol. 1, pp. 335349, 2013.Google Scholar
Cheng, X., Yu, B., Yang, L., Zhang, J., Liu, G., Wu, Y., and Wan, L., “Communicating in the real world: 3D MIMO,” IEEE Commun. Mag., vol. 52, no. 8, pp. 136144, 2014.Google Scholar
Zhang, J., Pan, C., Pei, F., Liu, G., and Cheng, X., “Three-dimensional fading channel models: a survey of elevation angle research,” IEEE Commun. Mag., vol. 52, no. 6, pp. 218226, 2014.Google Scholar
Almesaeed, R. N., Ameen, A. S., Mellios, E., Doufexi, A., and Nix, A., “3D channel models: principles, characteristics, and system implications,” IEEE Commun. Mag., vol. 55, no. 4, pp. 152159, 2017.Google Scholar
Zhang, J., Zhang, Y., Yu, Y., Xu, R., Zheng, Q., and Zhang, P., “3-D MIMO: how much does it meet our expectations observed from channel measurements?IEEE J. Sel. Areas Commun., vol. 35, no. 8, pp. 18871903, 2017.Google Scholar
Mondal, B., Thomas, T., Visotsky, E., Vook, F., Ghosh, A., Nam, Y.-H., Li, Y., Zhang, J., Zhang, M., Luo, Q., Kakishima, Y., and Kitao, K., “3D channel model in 3GPP,” IEEE Commun. Mag., vol. 53, no. 3, pp. 1623, 2015.Google Scholar
Meinila, J., Kyösti, P., Hentila, L., Jamsa, T., Suikkanen, E. K. E., and Narandzia, M., “WINNER+ final channel models,” Document CELTIC/CP5–026 D5.3, Tech. Rep., Jun. 2010.Google Scholar
Thiele, L., Wirth, T., Brner, K., Olbrich, M., Jungnickel, V., Rumold, J., and Fritze, S., “Modeling of 3D field patterns of downtilted antennas and their impact on cellular systems,” Int’l ITG Workshop on Smart Antennas, Feb. 2009.Google Scholar
Li, X., Heath, R. W. Jr., Linehan, K., and Butler, R., “Metrocell antennas: the positive impact of a narrow vertical beamwidth and electrical downtilt,” IEEE Veh. Techn. Mag., vol. 10, no. 3, pp. 5159, 2015.Google Scholar
Lin, X., Andrews, J., Ghosh, A., and Ratasuk, R., “An overview of 3GPP device-to-device proximity services,” IEEE Commun. Mag., vol. 52, pp. 4048, Apr. 2014.Google Scholar
George, G., Mungara, R. K., and Lozano, A., “An analytical framework for device-to-device communication in cellular networks,” IEEE Trans. Wireless Commun., vol. 14, pp. 62976310, Nov. 2015.Google Scholar
Stocker, K. E., Gschwendtner, B. E., and Landstorfer, F. M., “Neural network approach to prediction of terrestrial wave propagation for mobile radio,” IEE Proc. H (Microwaves, Antennas and Prop.), vol. 140, no. 4, pp. 315320, 1993.Google Scholar
Ostlin, E., Zepernick, H.-J., and Suzuki, H., “Macrocell path-loss prediction using artificial neural networks,” IEEE Trans. Veh. Techn., vol. 59, no. 6, pp. 27352747, 2010.Google Scholar
Dall’Anese, E., Kim, S. J., and Giannakis, G. B., “Channel gain map tracking via distributed Kriging,” IEEE Trans. Veh. Techn., vol. 60, no. 3, pp. 12051211, 2011.Google Scholar
Muppirisetty, L. S., Svensson, T., and Wymeersch, H., “Spatial wireless channel prediction under location uncertainty,” IEEE Trans. Wireless Commun., vol. 15, no. 2, pp. 10311044, 2016.Google Scholar
Chen, J., Yatnalli, U., and Gesbert, D., “Learning radio maps for UAV-aided wireless networks: a segmented regression approach,” IEEE Int’l Conf. Commun. (ICC’17), pp. 1–6, May 2017.Google Scholar
Kasparick, M., Cavalcante, R. L. G., Valentin, S., Stanczak, S., and Yukawa, M., “Kernel-based adaptive online reconstruction of coverage maps with side information,” IEEE Trans. Veh. Technol., vol. 65, no. 7, pp. 54615473, 2016.Google Scholar
Romero, D., Kim, S.-J., Giannakis, G. B., and Lopez-Valcarce, R., “Learning power spectrum maps from quantized power measurements,” IEEE Trans. Signal Process., vol. 65, no. 10, pp. 25472560, 2017.Google Scholar
Nikbakht, R., Jonsson, A., and Lozano, A., “Dual-kernel online reconstruction of power maps,” IEEE Global Commun. Conf. (GLOBECOM’18), 2018.Google Scholar
Verdú, S., “On channel capacity per unit cost,” IEEE Trans. Inform. Theory, vol. 36, no. 5, pp. 10191030, 1990.Google Scholar
Lozano, A., Tulino, A., and Verdú, S., “High-SNR power offset in multiantenna communication,” IEEE Trans. Inform. Theory, vol. 51, no. 12, pp. 41344151, 2005.Google Scholar
Massey, J. L., “All signal sets centered about the origin are optimal at low energy-to-noise ratios on the AWGN channel,” IEEE Int’l Symp. Inform. Theory (ISIT’76), pp. 80–81, 1976.Google Scholar
Forney, G. D. Jr. and Wei, L. F., “Multidimensional constellations. I. Introduction, figures of merit, and generalized cross constellations,” IEEE J. Sel. Areas Commun., vol. 7, no. 6, pp. 877892, 1989.Google Scholar
Calderbank, A. R. and Ozarow, L. H., “Nonequiprobable signaling on the Gaussian channel,” IEEE Trans. Inform. Theory, vol. 36, no. 4, pp. 726740, 1990.Google Scholar
Shiu, D. S. and Kahn, J. M., “Shaping and nonequiprobable signaling for intensity-modulated signals,” IEEE Trans. Inform. Theory, vol. 45, no. 7, pp. 26612668, 1999.Google Scholar
Abdelaziz, M. and Gulliver, T. A., “Triangular constellations for adaptive modulation,” IEEE Trans. Commun., vol. 66, no. 2, pp. 756766, 2018.Google Scholar
Wu, P. and Jindal, N., “Coding versus ARQ in fading channels: how reliable should the PHY be?IEEE Trans. Commun., vol. 59, no. 12, pp. 33633374, 2011.Google Scholar
Hirt, W. and Massey, J. L., “Capacity of the discrete-time Gaussian channel with intersymbol interference,” IEEE Trans. Inform. Theory, vol. 34, pp. 380388, May 1988.Google Scholar
Kasturia, S., Aslanis, J. T., and Cioffi, J. M., “Vector coding for partial response channels,” IEEE Trans. Inform. Theory, vol. 36, no. 4, pp. 741762, 1990.Google Scholar
Holsinger, J. L., “Digital communications over fixed time-continuous channels with memory, with special application to telephone channel,” MIT Res. Lab. Electron. Rep., vol. 430, p. 460, 1964.Google Scholar
Tsybakov, B. S., “Capacity of a discrete-time Gaussian channel with a filter,” Prob. Inform. Transm., vol. 6, pp. 253256, Jul.–Sep. 1970.Google Scholar
Price, R., “A conversation with Claude Shannon,” IEEE Commun. Mag., vol. 22, pp. 123126, May 1984.Google Scholar
Cioffi, J. M., Dudevoir, G. P., Eyuboglu, M. V., and Forney, J. G. D., “MMSE decision-feedback equalizers and coding. I. equalization results,” IEEE Trans. Commun., vol. 43, no. 10, pp. 25822594, 1995.Google Scholar
Lozano, A., Tulino, A., and Verdú, S., “Mercury/waterfilling: optimum power allocation with arbitrary input constellations,” Int’l Symp. Inform. Theory (ISIT’05), pp. 1773–1777, 2005.Google Scholar
Forney, G. D. and Ungerboeck, G., “Modulation and coding for linear Gaussian channels,” IEEE Trans. Inform. Theory, vol. 44, no. 6, pp. 23842415, 1998.Google Scholar
Chow, P. S., Cioffi, J. M., and Bingham, J. A. C., “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun., vol. 43, no. 2–4, pp. 773775, 1995.Google Scholar
Chow, P. S., “Bandwidth optimized digital transmission techniques for spectrally shaped channels with impulse noise,” Ph.D. dissertation, Stanford University, May 1993.Google Scholar
Hughes-Hartogs, D., “Ensemble modem structure for imperfect transmission media,” U.S. Patent 4 679 227, Jul. 1987.Google Scholar
Shamai, S. and Laroia, R., “The intersymbol interference channel: lower bounds on capacity and channel precoding loss,” IEEE Trans. Inform. Theory, vol. 42, no. 5, pp. 13881404, 1996.Google Scholar
Carmon, Y., Shamai, S., and Weissman, T., “Comparison of the achievable rates in OFDM and single carrier modulation with I.I.D. inputs,” IEEE Trans. Inform. Theory, vol. 61, no. 4, pp. 17951818, 2015.Google Scholar
Polyanskiy, Y., Poor, H. V., and Verdú, S., “Dispersion of Gaussian channels,” IEEE Int’l Symp. Inform. Theory (ISIT’09), pp. 2204–2208, 2009.Google Scholar
Brueninghaus, K., Astely, D., Salzer, T., Visuri, S., Alexiou, A., Karger, S., and Seraji, G.-A., “Link performance models for system level simulations of broadband radio access systems,” IEEE Int’l Symp. Personal, Indoor and Mobile Radio Commun. (PIMRC’05), vol. 4, pp. 23062311, 2005.Google Scholar
Tsai, S. S. and Soong, A., “Effective-SNR mapping for modeling frame error rates in multiple-state channels,” 3GPP2-C30–20030429-010, Tech. Rep., 2003.Google Scholar
Ericsson, “System-level evaluation of OFDM—further considerations,” TSG-RAN WG1 meeting 35, Tech. Rep., Nov. 2003.Google Scholar
Blankenship, Y., Sartori, P., Classon, B., Desai, V., and Baum, K., “Link error prediction methods for multicarrier systems,” IEEE Veh. Techn. Conf. (VTC’04 Fall), vol. 6, pp. 41754179, 2004.Google Scholar
Schwarz, S., “Limited feedback transceiver design for downlink MIMO OFDM cellular networks,” Ph.D. dissertation, Vienna University of Technology, 2013.Google Scholar
Cipriano, A. M., Visoz, R., and Sälzer, T., “Calibration issues of PHY layer abstractions for wireless broadband systems,” IEEE Veh. Techn. Conf. (VTC’08 Fall), pp. 1–5, 2008.Google Scholar
Daniels, R. C. and Heath, R. W. Jr., “Modeling ordered subcarrier SNR in MIMOOFDM wireless links,” Physical Commun., vol. 4, no. 4, pp. 275285, 2011.Google Scholar
Daniels, R. C., Caramanis, C. M., and Heath, R. W. Jr., “Adaptation in convolutionally coded MIMO-OFDM wireless systems through supervised learning and SNR ordering,” IEEE Trans. Veh. Techn., vol. 59, no. 1, pp. 114126, 2010.Google Scholar
Ozarow, L. H., Shamai, S., and Wyner, A. D., “Information theoretic considerations for cellular mobile radio,” IEEE Trans. Veh. Techn., vol. 43, no. 2, pp. 359378, 1994.Google Scholar
Biglieri, E., Proakis, J., and Shamai, S., “Fading channels: information-theoretic and communication aspects,” IEEE Trans. Inform. Theory, vol. 44, no. 6, pp. 2619– 2692, 1998.Google Scholar
Hlawatsch, F. and Matz, G., Wireless communications over rapidly time-varying channels. Academic Press, 2011.Google Scholar
Cavers, J., “Variable-rate transmission for Rayleigh fading channels,” IEEE Trans. Commun., vol. 20, no. 1, pp. 1522, 1972.Google Scholar
Caire, G., Taricco, G., and Biglieri, E., “Optimum power control over fading channels,” IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 14681489, 1999.Google Scholar
Negi, R. and Cioffi, J. M., “Delay-constrained capacity with causal feedback,” IEEE Trans. Inform. Theory, vol. 48, no. 9, pp. 24782494, 2002.Google Scholar
Alouini, M. S. and Goldsmith, A. J., “Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques,” IEEE Trans. Veh. Techn., vol. 48, no. 4, pp. 11651181, 1999.Google Scholar
Borade, S. and Zheng, L., “Wideband fading channels with feedback,” IEEE Trans. Inform. Theory, vol. 56, no. 12, pp. 60586065, 2010.Google Scholar
Khoshnevisan, M. and Laneman, J. N., “Power allocation in multi-antenna wireless systems subject to simultaneous power constraints,” IEEE Trans. Commun., vol. 60, no. 12, pp. 38553864, 2012.Google Scholar
Wang, Z. and Giannakis, G. B., “A simple and general parameterization quantifying performance in fading channels,” IEEE Trans. Commun., vol. 51, no. 8, pp. 1389– 1398, 2003.Google Scholar
Zheng, L. and Tse, D. N. C., “Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels,” IEEE Trans. Inform. Theory, vol. 49, no. 5, pp. 1073– 1096, 2003.Google Scholar
Shin, W. Y., Chung, S. Y., and Lee, Y. H., “Diversity-multiplexing tradeoff and outage performance for Rician MIMO channels,” IEEE Trans. Inform. Theory, vol. 54, no. 3, pp. 11861196, 2008.Google Scholar
Zhao, L., Mo, W., Ma, Y., and Wang, Z., “Diversity and multiplexing tradeoff in general fading channels,” IEEE Trans. Inform. Theory, vol. 53, no. 4, pp. 1549– 1557, 2007.Google Scholar
Lozano, A. and Jindal, N., “Transmit diversity vs. spatial multiplexing in modern MIMO systems,” IEEE Trans. Wireless Commun., vol. 9, no. 1, pp. 186197, 2010.Google Scholar
Narasimhan, R., “Finite-SNR diversity-multiplexing tradeoff for correlated Rayleigh and Rician MIMO channels,” IEEE Trans. Inform. Theory, vol. 52, no. 9, pp. 39563979, 2006.Google Scholar
Azarian, K. and El Gamal, H., “The throughput–reliability tradeoff in block-fading MIMO channels,” IEEE Trans. Inform. Theory, vol. 53, no. 2, pp. 488501, 2007.Google Scholar
Lee, W. C. Y., “Estimate of channel capacity in Rayleigh fading environment,” IEEE Trans. Veh. Techn., vol. 39, no. 3, pp. 187189, 1990.Google Scholar
Alouini, M. S. and Goldsmith, A., “Capacity of Nakagami multipath fading channels,” IEEE Veh. Techn. Conf. (VTC’97), vol. 1, pp. 358362, May 1997.Google Scholar
Wong, T. F., “Numerical calculation of symmetric capacity of Rayleigh fading channel with BPSK/QPSK,” IEEE Commun. Letters, vol. 5, no. 8, pp. 328330, 2001.Google Scholar
Lapidoth, A. and Moser, S. M., “Capacity bounds via duality with applications to multiple-antenna systems on flat-fading channels,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 24262467, 2003.Google Scholar
Richters, J. S., “Communication over fading dispersive channels,” Tech. Rep. 464, MIT Research Laboratory Electronics, Nov. 1967.Google Scholar
de la Kethulle de Ryhove, S., Marina, N., and Oien, G. E., “On the mutual information and low-SNR capacity of memoryless noncoherent Rayleigh-fading channels,” IEEE Trans. Inform. Theory, vol. 54, no. 7, pp. 32213231, 2008.Google Scholar
Zheng, L., Tse, D. N. C., and Médard, M., “Channel coherence in the low-SNR regime,” IEEE Trans. Inform. Theory, vol. 53, no. 3, pp. 976997, 2007.Google Scholar
Taricco, G. and Elia, M., “Capacity of fading channel with no side information,” Electronics Letters, vol. 33, no. 16, pp. 13681370, 1997.Google Scholar
Marzetta, T. L. and Hochwald, B. M., “Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading,” IEEE Trans. Inform. Theory, vol. 45, no. 1, pp. 139157, 1999.Google Scholar
Bergel, I. and Benedetto, S., “Bounds on the capacity of OFDM underspread frequency selective fading channels,” IEEE Trans. Inform. Theory, vol. 58, no. 10, pp. 64466470, 2012.Google Scholar
Médard, M. and Gallager, R. G., “Bandwidth scaling for fading multipath channels,” IEEE Trans. Inform. Theory, vol. 48, no. 4, pp. 840852, 2002.Google Scholar
Rao, C. and Hassibi, B., “Analysis of multiple-antenna wireless links at low SNR,” IEEE Trans. Inform. Theory, vol. 50, no. 9, pp. 21232130, 2004.Google Scholar
Srinivasan, S. G. and Varanasi, M. K., “Optimal constellations for the low-SNR noncoherent MIMO block Rayleigh-fading channel,” IEEE Trans. Inform. Theory, vol. 55, no. 2, pp. 776796, 2009.Google Scholar
Sethuraman, V., Wang, L., Hajek, B., and Lapidoth, A., “Low-SNR capacity of noncoherent fading channels,” IEEE Trans. Inform. Theory, vol. 55, no. 4, pp. 1555– 1574, 2009.Google Scholar
Hochwald, B. M. and Marzetta, T. L., “Unitary space–time modulation for multiple-antenna communications in Rayleigh flat fading,” IEEE Trans. Inform. Theory, vol. 46, no. 2, pp. 543564, 2000.Google Scholar
Zheng, L. and Tse, D. N. C., “Communication on the Grassmann manifold: a geometric approach to the noncoherent multiple-antenna channel,” IEEE Trans. Inform. Theory, vol. 48, no. 2, pp. 359383, 2002.Google Scholar
Lapidoth, A., “On the asymptotic capacity of stationary Gaussian fading channels,” IEEE Trans. Inform. Theory, vol. 51, no. 2, pp. 437446, 2005.Google Scholar
Durisi, G., Morgenshtern, V. I., and Bölcskei, H., “On the sensitivity of continuous-time noncoherent fading channel capacity,” IEEE Trans. Inform. Theory, vol. 58, no. 10, pp. 63726391, 2012.Google Scholar
Zhang, W. and Laneman, J. N., “How good is PSK for peak-limited fading channels in the low-SNR regime?IEEE Trans. Inform. Theory, vol. 53, no. 1, pp. 236251, 2007.Google Scholar
Rusek, F., Lozano, A., and Jindal, N., “Mutual information of IID complex gaussian signals on block Rayleigh-faded channels,” IEEE Trans. Inform. Theory, vol. 58, no. 1, pp. 331340, 2012.Google Scholar
Dörpinghaus, M., Meyr, H., and Mathar, R., “On the achievable rate of stationary Rayleigh flat-fading channels with Gaussian inputs,” IEEE Trans. Inform. Theory, vol. 59, no. 4, pp. 22082220, 2013.Google Scholar
Caire, G., “On the ergodic rate lower bounds with applications to massive MIMO,” IEEE Trans. Wireless Commun., vol. 17, no. 5, pp. 32583268, 2018.Google Scholar
Diggavi, S. N., “On achievable performance of spatial diversity fading channels,” IEEE Trans. Inform. Theory, vol. 47, no. 1, pp. 308325, 2001.Google Scholar
Bölcskei, H., Gesbert, D., and Paulraj, A. J., “On the capacity of OFDM-based spatial multiplexing systems,” IEEE Trans. Commun., vol. 50, no. 2, pp. 225234, 2002.Google Scholar
Médard, M., “The effect upon channel capacity in wireless communications of perfect and imperfect knowledge of the channel,” IEEE Trans. Inform. Theory, vol. 46, no. 3, pp. 933946, 2000.Google Scholar
Hassibi, B. and Hochwald, B. M., “How much training is needed in multiple-antenna wireless links?IEEE Trans. Inform. Theory, vol. 49, no. 4, pp. 951963, 2003.Google Scholar
Ma, X., Yang, L., and Giannakis, G. B., “Optimal training for MIMO frequency-selective fading channels,” IEEE Trans. Wireless Commun., vol. 4, no. 2, pp. 453– 466, 2005.Google Scholar
Furrer, S. and Dahlhaus, D., “Multiple-antenna signaling over fading channels with estimated channel state information: capacity analysis,” IEEE Trans. Inform. Theory, vol. 53, no. 6, pp. 20282043, 2007.Google Scholar
Baltersee, J., Fock, G., and Meyr, H., “An information theoretic foundation of synchronized detection,” IEEE Trans. Commun., vol. 49, no. 12, pp. 21152123, 2001.Google Scholar
Ohno, S. and Giannakis, G. B., “Average-rate optimal PSAM transmissions over time-selective fading channels,” IEEE Trans. Wireless Commun., vol. 1, no. 4, pp. 712720, 2002.Google Scholar
Deng, X. and Haimovich, A. M., “Achievable rates over time-varying Rayleigh fading channels,” IEEE Trans. Commun., vol. 55, no. 7, pp. 13971406, 2007.Google Scholar
Peel, C. B. and Swindlehurst, A. L., “Throughput-optimal training for a time-varying multi-antenna channel,” IEEE Trans. Wireless Commun., vol. 6, no. 9, pp. 33643373, 2007.Google Scholar
Gursoy, M. C., “On the capacity and energy efficiency of training-based transmissions over fading channels,” IEEE Trans. Inform. Theory, vol. 55, no. 10, pp. 4543– 4567, 2009.Google Scholar
Savazzi, S. and Spagnolini, U., “Optimizing training lengths and training intervals in time-varying fading channels,” IEEE Trans. Signal Process., vol. 57, no. 3, pp. 10981112, 2009.Google Scholar
Li, T. and Collins, O., “A successive decoding strategy for channels with memory,” IEEE Int’l Symp. Inform. Theory (ISIT’05), Sep. 2005.Google Scholar
Coldrey, M. and Bohlin, P., “Training-based MIMO systems—part II: improvements using detected symbol information,” IEEE Trans. Signal Process., vol. 56, no. 1, pp. 296303, 2008.Google Scholar
Marzetta, T. L., Jindal, N., and Lozano, A., “What is the value of joint processing of pilots and data in block-fading channels?” IEEE Int’l Symp. Inform. Theory (ISIT’09), pp. 2189–2193, 2009.Google Scholar
Dörpinghaus, M., Ispas, A., and Meyr, H., “On the gain of joint processing of pilot and data symbols in stationary Rayleigh fading channels,” IEEE Trans. Inform. Theory, vol. 58, no. 5, pp. 29632982, 2011.Google Scholar
Diggavi, S. N. and Cover, T. M., “The worst additive noise under a covariance constraint,” IEEE Trans. Inform. Theory, vol. 47, no. 7, pp. 30723081, 2001.Google Scholar
Lapidoth, A. and Shamai, S., “Fading channels: how perfect need ‘perfect side in-formation’ be?IEEE Trans. Inform. Theory, vol. 48, no. 5, pp. 11181134, 2002.Google Scholar
Jindal, N. and Lozano, A., “A unified treatment of optimum pilot overhead in multipath fading channels,” IEEE Trans. Commun., vol. 58, no. 10, pp. 29392948, 2010.Google Scholar
Adireddy, S., Tong, L., and Viswanathan, H., “Optimal placement of training for frequency-selective block-fading channels,” IEEE Trans. Inform. Theory, vol. 48, no. 8, pp. 23382353, 2002.Google Scholar
Simko, M., Diniz, P. S. R., Wang, Q., and Rupp, M., “Adaptive pilot-symbol patterns for MIMO OFDM systems,” IEEE Trans. Wireless Commun., vol. 12, pp. 4705– 4715, Sep. 2013.Google Scholar
George, G., Mungara, R. K., Lozano, A., and Haenggi, M., “Ergodic spectral efficiency in MIMO cellular networks,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 28352849, 2017.Google Scholar
Wu, J., Mehta, N., Molisch, A., and Zhang, J., “Unified spectral efficiency analysis of cellular systems with channel-aware schedulers,” IEEE Trans. Commun., no. 99, pp. 1–12, 2011.Google Scholar
Chiani, M., Win, M. Z., and Shin, H., “MIMO networks: the effects of interference,” IEEE Trans. Inform. Theory, vol. 56, no. 1, pp. 336349, 2010.Google Scholar
Lozano, A., Tulino, A. M., and Verdú, S., “Multiple-antenna capacity in the low-power regime,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 25272544, 2003.Google Scholar
Mogensen, P., Na, W., Kovács, I. Z., Frederiksen, F., Pokhariyal, A., Pedersen, K. I., Kolding, T., Hugl, K., and Kuusela, M., “LTE capacity compared to the Shannon bound,” IEEE Veh. Techn. Conf. (VTC’07), pp. 1234–1238, 2007.Google Scholar
Mehlführer, C., Caban, S., and Rupp, M., “Cellular system physical layer throughput: how far off are we from the Shannon bound?IEEE Wireless Commun., vol. 18, no. 6, pp. 5463, 2011.Google Scholar
Caban, S., Rupp, M., Mehlführer, C., and Wrulich, M., Evaluation of HSDPA and LTE: from testbed measurements to system level performance. John Wiley & Sons, 2011.Google Scholar
Lerch, M. and Rupp, M., “Measurement-based evaluation of the LTE MIMO downlink at different antenna configurations,” Int’l ITG Workshop Smart Antennas (WSA’13), pp. 1–6, 2013.Google Scholar
Caire, G. and Tuninetti, D., “The throughput of hybrid-ARQ protocols for the Gaussian collision channel,” IEEE Trans. Inform. Theory, vol. 47, pp. 19711988, 2001.Google Scholar
Larsson, P., Rasmussen, L. K., and Skoglund, M., “Throughput analysis of ARQ schemes in Gaussian block fading channels,” IEEE Trans. Commun., vol. 62, pp. 25692588, Jul. 2014.Google Scholar
Bai, Z. D., “Convergence rate of expected spectral distributions of large random matrices. Part I. Wigner matrices,” Ann. Probab., vol. 21, pp. 625648, 1993.Google Scholar
Biglieri, E., Taricco, G., and Tulino, A., “How far away is infinity? Using asymptotic analyses in multiple-antenna systems,” IEEE Int’l Symp. Spread Spectrum Techniques and Applications (ISSSTA’02), vol. 1, pp. 16, 2002.Google Scholar
Tse, D. N. C. and Hanly, S. V., “Linear multiuser receivers: effective interference, effective bandwidth and user capacity,” IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 641657, 1999.Google Scholar
Verdú, S. and Shamai, S., “Spectral efficiency of CDMA with random spreading,” IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 622640, 1999.Google Scholar
Rapajic, P. B. and Popescu, D., “Information capacity of a random signature multiple-input multiple-output channel,” IEEE Trans. Commun., vol. 48, no. 8, pp. 12451248, 2000.Google Scholar
Wallace, J. W. and Jensen, M. A., “Mutual coupling in MIMO wireless systems: a rigorous network theory analysis,” IEEE Trans. Wireless Commun., vol. 3, no. 4, pp. 13171325, 2004.Google Scholar
Gesbert, D., Ekman, T., and Christophersen, N., “Capacity limits of dense palm-sized MIMO arrays,” IEEE Global Commun. Conf. (GLOBECOM’02), vol. 2, pp. 11871191, 2002.Google Scholar
Chiurtu, N., Rimoldi, B., Telatar, E., and Pauli, V., “Impact of correlation and coupling on the capacity of MIMO systems,” IEEE Int’l Symp. Signal Process. and Inform. Techn. (ISSPIT’03), pp. 154–157, 2003.Google Scholar
Pollock, T. S., Abhayapala, T. D., and Kennedy, R. A., “Antenna saturation effects on dense array MIMO capacity,” IEEE Int’l Conf. Acoustics, Speech, and Signal Process. (ICASSP’03), vol. 4, pp. IV361, 2003.Google Scholar
Sayeed, A., Raghavan, V., and Kotecha, J., “Capacity of space–time wireless channels: a physical perspective,” IEEE Inform. Theory Workshop (ITW’04), pp. 434– 439, 2004.Google Scholar
Muharemovic, T., Sabharwal, A., and Aazhang, B., “Antenna packing in low-power systems: communication limits and array design,” IEEE Trans. Inform. Theory, vol. 54, no. 1, pp. 429440, 2008.Google Scholar
Masouros, C., Sellathurai, M., and Ratnarajah, T., “Large-scale MIMO transmitters in fixed physical spaces: the effect of transmit correlation and mutual coupling,” IEEE Trans. Commun., vol. 61, no. 7, pp. 27942804, 2013.Google Scholar
Payaró, M. and Palomar, D. P., “On optimal precoding in linear vector Gaussian channels with arbitrary input distribution,” IEEE Int’l Symp. Inform. Theory (ISIT’09), pp. 1085–1089, 2009.Google Scholar
Pérez-Cruz, F., Rodrigues, M. R. D., and Verdú, S., “MIMO Gaussian channels with arbitrary inputs: optimal precoding and power allocation,” IEEE Trans. Inform. Theory, vol. 56, no. 3, pp. 10701084, 2010.Google Scholar
Lamarca, M., “Linear precoding for mutual information maximization in MIMO systems,” Int’l Symp. Wireless Commun. Systems (ISWCS’09), pp. 26–30, 2009.Google Scholar
Xiao, C., Zheng, Y. R., and Ding, Z., “Globally optimal linear precoders for finite alphabet signals over complex vector Gaussian channels,” IEEE Trans. Signal Process., vol. 59, no. 7, pp. 33013314, 2011.Google Scholar
Nhan, N.-Q., Rostaing, P., Amis, K., Collin, L., and Radoi, E., “Complexity reduction for the optimization of linear precoders over random MIMO channels,” IEEE Trans. Commun., vol. 65, no. 10, pp. 42054217, 2017.Google Scholar
Mohammed, S. K., Viterbo, E., Hong, Y., and Chockalingam, A., “Precoding by pairing subchannels to increase MIMO capacity with discrete input alphabets,” IEEE Trans. Inform. Theory, vol. 57, no. 7, pp. 41564169, 2011.Google Scholar
Wu, Y., Wen, C.-K., Ng, D. W. K., Schober, R., and Lozano, A., “Low-complexity MIMO precoding with discrete signals and statistical CSI,” IEEE Int’l Conf. Commun. (ICC’16), May 2016.Google Scholar
Wu, Y., Ng, D. W. K., Wen, C.-K., Schober, R., and Lozano, A., “Low-complexity MIMO precoding for finite-alphabet signals,” IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 45714584, 2017.Google Scholar
Lozano, A., Andrews, J. G., and Heath, R. W. Jr., “On the limitations of cooperation in wireless networks,” Inform. Theory and Applications Workshop (ITA’12), pp. 123–130, 2012.Google Scholar
Lozano, A., Heath, R. W. Jr., and Andrews, J. G., “Fundamental limits of cooperation,” IEEE Trans. Inform. Theory, vol. 59, no. 9, pp. 52135226, 2013.Google Scholar
Jayaweera, S. K. and Poor, H. V., “Capacity of multiple-antenna systems with both receiver and transmitter channel state information,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 26972709, 2003.Google Scholar
Wang, S. and Abdi, A., “Instantaneous mutual information and eigen-channels in MIMO mobile Rayleigh fading,” IEEE Trans. Inform. Theory, vol. 58, no. 1, pp. 353368, 2012.Google Scholar
Chuah, C. N., Tse, D. N. C., Kahn, J. M., and Valenzuela, R. A., “Capacity scaling in MIMO wireless systems under correlated fading,” IEEE Trans. Inform. Theory, vol. 48, no. 3, pp. 637650, 2002.Google Scholar
Grant, A., “Rayleigh fading multi-antenna channels,” EURASIP J. Appl. Signal Process., vol. 2002, no. 1, pp. 316329, 2002.Google Scholar
Tulino, A., Lozano, A., and Verdú, S., “MIMO capacity with channel state information at the transmitter,” IEEE Int’l Symp. Spread Spectrum Techniques and Applications (ISSSTA’04), pp. 22–26, 2004.Google Scholar
Andersen, J. B., “Array gain and capacity for known random channels with multiple element arrays at both ends,” IEEE J. Sel. Areas Commun., vol. 18, no. 11, pp. 21722178, 2000.Google Scholar
Silverstein, J. W. and Bai, Z. D., “On the empirical distribution of eigenvalues of a class of large dimensional random matrices,” J. Multivar. Anal., vol. 54, no. 2, pp. 175192, 1995.Google Scholar
Sengupta, A. M. and Mitra, P. P., “Capacity of multivariate channels with multiplicative noise: I. Random matrix techniques and large-N expansions for full transfer matrices,” arXiv:physics/0010081, 2000.Google Scholar
Oyman, O., Nabar, R. U., Bölcskei, H., and Paulraj, A. J., “Characterizing the statistical properties of mutual information in MIMO channels,” IEEE Trans. Signal Process., vol. 51, no. 11, pp. 27842795, 2003.Google Scholar
Hanlen, L. W. and Grant, A. J., “Capacity analysis of correlated MIMO channels,” IEEE Trans. Inform. Theory, vol. 58, 2012.Google Scholar
Abbe, E., Huang, S. L., and Telatar, E., “Proof of the outage probability conjecture for MISO channels,” IEEE Trans. Inform. Theory, vol. 59, no. 5, pp. 25962602, 2013.Google Scholar
Simon, S. H. and Moustakas, A. L., “Optimizing MIMO antenna systems with channel covariance feedback,” IEEE J. Sel. Areas Commun., vol. 21, no. 3, pp. 406417, 2003.Google Scholar
Kamath, M. A., Hughes, B. L., and Yu, X., “Gaussian approximations for the capacity of MIMO Rayleigh fading channels,” Asilomar Conf. Signals, Systems and Computers, vol. 1, pp. 614618, 2002.Google Scholar
Moustakas, A. L., Simon, S. H., and Sengupta, A. M., “MIMO capacity through correlated channels in the presence of correlated interferers and noise: a (not so) large N analysis,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 25452561, 2003.Google Scholar
Hochwald, B. M., Marzetta, T. L., and Tarokh, V., “Multiple-antenna channel hardening and its implications for rate feedback and scheduling,” IEEE Trans. Inform. Theory, vol. 50, no. 9, pp. 18931909, 2004.Google Scholar
Tulino, A. M. and Verdú, S., “Asymptotic outage capacity of multiantenna channels,” IEEE Int’l Conf. Acoustics, Speech, and Signal Process. (ICASSP’05), vol. 5, pp. 825828, 2005.Google Scholar
Moustakas, A. L. and Simon, S. H., “On the outage capacity of correlated multiple-path MIMO channels,” IEEE Trans. Inform. Theory, vol. 53, no. 11, pp. 3887– 3903, 2007.Google Scholar
Taricco, G., “Asymptotic mutual information statistics of separately correlated Rician fading MIMO channels,” IEEE Trans. Inform. Theory, vol. 54, no. 8, pp. 34903504, 2008.Google Scholar
Shin, H., Win, M. Z., and Chiani, M., “Asymptotic statistics of mutual information for doubly correlated MIMO channels,” IEEE Trans. Wireless Commun., vol. 7, no. 2, pp. 562573, 2008.Google Scholar
Hachem, W., Khorunzhiy, O., Loubaton, P., Najim, J., and Pastur, L., “A new approach for mutual information analysis of large dimensional multi-antenna channels,” IEEE Trans. Inform. Theory, vol. 54, no. 9, pp. 39874004, 2008.Google Scholar
Kazakopoulos, P., Mertikopoulos, P., Moustakas, A. L., and Caire, G., “Living at the edge: a large deviations approach to the outage MIMO capacity,” IEEE Trans. Inform. Theory, vol. 57, no. 4, pp. 19842007, 2011.Google Scholar
Bao, Z., Pan, G., and Zhou, W., “Asymptotic mutual information statistics of MIMO channels and CLT of sample covariance matrices,” IEEE Trans. Inform. Theory, vol. 61, no. 6, pp. 34133426, 2015.Google Scholar
Hochwald, B. M., Marzetta, T. L., and Hassibi, B., “Space–time autocoding,” IEEE Trans. Inform. Theory, vol. 47, no. 7, pp. 27612781, 2001.Google Scholar
Chowdhury, M. and Goldsmith, A., “Reliable uncoded communication in the SIMO MAC,” IEEE Trans. Inform. Theory, vol. 61, no. 1, pp. 388403, 2015.Google Scholar
Vu, M. and Paulraj, A., “Capacity optimization for Rician correlated MIMO wireless channels,” Asilomar Conf. Signals, Systems and Computers, pp. 133–138, 2005.Google Scholar
Rhee, W. and Taricco, G., “On the ergodic capacity-achieving covariance matrix of certain classes of MIMO channels,” IEEE Trans. Inform. Theory, vol. 52, no. 8, pp. 38103817, 2006.Google Scholar
Visotsky, E. and Madhow, U., “Space–time transmit precoding with imperfect feedback,” IEEE Trans. Inform. Theory, vol. 47, no. 6, pp. 26322639, 2001.Google Scholar
Kotecha, J. H. and Sayeed, A. M., “On the capacity of correlated MIMO channels,” IEEE Int’l Symp. Inform. Theory (ISIT’03), pp. 355–355, 2003.Google Scholar
Jorswieck, E. A. and Boche, H., “Optimal transmission with imperfect channel state information at the transmit antenna array,” Wireless Personal Commun., vol. 27, no. 1, pp. 3356, 2003.Google Scholar
Venkatesan, S., Simon, S. H., and Valenzuela, R. A., “Capacity of a Gaussian MIMO channel with nonzero mean,” IEEE Veh. Techn. Conf. (VTC’03), vol. 3, pp. 1767– 1771, 2003.Google Scholar
Hosli, D. and Lapidoth, A., “The capacity of a MIMO Ricean channel is monotonic in the singular values of the mean,” 5th Int’l ITG Conf. Source and Channel Coding, pp. 381–386, 2004.Google Scholar
Li, J. and Zhang, Q., “Transmitter optimization for correlated MISO fading channels with generic mean and covariance feedback,” IEEE Trans. Wireless Commun., vol. 7, no. 9, pp. 33123317, 2008.Google Scholar
Lozano, A., Tulino, A. M., and Verdú, S., “Multiantenna capacity: myths and realities,” Space–time wireless systems: from array processing to MIMO communications. Cambridge University Press, 2005.Google Scholar
Hanlen, L. W. and Grant, A. J., “Optimal transmit covariance for MIMO channels with statistical transmitter side information,” IEEE Int’l Symp. Inform. Theory (ISIT’05), pp. 1818–1822, 2005.Google Scholar
Tulino, A. M., Lozano, A., and Verdu, S., “Power allocation in multiantenna communication with statistical channel information at the transmitter,” IEEE Int’l Symp. Personal, Indoor and Mobile Radio Commun. (PIMRC’04), vol. 3, pp. 20032007, Sep. 2004.Google Scholar
Li, X., Jin, S., Gao, X., and Wong, K. K., “Near-optimal power allocation for MIMO channels with mean or covariance feedback,” IEEE Trans. Commun., vol. 58, no. 1, pp. 289300, 2010.Google Scholar
Soysal, A. and Ulukus, S., “Optimum power allocation for single-user MIMO and multi-user MIMO-MAC with partial CSI,” IEEE J. Sel. Areas Commun., vol. 25, no. 7, pp. 14021412, 2007.Google Scholar
Jorswieck, E. A. and Boche, H., “Optimal transmission strategies and impact of correlation in multiantenna systems with different types of channel state information,” IEEE Trans. Signal Process., vol. 52, no. 12, pp. 34403453, 2004.Google Scholar
Kwak, J. S., Andrews, J. G., and Lozano, A., “MIMO capacity in correlated interference-limited channels,” IEEE Int’l Symp. Inform. Theory (ISIT’07), pp. 106–110, 2007.Google Scholar
Mai, V. V., Kwak, J. S., Jeong, Y., and Shin, H., “Optimal power allocation in MIMO interference networks,” IEEE Trans. Wireless Commun. (to appear), 2018.Google Scholar
Gao, X., Jiang, B., Li, X., Gershman, A. B., and McKay, M. R., “Statistical eigenmode transmission over jointly correlated MIMO channels,” IEEE Trans. Inform. Theory, vol. 55, no. 8, pp. 37353750, 2009.Google Scholar
Raghavan, V., Sayeed, A. M., and Veeravalli, V. V., “Semiunitary precoding for spatially correlated MIMO channels,” IEEE Trans. Inform. Theory, vol. 57, no. 3, pp. 12841298, 2011.Google Scholar
Rhee, W. and Cioffi, J. M., “On the capacity of multiuser wireless channels with multiple antennas,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 25802595, 2003.Google Scholar
Abbe, E., Telatar, E., and Zheng, L., “The algebra of MIMO channels,” Allerton Annual Conf. Commun., Control and Computing, 2005.Google Scholar
Shin, H. and Lee, J. H., “Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and keyhole,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 26362647, 2003.Google Scholar
Dohler, M. and Aghvami, H., “A closed form expression of MIMO capacity over ergodic narrowband channels,” Unpublished manuscript, 2003.Google Scholar
Janaswamy, R., “Analytical expressions for the ergodic capacities of certain MIMO systems by the Mellin transform,” IEEE Global Commun. Conf. (GLOBECOM’03), vol. 1, pp. 287291, 2003.Google Scholar
Smith, P. J., Roy, S., and Shafi, M., “Capacity of MIMO systems with semicorrelated flat fading,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 27812788, 2003.Google Scholar
Alfano, G., Tulino, A. M., Lozano, A., and Verdú, S., “Capacity of MIMO channels with one-sided correlation,” IEEE Int’l Symp. Spread Spectrum Techniques and Applications (ISSSTA’04), pp. 515–519, 2004.Google Scholar
Kang, M. and Alouini, M. S., “Capacity of correlated MIMO Rayleigh channels,” IEEE Trans. Wireless Commun., vol. 5, no. 1, pp. 143155, 2006.Google Scholar
Marques, P. M. and Abrantes, S. A., “On the derivation of the exact, closed-form capacity formulas for receiver-sided correlated MIMO channels,” IEEE Trans. Inform. Theory, vol. 54, no. 3, pp. 11391161, 2008.Google Scholar
Alfano, G., Lozano, A., Tulino, A. M., and Verdú, S., “Mutual information and eigenvalue distribution of MIMO Ricean channels,” Int’l Symp. Inform. Theory and Applications (ISITA’04), vol. 4, pp. 10401045, 2004.Google Scholar
Kiessling, M. and Speidel, J., “Mutual information of MIMO channels in correlated Rayleigh fading environments—a general solution,” IEEE Int’l Conf. Commun. (ICC’04), vol. 2, pp. 814818, 2004.Google Scholar
Jayaweera, S. K. and Poor, H. V., “On the capacity of multiple-antenna systems in Rician fading,” IEEE Trans. Wireless Commun., vol. 4, no. 3, pp. 11021111, 2005.Google Scholar
McKay, M. R. and Collings, I. B., “General capacity bounds for spatially correlated Rician MIMO channels,” IEEE Trans. Inform. Theory, vol. 51, no. 9, pp. 3121– 3145, 2005.Google Scholar
Shin, H., Win, M. Z., Lee, J. H., and Chiani, M., “On the capacity of doubly correlated MIMO channels,” IEEE Trans. Wireless Commun., vol. 5, no. 8, pp. 22532265, 2006.Google Scholar
Kang, M. and Alouini, M. S., “Capacity of MIMO Rician channels,” IEEE Trans. Wireless Commun., vol. 5, no. 1, pp. 112122, 2006.Google Scholar
McKay, M. R. and Collings, I. B., “Improved general lower bound for spatially-correlated Rician MIMO capacity,” IEEE Commun. Letters, vol. 10, no. 3, pp. 162– 164, 2006.Google Scholar
Jin, S., Gao, X., and You, X., “On the ergodic capacity of rank-1 Ricean-fading MIMO channels,” IEEE Trans. Inform. Theory, vol. 53, no. 2, pp. 502517, 2007.Google Scholar
Zhong, C., Wong, K. K., and Jin, S., “Capacity bounds for MIMO Nakagami-m fading channels,” IEEE Trans. Signal Process., vol. 57, no. 9, pp. 36133623, 2009.Google Scholar
Ghaderipoor, A., Tellambura, C., and Paulraj, A., “On the application of character expansions for MIMO capacity analysis,” IEEE Trans. Inform. Theory, vol. 58, no. 5, pp. 29502962, 2011.Google Scholar
Jorswieck, E. A. and Boche, H., “Average mutual information in spatial correlated MIMO systems with uninformed transmitter,” Conf. Inform. Science and Systems (CISS’04), 2004.Google Scholar
Zeng, W., Xiao, C., Wang, M., and Lu, J., “On the linear precoder design for MIMO channels with finite-alphabet inputs and statistical CSI,” IEEE Global Commun. Conf. (GLOBECOM 2011), 2011.Google Scholar
He, W. and Georghiades, C. N., “Computing the capacity of a MIMO fading channel under PSK signaling,” IEEE Trans. Inform. Theory, vol. 51, no. 5, pp. 17941803, 2005.Google Scholar
Gohary, R. H. and Davidson, T. N., “On rate-optimal MIMO signalling with mean and covariance feedback,” IEEE Trans. Wireless Commun., vol. 8, no. 2, pp. 912– 921, 2009.Google Scholar
Vagenas, E., Paschos, G. S., and Kotsopoulos, S. A., “Beamforming capacity optimization for MISO systems with both mean and covariance feedback,” IEEE Trans. Wireless Commun., vol. 10, no. 9, p. 2994, 2011.Google Scholar
Jafar, S. A. and Goldsmith, A., “Transmitter optimization and optimality of beamforming for multiple antenna systems,” IEEE Trans. Wireless Commun., vol. 3, no. 4, pp. 11651175, 2004.Google Scholar
Jorswieck, E. A. and Boche, H., “Channel capacity and capacity-range of beamforming in MIMO wireless systems under correlated fading with covariance feedback,” IEEE Trans. Wireless Commun., vol. 3, no. 5, pp. 15431553, 2004.Google Scholar
Srinivasa, S. and Jafar, S. A., “The optimality of transmit beamforming: a unified view,” IEEE Trans. Inform. Theory, vol. 53, no. 4, pp. 15581564, 2007.Google Scholar
Hansen, J. and Bölcskei, H., “A geometrical investigation of the rank-1 Ricean MIMO channel at high SNR,” IEEE Int’l Symp. Inform. Theory (ISIT’04), p. 64, 2004.Google Scholar
Tulino, A. M. and Verdú, S., “Random matrix theory and wireless communications,” Found. and Trends Commun. Inform. Theory, vol. 1, 2004.Google Scholar
Couillet, R. and Debbah, M., Random matrix methods for wireless communications. Cambridge University Press, 2011.Google Scholar
Tulino, A. M., Lozano, A., and Verdú, S., “Impact of antenna correlation on the capacity of multiantenna channels,” IEEE Trans. Inform. Theory, vol. 51, no. 7, pp. 24912509, 2005.Google Scholar
Tulino, A. M., Verdú, S., and Lozano, A., “Capacity of antenna arrays with space, polarization and pattern diversity,” IEEE Inform. Theory Workshop (ITW’03), pp. 324–327, 2003.Google Scholar
Mestre, X., Fonollosa, J. R., and Pages-Zamora, A., “Capacity of MIMO channels: asymptotic evaluation under correlated fading,” IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 829838, 2003.Google Scholar
Veeravalli, V. V., Liang, Y., and Sayeed, A. M., “Correlated MIMO wireless channels: capacity, optimal signaling, and asymptotics,” IEEE Trans. Inform. Theory, vol. 51, no. 6, pp. 20582072, 2005.Google Scholar
Dumont, J., Hachem, W., Lasaulce, S., Loubaton, P., and Najim, J., “On the capacity achieving covariance matrix for Rician MIMO channels: an asymptotic approach,” IEEE Trans. Inform. Theory, vol. 56, no. 3, pp. 10481069, 2010.Google Scholar
Bai, Z. D., “Methodologies in spectral analysis of large-dimensional random matrices, A review,” Statist. Sinica, vol. 9, no. 3, pp. 611677, 1999.Google Scholar
Yang, W., Durisi, G., and Riegler, E., “On the capacity of large-MIMO block-fading channels,” IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 117132, 2013.Google Scholar
Ray, S., Médard, M., and Zheng, L., “On noncoherent MIMO channels in the wideband regime: capacity and reliability,” IEEE Trans. Inform. Theory, vol. 53, no. 6, pp. 19832009, 2007.Google Scholar
Hochwald, B., Marzetta, T., Richardson, T., Sweldens, W., and Urbanke, R., “Systematic design of unitary space–time constellations,” IEEE Trans. Inform. Theory, vol. 46, no. 6, pp. 19621973, 2000.Google Scholar
Hassibi, B. and Marzetta, T. L., “Multiple-antennas and isotropically random unitary inputs: the received signal density in closed form,” IEEE Trans. Inform. Theory, vol. 48, no. 6, pp. 14731484, 2002.Google Scholar
Moser, S., “The fading number of multiple-input multiple-output fading channels with memory,” IEEE Trans. Inform. Theory, vol. 55, no. 6, pp. 27162755, 2009.Google Scholar
Guey, J. C., Fitz, M. P., Bell, M. R., and Kuo, W. Y., “Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels,” IEEE Trans. Commun., vol. 47, no. 4, pp. 527537, 1999.Google Scholar
Marzetta, T. L., “BLAST training: estimating channel characteristics for high capacity space–time wireless,” Allerton Conf. Commun., Control and Computing, vol. 37, pp. 958966, 1999.Google Scholar
Sun, Q., Cox, D. C., Huang, H. C., and Lozano, A., “Estimation of continuous flat fading MIMO channels,” IEEE Trans. Wireless Commun., vol. 1, no. 4, pp. 549– 553, 2002.Google Scholar
Sun, Q., Cox, D. C., Lozano, A., and Huang, H. C., “Training-based channel estimation for continuous flat fading BLAST,” IEEE Int’l Conf. Commun. (ICC’02), vol. 1, pp. 325329, 2002.Google Scholar
Sun, Q., Cox, D. C., Huang, H. C., and Lozano, A., “Estimation of continuous flat fading MIMO channels,” IEEE Wireless Commun. and Networking Conf. (WCNC’02), vol. 1, pp. 189193, Mar. 2002.Google Scholar
Coldrey, M. and Bohlin, P., “Training-based MIMO systems—part I: performance comparison,” IEEE Trans. Signal Process., vol. 55, no. 11, pp. 54645476, 2007.Google Scholar
Asyhari, A. T. and ten Brink, S., “Orthogonal or superimposed pilots? A rate-efficient channel estimation strategy for stationary MIMO fading channels,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 27762789, 2017.Google Scholar
Pastore, A., Joham, M., and Fonollosa, J. R., “A framework for joint design of pilot sequence and linear precoder,” IEEE Trans. Inform. Theory, vol. 62, no. 9, pp. 50595079, 2016.Google Scholar
Yoo, T. and Goldsmith, A., “Capacity and power allocation for fading MIMO channels with channel estimation error,” IEEE Trans. Inform. Theory, vol. 52, no. 5, pp. 22032214, 2006.Google Scholar
Musavian, L., Nakhai, M. R., Dohler, M., and Aghvami, A. H., “Effect of channel uncertainty on the mutual information of MIMO fading channels,” IEEE Trans. Veh. Techn., vol. 56, no. 5, pp. 27982806, 2007.Google Scholar
Ding, M. and Blostein, S. D., “Maximum mutual information design for MIMO systems with imperfect channel knowledge,” IEEE Trans. Inform. Theory, vol. 56, no. 10, pp. 47934801, 2010.Google Scholar
Farrokhi, F. R., Lozano, A., Foschini, G. J., and Valenzuela, R. A., “Spectral efficiency of wireless systems with multiple transmit and receive antennas,” IEEE Int’l Symp. Personal, Indoor and Mobile Radio Commun. (PIMRC’00), vol. 1, pp. 373377, 2000.Google Scholar
Farrokhi, F. R., Foschini, G. J., Lozano, A., and Valenzuela, R. A., “Link-optimal BLAST processing with multiple-access interference,” IEEE Veh. Techn. Conf. (VTC’00), vol. 1, pp. 8791, 2000.Google Scholar
Farrokhi, F. R., Foschini, G. J., Lozano, A., and Valenzuela, R. A., “Link-optimal space–time processing with multiple transmit and receive antennas,” IEEE Commun. Letters, vol. 5, no. 3, pp. 8587, 2001.Google Scholar
Farrokhi, F. R., Lozano, A., Foschini, G. J., and Valenzuela, R. A., “Spectral efficiency of FDMA/TDMA wireless systems with transmit and receive antenna arrays,” IEEE Trans. Wireless Commun., vol. 1, no. 4, pp. 591599, 2002.Google Scholar
Ye, S. and Blum, R. S., “Optimized signaling for MIMO interference systems with feedback,” IEEE Trans. Signal Process., vol. 51, no. 11, pp. 28392848, 2003.Google Scholar
Jorswieck, E. A. and Boche, H., “Performance analysis of capacity of MIMO systems under multiuser interference based on worst-case noise behavior,” EURASIP J. Wireless Commun. Netw., vol. 2004, no. 2, pp. 273285, 2004.Google Scholar
Jorswieck, E. A., Larsson, E. G., and Danev, D., “Complete characterization of the Pareto boundary for the MISO interference channel,” IEEE Trans. Signal Process., vol. 56, no. 10, pp. 52925296, 2008.Google Scholar
Scutari, G., Palomar, D., and Barbarossa, S., “Competitive design of multiuser MIMO systems based on game theory: a unified view,” IEEE J. Sel. Areas Commun., vol. 26, no. 7, pp. 10891103, 2008.Google Scholar
Scutari, G., Palomar, D. P., and Barbarossa, S., “Optimal linear precoding strategies for wideband noncooperative systems based on game theory—part I: Nash equilibria,” IEEE Trans. Signal Process., vol. 56, no. 3, pp. 12301249, 2008.Google Scholar
Larsson, E. G., Jorswieck, E. A., Lindblom, J., and Mochaourab, R., “Game theory and the flat-fading Gaussian interference channel,” IEEE Signal Process. Mag., vol. 26, no. 5, pp. 1827, 2009.Google Scholar
Blum, R. S., “MIMO capacity with interference,” IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 793801, 2003.Google Scholar
Alfano, G., Tulino, A. M., Lozano, A., and Verdu, S., “Eigenvalue statistics of finite-dimensional random matrices for MIMO wireless communications,” IEEE Int’l Conf. Commun. (ICC’06), vol. 9, pp. 41254129, Jun. 2006.Google Scholar
Lozano, A. and Tulino, A. M., “Capacity of multiple-transmit multiple-receive antenna architectures,” IEEE Trans. Inform. Theory, vol. 48, no. 12, pp. 31173128, 2002.Google Scholar
Taricco, G. and Riegler, E., “On the ergodic capacity of correlated Rician fading MIMO channels with interference,” IEEE Trans. Inform. Theory, vol. 57, no. 7, pp. 41234137, 2011.Google Scholar
Ariyavisitakul, S. L., “Turbo space–time processing to improve wireless channel capacity,” IEEE Trans. Commun., vol. 48, no. 8, pp. 13471359, 2000.Google Scholar
Chung, S. T., Lozano, A., and Huang, H. C., “Approaching eigenmode BLAST channel capacity using V-BLAST with rate and power feedback,” IEEE Veh. Techn. Conf. (VTC’01 Fall), vol. 2, pp. 915919, 2001.Google Scholar
Chung, S. T., Lozano, A., and Huang, H. C., “Low complexity algorithm for rate and power quantization in extended V-BLAST,” IEEE Veh. Techn. Conf. (VTC’01 Fall), vol. 2, pp. 910914, 2001.Google Scholar
Chung, S. T., Lozano, A., Huang, H. C., Sutivong, A., and Cioffi, J. M., “Approaching the MIMO capacity with V-BLAST: theory and practice,” EURASIP J. Appl. Signal Process., vol. 2002, pp. 762771, 2004.Google Scholar
Lozano, A., “Capacity-approaching rate function for layered multiantenna architectures,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 616620, 2003.Google Scholar
Lozano, A., “Per-antenna rate and power control for MIMO layered architectures in the low-and high-power regimes,” IEEE Trans. Commun., vol. 58, no. 2, pp. 652659, 2010.Google Scholar
Hassibi, B., “An efficient square-root algorithm for BLAST,” IEEE Int’l Conf. Acous., Speech, and Signal Proc. (ICASSP’00), vol. 2, Jun. 2000.Google Scholar
Varanasi, M. K. and Guess, T., “Optimum decision feedback multiuser equalization with successive decoding achieves the total capacity of the Gaussian multiple-access channel,” Asilomar Conf. Signals, Systems & Computers, vol. 2, pp. 1405– 1409, 1997.Google Scholar
Ginis, G. and Cioffi, J. M., “On the relation between V-BLAST and the GDFE,” IEEE Commun. Letters, vol. 5, no. 9, pp. 364366, 2001.Google Scholar
Andrews, J. G., “Interference cancellation for cellular systems: a contemporary overview,” IEEE Wireless Commun., vol. 12, no. 2, pp. 1929, 2005.Google Scholar
Bauch, G. and Al-Dhahir, N., “Reduced-complexity space–time turbo-equalization for frequency-selective MIMO channels,” IEEE Trans. Wireless Commun., vol. 1, no. 4, pp. 819828, 2002.Google Scholar
Foschini, G. J., Golden, G. D., Valenzuela, R. A., and Wolniansky, P. W., “Simplified processing for high spectral efficiency wireless communication employing multi-element arrays,” IEEE J. Sel. Areas Commun., vol. 17, no. 11, pp. 18411852, 1999.Google Scholar
Lozano, A. and Papadias, C. B., “Space–time receiver for wideband BLAST in rich-scattering wireless channels,” IEEE Veh. Techn. Conf. (VTC’00), vol. 1, pp. 186– 190, 2000.Google Scholar
Lozano, A. and Papadias, C. B., “Layered space–time receivers for frequency-selective wireless channels,” IEEE Trans. Commun., vol. 50, pp. 6573, Jan. 2002.Google Scholar
Liu, P. and Kim, I., “Exact and closed-form error performance analysis for hard MMSE-SIC detection in MIMO systems,” IEEE Trans. Commun., vol. 59, no. 9, pp. 24632477, 2011.Google Scholar
Foschini, G. J., Chizhik, D., Gans, M. J., Papadias, C., and Valenzuela, R. A., “Analysis and performance of some basic space–time architectures,” IEEE J. Sel. Areas Commun., vol. 21, no. 3, pp. 303320, 2003.Google Scholar
El Gamal, H. and Hammons, A. R., “A new approach to layered space–time coding and signal processing,” IEEE Trans. Inform. Theory, vol. 47, no. 6, pp. 23212334, 2001.Google Scholar
Sellathurai, M. and Haykin, S., “Turbo-BLAST for wireless communications: theory and experiments,” IEEE Trans. Signal Process., vol. 50, no. 10, pp. 25382546, 2002.Google Scholar
Zhang, D. and Meyr, H., “On the performance gap between ML and iterative decoding of finite-length turbo-coded BICM in MIMO systems,” IEEE Trans. Commun., vol. 65, no. 8, pp. 32013213, 2017.Google Scholar
Robertson, P., Villebrun, E., and Hoeher, P., “A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain,” IEEE Int’l Conf. Commun. (ICC’95), vol. 2, pp. 10091013, 1995.Google Scholar
Pohst, M., “On the computation of lattice vectors of minimal length, successive minima, and reduced bases with applications,” SIGSAM Bull., vol. 15, no. 1, pp. 3744, Feb. 1981.Google Scholar
Fincke, U. and Pohst, M., “Improved methods for calculating vectors of short length in a lattice, including a complexity analysis,” Math. Comput., vol. 44, no. 170, pp. 463471, 1985.Google Scholar
Viterbo, E. and Boutros, J., “A universal lattice code decoder for fading channels,” IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 16391642, 1999.Google Scholar
Hassibi, B. and Hochwald, B. M., “High-rate codes that are linear in space and time,” IEEE Trans. Inform. Theory, vol. 48, no. 7, pp. 18041824, 2002.Google Scholar
Damen, M. O., Gamal, H. E., and Caire, G., “On maximum-likelihood detection and the search for the closest lattice point,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 23892402, 2003.Google Scholar
Burg, A., Borgmann, M., Wenk, M., Zellweger, M., Fichtner, W., and Bölcskei, H., “VLSI implementation of MIMO detection using the sphere decoding algorithm,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 15661577, 2005.Google Scholar
Barbero, L. G. and Thompson, J. S., “Fixing the complexity of the sphere decoder for MIMO detection,” IEEE Trans. Wireless Commun., vol. 7, no. 6, pp. 2131– 2142, 2008.Google Scholar
Chen, S., Zhang, T., and Xin, Y., “Relaxed K-best MIMO signal detector design and VLSI implementation,” IEEE Trans. VLSI Syst., vol. 15, no. 3, pp. 328337, 2007.Google Scholar
Wang, X. and Poor, H. V., “Iterative (turbo) soft interference cancellation and decoding for coded CDMA,” IEEE Trans. Commun., vol. 47, no. 7, pp. 10461061, 1999.Google Scholar
Abe, T. and Matsumoto, T., “Space–time turbo equalization in frequency-selective MIMO channels,” IEEE Trans. Veh. Technol., vol. 52, no. 3, pp. 469475, 2003.Google Scholar
Choi, W.-J., Cheong, K.-W., and Cioffi, J. M., “Iterative soft interference cancellation for multiple antenna systems,” IEEE Wireless Commun. Netw. Conf. (WCNC’00), vol. 1, pp. 304309, 2000.Google Scholar
Li, X., Huang, H. C., Lozano, A., and Foschini, G. J., “Reduced-complexity detection algorithms for systems using multi-element arrays,” IEEE Global Commun. Conf. (GLOBECOM’00), vol. 2, pp. 10721076, 2000.Google Scholar
ten Brink, S., “Convergence behavior of iteratively decoded parallel concatenated codes,” IEEE Trans. Commun., vol. 49, pp. 17271737, Oct. 2001.Google Scholar
Hermosilla, C. and Szczeciński, L., “Performance evaluation of linear turbo receivers using analytical extrinsic information transfer functions,” EURASIP J. Advances Signal Process., vol. 2005, no. 6, pp. 114, 2005.Google Scholar
Zheng, H., Lozano, A., and Haleem, M., “Multiple ARQ processes for MIMO systems,” IEEE Int’l Symp. Personal, Indoor and Mobile Radio Commun. (PIMRC’02), vol. 3, pp. 10231026, 2002.Google Scholar
Zheng, H., Lozano, A., and Haleem, M., “Multiple ARQ processes for MIMO systems,” EURASIP J. Appl. Signal Process., vol. 2004, pp. 772–782, 2004.Google Scholar
Balanis, C. A., Antenna theory: analysis and design. John Wiley & Sons, 2012.Google Scholar
Au-Yeung, C. K. and Love, D. J., “Optimization and tradeoff analysis of two-way limited feedback beamforming systems,” IEEE Trans. Wireless Commun., vol. 8, no. 5, pp. 25702579, 2009.Google Scholar
Buris, N. E., “Reciprocity calibration of TDD smart antenna systems,” IEEE Antennas Propag. Society Int’l Symp., pp. 1–4, Jul. 2010.Google Scholar
Liu, J., Bourdoux, A., Craninckx, J., Wambacq, P., Come, B., Donnay, S., and Barel, A., “OFDM-MIMO WLAN AP front-end gain and phase mismatch calibration,” IEEE Radio and Wireless Conf., pp. 151–154, Sep. 2004.Google Scholar
Schenk, T., RF imperfections in high-rate wireless systems: impact and digital compensation. Springer-Verlag, 2008.Google Scholar
Petermann, M., Stefer, M., Ludwig, F., Wubben, D., Schneider, M., Paul, S., and Kammeyer, K., “Multi-user pre-processing in multi-antenna OFDM TDD systems with non-reciprocal transceivers,” IEEE Trans. Commun., vol. 61, pp. 37813793, Sep. 2013.Google Scholar
Guillaud, M., Slock, D. T. M., and Knopp, R., “A practical method for wireless channel reciprocity exploitation through relative calibration,” ISSPA, pp. 403406, 2005.Google Scholar
Liu, J., Vandersteen, G., Craninckx, J., Libois, M., Wouters, M., Petre, F., and Barel, A., “A novel and low-cost analog front-end mismatch calibration scheme for MIMOOFDM WLANs,” IEEE Radio and Wireless Symp., pp. 219–222, Jan. 2006.Google Scholar
Shi, J., Luo, Q., and You, M., “An efficient method for enhancing TDD over the air reciprocity calibration,” IEEE Wireless Commun. Netw. Conf. (WCNC’11), pp. 339–344, Mar. 2011.Google Scholar
Lee, K.-H. and Petersen, D., “Optimal linear coding for vector channels,” IEEE Trans. Commun., vol. 24, no. 12, pp. 12831290, 1976.Google Scholar
Marzetta, T. L. and Hochwald, B. M., “Fast transfer of channel state information in wireless systems,” IEEE Trans. Signal Process., vol. 54, no. 4, pp. 12681278, 2006.Google Scholar
Samardzija, D. and Mandayam, N., “Unquantized and uncoded channel state information feedback in multiple-antenna multiuser systems,” IEEE Trans. Commun., vol. 54, no. 7, pp. 13351345, 2006.Google Scholar
Shanechi, M. M., Porat, R., and Erez, U., “Comparison of practical feedback algorithms for multiuser MIMO,” IEEE Trans. Commun., vol. 58, no. 8, pp. 24362446, 2010.Google Scholar
Akyol, E., Rose, K., and Ramstad, T., “Optimal mappings for joint source channel coding,” IEEE Inform. Theory Workshop (ITW’10), pp. 1–5, 2010.Google Scholar
Ayach, O. E., Lozano, A., and Heath, R. W. Jr., “On the overhead of interference alignment: training, feedback, and cooperation,” IEEE Trans. Wireless Commun., vol. 11, no. 11, pp. 41924203, 2012.Google Scholar
Love, D. J., Heath, R. W. Jr., Santipach, W., and Honig, M., “What is the value of limited feedback for MIMO channels?IEEE Commun. Mag., vol. 42, no. 10, pp. 5459, 2004.Google Scholar
Mondal, B. and Heath, R. W Jr., “Algorithms for quantized precoded MIMO-OFDM systems,” Asilomar Conf. Signals, Systems and Computers, pp. 381–385, Oct.-Nov. 2005.Google Scholar
Choi, J. and Heath, R. W. Jr., “Interpolation based transmit beamforming for MIMOOFDM with limited feedback,” IEEE Trans. Signal Processing, vol. 53, no. 11, pp. 41254135, 2005.Google Scholar
Roh, J. C. and Rao, B. D., “An efficient feedback method for MIMO systems with slowly time-varying channels,” IEEE Wireless Commun. Netw. Conf. (WCNC’04), vol. 2, pp. 760764, Mar. 2004.Google Scholar
Huang, K.-B., Mondal, B., Heath, R. W. Jr., and Andrews, J. G., “Multi-antenna limited feedback for temporally correlated channel: feedback compression,” IEEE Global Commun. Conf. (GLOBECOM’06), Nov. 2006.Google Scholar
Simon, C. and Leus, G., “Adaptive feedback reduction for precoded spatial multiplexing MIMO systems,” Int’l ITG/IEEE Workshop on Smart Antennas (WSA’07), 2007.Google Scholar
Mondal, B. and Heath, R. W. Jr., “Channel adaptive quantization for limited feedback MIMO beamforming systems,” IEEE Trans. Signal Process., vol. 54, pp. 47414740, 2006.Google Scholar
Raghavan, V., Heath, R. W. Jr., and Sayeed, A. M., “Systematic codebook designs for quantized beamforming in correlated MIMO channels,” IEEE J. Sel. Areas Commun., vol. 25, no. 7, pp. 12981310, Sep. 2007.Google Scholar
Santipach, W. and Honig, M. L, “Asymptotic performance of MIMO wireless channels with limited feedback,” IEEE Military Commun. Conf. (MILCOM’03), vol. 1, pp. 141146, Oct. 2003.Google Scholar
Santipach, W., “Capacity of a multiple-antenna fading channel with a quantized precoding matrix,” IEEE Trans. Inform. Theory, vol. 55, no. 3, pp. 12181234, 2009.Google Scholar
Au-Yeung, C. K. and Love, D. J., “On the performance of random vector quantization limited feedback beamforming in a MISO system,” IEEE Trans. Wireless Commun., vol. 6, no. 2, pp. 458462, 2007.Google Scholar
James, A. T., “Distributions of matrix variates and latent roots derived from normal samples,” Ann. Math. Stat., vol. 35, pp. 475501, 1964.Google Scholar
Zheng, L. and Tse, D. N. C., “Communication on the Grassmann manifold: a geometric approach to the noncoherent multiple-antenna channel,” IEEE Trans. Inform. Theory, vol. 48, no. 2, pp. 359383, 2002.Google Scholar
Love, D. J., Heath, R. W. Jr., and Strohmer, T., “Grassmannian beamforming for multiple-input multiple-output wireless systems,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 27352747, 2003.Google Scholar
Conway, J. H., Hardin, R. H., and Sloane, N. J. A., “Packing lines, planes, etc.: packings in Grassmannian spaces,” Experiment. Math., vol. 5, no. 2, pp. 139159, 1996.Google Scholar
Dhillon, I. S., Heath, R. W. Jr., Strohmer, T., and Tropp, J. A., “Constructing packings in Grassmannian manifolds via alternating projection,” Experiment. Math., 2007.Google Scholar
Xia, P., Zhou, S., and Giannakis, G. B., “Achieving the Welch bound with difference sets,” IEEE Trans. Inform. Theory, vol. 51, no. 5, pp. 19001907, 2005.Google Scholar
Love, D. J. and Heath, R. W. Jr., “Necessary and sufficient conditions for full diversity order in correlated Rayleigh fading beamforming and combining systems,” IEEE Trans. Wireless Commun., vol. 4, no. 1, pp. 2023, 2005.Google Scholar
Liu, L. and Jafarkhani, H., “Novel transmit beamforming schemes for time-selective fading multiantenna systems,” IEEE Trans. Signal Process., vol. 54, no. 12, pp. 47674781, 2006.Google Scholar
Mondal, B., Dutta, S., and Heath, R. W. Jr., “Quantization on the Grassmann manifold,” IEEE Trans. Signal Process., vol. 55, no. 8, pp. 42084216, 2007.Google Scholar
Dai, W., Liu, Y., and Rider, B., “Quantization bounds on Grassmann manifolds and applications to MIMO communications,” IEEE Trans. Inform. Theory, vol. 54, no. 3, pp. 11081123, 2008.Google Scholar
Pitaval, R. A. and Tirkkonen, O., “Joint Grassmann–Stiefel quantization for MIMO product codebooks,” IEEE Trans. Wireless Commun., vol. 13, no. 1, pp. 210222, 2014.Google Scholar
Zador, P., “Asymptotic quantization error of continuous signals and the quantization dimension,” IEEE Trans. Inform. Theory, vol. 28, no. 2, pp. 139149, 1982.Google Scholar
Gray, R. M. and Neuhoff, D. L., “Quantization,” IEEE Trans. Inform. Theory, vol. 44, no. 6, pp. 23252383, 1998.Google Scholar
Dai, W., Liu, Y., Rider, B., and Lau, V. K. N., “On the information rate of MIMO systems with finite rate channel state feedback using beamforming and power on/off strategy,” IEEE Trans. Inform. Theory, vol. 55, no. 11, pp. 50325047, 2009.Google Scholar
Love, D. J. and Heath, R. W. Jr., “Limited feedback unitary precoding for spatial multiplexing systems,” IEEE Trans. Inform. Theory, vol. 51, no. 8, pp. 29672976, 2005.Google Scholar
Heath, R. W. Jr. and Paulraj, A. J., “Switching between multiplexing and diversity based on constellation distance,” Allerton Conf. Commun., Control and Computing, pp. 212–221, 2000.Google Scholar
Heath, R. W. Jr. and Paulraj, A., “Switching between diversity and multiplexing in MIMO systems,” IEEE Trans. Commun., vol. 53, no. 6, pp. 962968, 2005.Google Scholar
Heath, R. W. Jr. and Love, D. J., “Multimode antenna selection for spatial multiplexing systems with linear receivers,IEEE Trans. Signal Processing, vol. 53, pp. 30423056, 2005.Google Scholar
Love, D. and Heath, R. W. Jr., “Multimode precoding for MIMO wireless systems,” IEEE Trans. Signal Processing, vol. 53, pp. 36743687, 2005.Google Scholar
Roh, J. C. and Rao, B. D., “Design and analysis of MIMO spatial multiplexing systems with quantized feedback,” IEEE Trans. Signal Process., vol. 54, no. 8, pp. 28742886, 2006.Google Scholar
Gersho, A. and Gray, R. M., Vector quantization and signal compression. Springer, 1991.Google Scholar
Roh, J. C. and Rao, B. D., “Transmit beamforming in multiple-antenna systems with finite rate feedback: a VQ-based approach,” IEEE Trans. Inform. Theory, vol. 52, no. 3, pp. 11011112, 2006.Google Scholar
Lau, V., Liu, Y., and Chen, T. A., “On the design of MIMO block-fading channels with feedback-link capacity constraint,” IEEE Trans. Commun., vol. 52, no. 1, pp. 6270, 2004.Google Scholar
Linde, Y., Buzo, A., and Gray, R., “An algorithm for vector quantizer design,” IEEE Trans. Commun., vol. 28, no. 1, pp. 8495, 1980.Google Scholar
Lloyd, S., “Least squares quantization in PCM,” IEEE Trans. Inform. Theory, vol. 28, no. 2, pp. 129137, 1982.Google Scholar
Szabo, P. G., Markot, M. C., Csendes, T., Specht, E., Casado, L. G., and Garcia, I., New approaches to circle packing in a square: with program codes. Springer Science & Business Media, 2007.Google Scholar
Specht, E., “The best known packings of equal circles in a square (up to n = 10000),” http://hydra.nat.uni-magdeburg.de/packing/csq/csq.html.Google Scholar
Sloane, N. J. A., “Packings in Grassmannian spaces,” http://neilsloane.com/grass/.Google Scholar
Strohmer, T. and Heath, R. W. Jr., “Grassmannian frames with applications to coding and communications,” Appl. and Computational Harmonic Analysis, vol. 14, no. 3, pp. 257275, 2003.Google Scholar
Hochwald, B. M., Marzetta, T. L., Richardson, T. J., Sweldens, W., and Urbanke, R., “Systematic design of unitary space–time constellations,” IEEE Trans. Inform. Theory, vol. 46, no. 6, pp. 19621973, 2000.Google Scholar
Love, D. and Heath, R. W. Jr., “Limited feedback unitary precoding for orthogonal space–time block codes,” IEEE Trans. Signal Processing, vol. 53, no. 1, pp. 6473, 2005.Google Scholar
Kerdock, A., “Studies of low-rate binary codes,” IEEE Trans. Inform. Theory, vol. 18, no. 2, pp. 316316, 1972.Google Scholar
Calderbank, A. R., Cameron, P. J., Kantor, W. M., and Seidel, J. J., “Z4-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets,” Proc. London Math. Soc. (3), vol. 75, no. 2, pp. 436480, 1997.Google Scholar
Klappenecker, A. and Roetteler, M., “Constructions of mutually unbiased bases,” Int’l Conf. Finite Fields and Applications, pp. 137–144, 2004.Google Scholar
Inoue, T. and Heath, R. W. Jr., “Kerdock codes for limited feedback precoded MIMO systems,” IEEE Trans. Signal Process., vol. 57, no. 9, pp. 37113716, 2009.Google Scholar
Heath, R. W. Jr., Strohmer, T., and Paulraj, A. J., “On quasi-orthogonal signatures for CDMA systems,” IEEE Trans. Inform. Theory, vol. 52, no. 3, pp. 12171226, 2006.Google Scholar
Gow, R., “Generation of mutually unbiased bases as powers of a unitary matrix in 2-power dimensions,” arXiv:math/0703333, 2007.Google Scholar
Durt, T., Englert, B.-G., Bengtsson, I., and Zyczkowski, K., “On mutually unbiased bases,” Int’l J. Quantum Inform., vol. 8, pp. 535640, 2010.Google Scholar
Mondal, B., Thomas, T. A., and Harrison, M., “Rank-independent codebook design from a quaternary alphabet,” Asilomar Conf. Signals, Systems, and Comp., pp. 297–301, Nov. 2007.Google Scholar
Inoue, T. and Heath, R. W. Jr., “Kerdock codes for limited feedback MIMO systems,” IEEE Int’l Conf. Acoustics, Speech and Signal Process. (ICASSP’08), pp. 3113–3116, Mar. 2008.Google Scholar
Klappenecker, A. and Roetteler, M., “Mutually unbiased bases, spherical designs, and frames,” Proc. of SPIE, vol. 5914, no. 1, 2005.Google Scholar
Wang, J., Wu, M., and Zheng, F., “The codebook design for MIMO precoding systems in LTE and LTE-A,” Int’l Conf. Wireless Commun. Networking and Mobile Computing (WiCOM’10), pp. 1–4, Sep. 2010.Google Scholar
Vu, M., “MISO capacity with per-antenna power constraint,” IEEE Trans. Commun., vol. 59, no. 5, pp. 12681274, 2011.Google Scholar
Vu, M., “MIMO capacity with per-antenna power constraint,” IEEE Global Commun. Conf. (GLOBECOM’11), Dec. 2011.Google Scholar
Loyka, S., “The capacity of Gaussian MIMO channels under total and per-antenna power constraints,” IEEE Trans. Commun., vol. 65, no. 3, pp. 10351042, 2017.Google Scholar
Dai, J., Chang, C., Xu, W., and Ye, Z., “Linear precoder optimization for MIMO systems with joint power constraints,” IEEE Trans. Commun., vol. 60, no. 8, pp. 22402254, 2012.Google Scholar
Tuninetti, D., “On the capacity of the AWGN MIMO channel under per-antenna power constraints,” IEEE Int’l Conf. Commun. (ICC’14), pp. 2153–2157, Jun. 2014.Google Scholar
Mohammed, S. K. and Larsson, E. G., “Single-user beamforming in large-scale MISO systems with per-antenna constant-envelope constraints: the doughnut channel,” IEEE Trans. Wireless Commun., vol. 11, no. 11, pp. 39924005, 2012.Google Scholar
Pan, J. and Ma, W.-K., “Constant envelope precoding for single-user large-scale MISO channels: efficient precoding and optimal designs,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 982995, 2014.Google Scholar
Zhang, S., Zhang, R., and Lim, T. J., “Constant envelope precoding for MIMO systems,” IEEE Trans. Commun., vol. 66, no. 1, pp. 149162, 2018.Google Scholar
Potter, C., Kosbar, K., and Panagos, A., “On achievable rates for MIMO systems with imperfect channel state information in the finite length regime,” IEEE Trans. Commun., vol. 61, no. 7, pp. 27722781, 2013.Google Scholar
Wu, D. and Negi, R., “Effective capacity: a wireless link model for support of quality of service,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 630643, 2003.Google Scholar
Chau, Y. and Yu, S.-H., “Space modulation on wireless fading channels,” IEEE Veh. Techn. Conf. (VTC’01), vol. 3, pp. 16681671, 2001.Google Scholar
Haas, H., Costa, E., and Schulz, E., “Increasing spectral efficiency by data multiplexing using antenna arrays,” IEEE Int’l Symp. Personal, Indoor and Mobile Radio Commun. (PIMRC’02), vol. 2, pp. 610613, Sep. 2002.Google Scholar
Mesleh, R. Y., Haas, H., Sinanović, S., Ahn, C. W., and Yun, S., “Spatial modulation,” IEEE Trans. Veh. Techn., vol. 57, no. 4, pp. 22282241, 2008.Google Scholar
Jeganathan, J., Ghrayeb, A., Szczecinski, L., and Ceron, A., “Space shift keying modulation for MIMO channels,” IEEE Trans. Wireless Commun., vol. 8, no. 7, pp. 36923703, 2009.Google Scholar
Di Renzo, M., Haas, H., and Grant, P. M., “Spatial modulation for multiple-antenna wireless systems: a survey,” IEEE Commun. Mag., vol. 49, no. 12, pp. 182191, 2011.Google Scholar
Di Renzo, M., Haas, H., Ghrayeb, A., Sugiura, S., and Hanzo, L., “Spatial modulation for generalized MIMO: challenges, opportunities, and implementation,” Proc. IEEE, vol. 102, no. 1, pp. 56103, 2014.Google Scholar
Bouida, Z., El-Sallabi, H., Ghrayeb, A., and Qaraqe, K. A., “Reconfigurable antenna-based space-shift keying (SSK) for MIMO Rician channels,” IEEE Trans. Wireless Commun., vol. 15, pp. 446457, Jan. 2016.Google Scholar
Ibrahim, A. A. I., Kim, T., and Love, D. J., “On the achievable rate of generalized spatial modulation using multiplexing under a Gaussian mixture model,” IEEE Trans. Commun., vol. 64, pp. 15881599, Apr. 2016.Google Scholar
Younis, A., Serafimovski, N., Mesleh, R., and Haas, H., “Generalised spatial modulation,” Asilomar Conf. Signals, Systems and Computers, pp. 1498–1502, 2010.Google Scholar
An, Z., Wang, J., Wang, J., and Song, J., “Mutual information and error probability analysis on generalized spatial modulation system,” IEEE Trans. Commun., vol. 65, no. 3, pp. 10441060, 2017.Google Scholar
Sun, C., Hirata, A., Ohira, T., and Karmakar, N. C., “Fast beamforming of electronically steerable parasitic array radiator antennas: theory and experiment,” IEEE Trans. Antennas Propag., vol. 52, no. 7, pp. 18191832, 2004.Google Scholar
Alrabadi, O. N., Papadias, C. B., Kalis, A., and Prasad, R., “A universal encoding scheme for MIMO transmission using a single active element for PSK modulation schemes,” IEEE Trans. Wireless Commun., vol. 8, no. 10, pp. 51335142, 2009.Google Scholar
Alrabadi, O. N., Divarathne, C., Tragas, P., Kalis, A., Marchetti, N., Papadias, C. B., and Prasad, R., “Spatial multiplexing with a single radio: proof-of-concept experiments in an indoor environment with a 2.6-GHz prototype,” IEEE Commun. Letters, vol. 15, no. 2, pp. 178180, 2011.Google Scholar
Kalis, A., Kanatas, A. G., and Papadias, C. B., Parasitic antenna arrays for wireless MIMO systems. Springer, 2014.Google Scholar
Khandani, A. K., “Media-based modulation: a new approach to wireless transmission,” IEEE Int’l Symp. Inform. Theory (ISIT’13), pp. 3050–3054, Jul. 2013.Google Scholar
Khandani, A. K., “Media-based modulation: converting static Rayleigh fading to AWGN,” IEEE Int’l Symp. Inform. Theory, pp. 1549–1553, Jun. 2014.Google Scholar
Alkhateeb, A., Mo, J., González-Prelcic, N., and Heath, R. W. Jr., “MIMO precoding and combining solutions for millimeter-wave systems,” IEEE Commun. Mag., vol. 52, no. 12, pp. 122131, 2014.Google Scholar
Sohrabi, F. and Yu, W., “Hybrid analog and digital beamforming for mmWave OFDM large-scale antenna arrays,” IEEE J. Sel. Areas Commun., vol. 35, no. 7, pp. 14321443, 2017.Google Scholar
Artigue, C. and Loubaton, P., “On the precoder design of flat fading MIMO systems equipped with MMSE receivers: a large-system approach,” IEEE Trans. Inform. Theory, vol. 57, no. 7, pp. 41384155, 2011.Google Scholar
Kiessling, M. and Speidel, J., “Analytical performance of MIMO zero-forcing receivers in correlated Rayleigh fading environments,” IEEE Workshop on Signal Process. Advances in Wireless Commun. (SPAWC’03), pp. 383–387, 2003.Google Scholar
Gore, D., Heath, R. W. Jr., and Paulraj, A., “On performance of the zero forcing receiver in presence of transmit correlation,” IEEE Int’l Symp. Inform. Theory (ISIT’02), p. 159, 2002.Google Scholar
Li, P., Paul, D., Narasimhan, R., and Cioffi, J., “On the distribution of SINR for the MMSE MIMO receiver and performance analysis,” IEEE Trans. Inform. Theory, vol. 52, no. 1, pp. 271286, 2006.Google Scholar
Siriteanu, C., Blostein, S. D., Takemura, A., Shin, H., Yousefi, S., and Kuriki, S., “Exact MIMO zero-forcing detection analysis for transmit-correlated Rician fading,” IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 15141527, 2014.Google Scholar
Siriteanu, C., Takemura, A., Kuriki, S., Shin, H., and Koutschan, C., “MIMO zero-forcing performance evaluation using the holonomic gradient method,” IEEE Trans. Wireless Commun., vol. 14, no. 4, pp. 23222335, 2015.Google Scholar
Kumar, K. R., Caire, G., and Moustakas, A. L., “The diversity-multiplexing tradeoff of linear MIMO receivers,” IEEE Inform. Theory Workshop (ITW’07), pp. 487– 492, 2007.Google Scholar
Gao, H., Smith, P. J., and Clark, M. V., “Theoretical reliability of MMSE linear diversity combining in Rayleigh-fading additive interference channels,” IEEE Trans. Commun., vol. 46, no. 5, pp. 666672, 1998.Google Scholar
Smith, P. J., “Exact performance analysis of optimum combining with multiple interferers in flat Rayleigh fading,” IEEE Trans. Commun., vol. 55, no. 9, pp. 1674– 1677, 2007.Google Scholar
Jiang, Y., Varanasi, M. K., and Li, J., “Performance analysis of ZF and MMSE equalizers for MIMO systems: an in-depth study of the high SNR regime,” IEEE Trans. Inform. Theory, vol. 57, no. 4, pp. 20082026, 2011.Google Scholar
McKay, M. R., Zanella, A., Collings, I. B., and Chiani, M., “Error probability and SINR analysis of optimum combining in Rician fading,” IEEE Trans. Commun., vol. 57, no. 3, pp. 676687, 2009.Google Scholar
Louie, R., McKay, M. R., and Collings, I. B., “New performance results for multiuser optimum combining in the presence of Rician fading,” IEEE Trans. Commun., vol. 57, no. 8, pp. 23482358, 2009.Google Scholar
Poor, H. V. and Verdú, S., “Probability of error in MMSE multiuser detection,” IEEE Trans. Inform. Theory, vol. 43, no. 3, pp. 858871, 1997.Google Scholar
Louie, R. H. Y., McKay, M. R., and Collings, I. B., “Maximum sum-rate of MIMO multiuser scheduling with linear receivers,” IEEE Trans. Commun., vol. 57, no. 11, pp. 35003510, 2009.Google Scholar
McKay, M. R., Collings, I. B., and Tulino, A. M., “Achievable sum rate of MIMO MMSE receivers: a general analytic framework,” IEEE Trans. Inform. Theory, vol. 56, no. 1, pp. 396410, 2010.Google Scholar
Tan, P. H., Wu, Y., and Sun, S., “Link adaptation based on adaptive modulation and coding for multiple-antenna OFDM system,” IEEE J. Sel. Areas Commun., vol. 26, no. 8, pp. 15991606, 2008.Google Scholar
Jensen, T. L., Kant, S., Wehinger, J., and Fleury, B. H., “Fast link adaptation for MIMO OFDM,” IEEE Trans. Veh. Techn., vol. 59, no. 8, pp. 37663778, 2010.Google Scholar
Bergmans, P. and Cover, T. M., “Cooperative broadcasting,” IEEE Trans. Inform. Theory, vol. 20, no. 3, pp. 317324, 1974.Google Scholar
Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., and Higuchi, K., “Non-orthogonal multiple access (NOMA) for cellular future radio access,” IEEE Veh. Techn. Conf. (VTC’03 Spring), pp. 1–5, 2013.Google Scholar
Kuo, P.-H., “New physical layer features of 3GPP LTE Release-13,” IEEE Wireless Commun., vol. 22, pp. 45, Aug. 2015.Google Scholar
Ding, Z., Yang, Z., Fan, P., and Poor, H. V., “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Process. Letters, vol. 21, no. 12, pp. 15011505, 2014.Google Scholar
Wang, Q., Zhang, R., Yang, L. L., and Hanzo, L., “Non-orthogonal multiple access: a unified perspective,” IEEE Wireless Commun., vol. 25, no. 2, pp. 1016, 2018.Google Scholar
Liu, L., Chen, R., Geirhofer, S., Sayana, K., Shi, Z., and Zhou, Y., “Downlink MIMO in LTE-advanced: SU-MIMO vs. MU-MIMO,” IEEE Commun. Mag., vol. 50, no. 2, pp. 140147, 2012.Google Scholar
Wiesel, A., Eldar, Y. C., and Shamai, S., “Linear precoding via conic optimization for fixed MIMO receivers,” IEEE Trans. Signal Process., vol. 54, no. 1, pp. 161176, 2006.Google Scholar
Kelly, F., “Charging and rate control for elastic traffic,” Eur. Trans. Telecommun., vol. 8, no. 1, pp. 3337, 1997.Google Scholar
Mo, J. and Walrand, J., “Fair end-to-end window-based congestion control,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 556567, 2000.Google Scholar
Viswanath, P., Tse, D. N. C., and Laroia, R., “Opportunistic beamforming using dumb antennas,” IEEE Trans. Inform. Theory, vol. 48, no. 6, pp. 12771294, 2002.Google Scholar
Yoo, T., Jindal, N., and Goldsmith, A., “Multi-antenna downlink channels with limited feedback and user selection,” IEEE J. Sel. Areas Commun., vol. 25, no. 7, pp. 14781491, 2007.Google Scholar
Tu, Z. and Blum, R. S., “Multiuser diversity for a dirty paper approach,” IEEE Commun. Letters, vol. 7, no. 8, pp. 370372, 2003.Google Scholar
Dimic, G. and Sidiropoulos, N. D., “On downlink beamforming with greedy user selection: performance analysis and a simple new algorithm,” IEEE Trans. Signal Process., vol. 53, no. 10, pp. 38573868, 2005.Google Scholar
Sharif, M. and Hassibi, B., “On the capacity of MIMO broadcast channels with partial side information,” IEEE Trans. Inform. Theory, vol. 51, no. 2, pp. 506522, 2005.Google Scholar
Kang, M., Sang, Y. J., Hwang, H. G., Lee, H. Y., and Kim, K. S., “Performance analysis of proportional fair scheduling with partial feedback information for multiuser multicarrier systems,” IEEE Veh. Techn. Conf. (VTC’09 Spring), pp. 1–5, 2009.Google Scholar
Morales-Jimenez, D. and Lozano, A., “Ergodic sum-rate of proportional fair scheduling with multiple antennas,” IEEE Int’l Symp. Inform. Theory (ISIT’13), pp. 2124–2128, 2013.Google Scholar
Kelly, F. P., Maulloo, A. K., and Tan, D. K. H., “Rate control for communication networks: shadow prices, proportional fairness and stability,” J. Oper. Res. Soc., vol. 49, no. 3, pp. 237252, 1998.Google Scholar
Stolyar, A. L., “On the asymptotic optimality of the gradient scheduling algorithm for multiuser throughput allocation,” Oper. Res., vol. 53, no. 1, pp. 1225, 2005.Google Scholar
Jalali, A., Padovani, R., and Pankaj, R., “Data throughput of CDMA-HDR a high efficiency-high data rate personal communication wireless system,” IEEE Veh. Techn. Conf. (VTC’00 Spring), vol. 3, pp. 18541858, 2000.Google Scholar
Choi, J.-G. and Bahk, S., “Cell-throughput analysis of the proportional fair scheduler in the single-cell environment,” IEEE Trans. Veh. Techn., vol. 56, no. 2, pp. 766778, 2007.Google Scholar
Stolyar, A. L., “Greedy primal-dual algorithm for dynamic resource allocation in complex networks,” Queue. Syst., vol. 54, no. 3, pp. 203220, 2006.Google Scholar
Caire, G., Muller, R. R., and Knopp, R., “Hard fairness versus proportional fairness in wireless communications: the single-cell case,” IEEE Trans. Inform. Theory, vol. 53, no. 4, pp. 13661385, 2007.Google Scholar
Caire, G., Tuninetti, D., and Verdú, S., “Suboptimality of TDMA in the low-power regime,” IEEE Trans. Inform. Theory, vol. 50, no. 4, pp. 608620, 2004.Google Scholar
Philosof, T. and Zamir, R., “The cost of uncorrelation and noncooperation in MIMO channels,” IEEE Trans. Inform. Theory, vol. 53, no. 11, pp. 39043920, 2007.Google Scholar
Ahlswede, R., “Multi-way communication channels,” IEEE Int’l Symp. Inform. Theory (ISIT’71), pp. 23–52, 1971.Google Scholar
Liao, H., “Multiple access channels,” Ph.D. dissertation, University of Hawaii, 1972.Google Scholar
Cheng, R. S. and Verdú, S., “Gaussian multiaccess channels with ISI: capacity region and multiuser water-filling,” IEEE Trans. Inform. Theory, vol. 39, no. 3, pp. 773785, 1993.Google Scholar
Chong, H.-F. and Motani, M., “Capacity region of the asynchronous Gaussian vector multiple-access channel,” IEEE Trans. Inform. Theory, vol. 59, no. 9, pp. 5398– 5420, 2013.Google Scholar
Knopp, R. and Humblet, P. A., “Information capacity and power control in single-cell multiuser communications,” IEEE Int’l Conf. Commun. (ICC’95), vol. 1, pp. 331335, Jun. 1995.Google Scholar
Tse, D. N. C. and Hanly, S. V., “Multiaccess fading channels. I. Polymatroid structure, optimal resource allocation and throughput capacities,” IEEE Trans. Inform. Theory, vol. 44, no. 7, pp. 27962815, 1998.Google Scholar
Viswanath, P., Tse, D. N. C., and Anantharam, V., “Asymptotically optimal water-filling in vector multiple-access channels,” IEEE Trans. Inform. Theory, vol. 47, no. 1, pp. 241267, 2001.Google Scholar
Yu, W., Rhee, W., and Cioffi, J. M., “Optimal power control in multiple access fading channels with multiple antennas,” IEEE Int’l Conf. Commun. (ICC’01), vol. 2, pp. 575579, Jun. 2001.Google Scholar
Yu, W. and Rhee, W., “Degrees of freedom in wireless multiuser spatial multiplex systems with multiple antennas,” IEEE Trans. Commun., vol. 54, no. 10, pp. 1747– 1753, 2006.Google Scholar
Maddah-Ali, M. A., Mobasher, A., and Khandani, A. K., “Fairness in multiuser systems with polymatroid capacity region,” IEEE Trans. Inform. Theory, vol. 55, no. 5, pp. 21282138, 2009.Google Scholar
Calabuig, D., Gohary, R. H., and Yanikomeroglu, H., “Optimum transmission through the multiple-antenna Gaussian multiple access channel,” IEEE Trans. Inform. Theory, vol. 62, no. 1, pp. 230243, 2016.Google Scholar
Yu, W., Rhee, W., Boyd, S., and Cioffi, J. M., “Iterative water-filling for Gaussian vector multiple-access channels,” IEEE Trans. Inform. Theory, vol. 50, no. 1, pp. 145152, 2004.Google Scholar
Wang, M., Zeng, W., and Xiao, C., “Linear precoding for MIMO multiple access channels with finite discrete inputs,” IEEE Trans. Wireless Commun., vol. 10, no. 11, pp. 39343942, 2011.Google Scholar
Harshan, J. and Rajan, B. S., “On two-user Gaussian multiple access channels with finite input constellations,” IEEE Trans. Inform. Theory, vol. 57, no. 3, pp. 1299– 1327, 2011.Google Scholar
Bellofiore, S., Balanis, C. A., Foutz, J., and Spanias, A. S., “Smart-antenna systems for mobile communication networks. Part 1. Overview and antenna design,” IEEE Antennas Propag. Mag., vol. 44, no. 3, pp. 145154, 2002.Google Scholar
Zetterberg, P. and Ottersten, B., “The spectrum efficiency of a base station antenna array system for spatially selective transmission,” IEEE Trans. Veh. Techn., vol. 44, no. 3, pp. 651660, 1995.Google Scholar
Suard, B., Xu, G., Liu, H., and Kailath, T., “Uplink channel capacity of space-division-multiple-access schemes,” IEEE Trans. Inform. Theory, vol. 44, no. 4, pp. 14681476, 1998.Google Scholar
Lee, J. and Jindal, N., “High SNR analysis for MIMO broadcast channels: dirty paper coding versus linear precoding,” IEEE Trans. Inform. Theory, vol. 53, no. 12, pp. 47874792, 2007.Google Scholar
Tse, D. N. C., Viswanath, P., and Zheng, L., “Diversity-multiplexing tradeoff in multiple-access channels,” IEEE Trans. Inform. Theory, vol. 50, no. 9, pp. 1859– 1874, 2004.Google Scholar
Shamai, S. and Wyner, A. D., “Information-theoretic considerations for symmetric, cellular, multiple-access fading channels,” IEEE Trans. Inform. Theory, vol. 43, no. 6, pp. 18771894, 1997.Google Scholar
Jafar, S. A., Vishwanath, S., and Goldsmith, A., “Vector MAC capacity region with covariance feedback,” IEEE Int’l Symp. Inform. Theory (ISIT’01), vol. 1, p. 54, Jun. 2001.Google Scholar
Soysal, A. and Ulukus, S., “Optimality of beamforming in fading MIMO multiple access channels,” IEEE Trans. Commun., vol. 57, no. 4, pp. 11711183, 2009.Google Scholar
Wu, Y., Wen, C.-K., Xiao, C., Gao, X., and Schober, R., “Linear precoding for the MIMO multiple access channel with finite alphabet inputs and statistical CSI,” IEEE Trans. Wireless Commun., vol. 14, no. 2, pp. 983997, 2015.Google Scholar
Peacock, M. J. M., Collings, I. B., and Honig, M. L., “Eigenvalue distributions of sums and products of large random matrices via incremental matrix expansions,” IEEE Trans. Inform. Theory, vol. 54, no. 5, pp. 21232138, 2008.Google Scholar
Couillet, R., Debbah, M., and Silverstein, J. W., “A deterministic equivalent for the analysis of correlated MIMO multiple access channels,” IEEE Trans. Inform. Theory, vol. 57, no. 6, pp. 34933514, 2011.Google Scholar
Aktas, D., Bacha, M. N., Evans, J. S., and Hanly, S. V., “Scaling results on the sum capacity of cellular networks with MIMO links,” IEEE Trans. Inform. Theory, vol. 52, no. 7, pp. 32643274, 2006.Google Scholar
Huh, H., Moon, S.-H., Kim, Y.-T., Lee, I., and Caire, G., “Multi-cell MIMO downlink with cell cooperation and fair scheduling: a large-system limit analysis,” IEEE Trans. Inform. Theory, vol. 57, no. 12, pp. 77717786, 2011.Google Scholar
Aubry, A., Esnaola, I., Tulino, A. M., and Venkatesan, S., “Achievable rate region for Gaussian MIMO MAC with partial CSI,” IEEE Trans. Inform. Theory, vol. 59, no. 7, pp. 41394170, 2013.Google Scholar
Lozano, A., Andrews, J. G., and Heath, R. W. Jr., “Spectral efficiency limits in pilot-assisted cooperative communications,” IEEE Int’l Symp. Inform. Theory (ISIT’12), pp. 1132–1136, 2012.Google Scholar
Zhao, P., Fodor, G., Dan, G., and Telek, M., “A game theoretic approach to setting the pilot power ratio in multi-user MIMO systems,” IEEE Trans. Commun., vol. 66, no. 3, pp. 9991012, 2018.Google Scholar
Rashid-Farrokhi, F., Liu, K. J. R., and Tassiulas, L., “Transmit beamforming and power control for cellular wireless systems,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 14371450, 1998.Google Scholar
Rashid-Farrokhi, F., Tassiulas, L., and Liu, K. J. R., “Joint optimal power control and beamforming in wireless networks using antenna arrays,” IEEE Trans. Commun., vol. 46, no. 10, pp. 13131324, 1998.Google Scholar
Vishwanath, S., Jindal, N., and Goldsmith, A., “Duality, achievable rates, and sumrate capacity of Gaussian MIMO broadcast channels,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 26582668, 2003.Google Scholar
Viswanath, P. and Tse, D. N. C., “Sum capacity of the vector Gaussian broadcast channel and uplink–downlink duality,” IEEE Trans. Inform. Theory, vol. 49, no. 8, pp. 19121921, 2003.Google Scholar
Jindal, N., Vishwanath, S., and Goldsmith, A., “On the duality of Gaussian multiple-access and broadcast channels,” IEEE Trans. Inform. Theory, vol. 50, no. 5, pp. 768783, 2004.Google Scholar
Yu, W. and Lan, T., “Transmitter optimization for the multi-antenna downlink with per-antenna power constraints,” IEEE Trans. Signal Process., vol. 55, no. 6, pp. 26462660, 2007.Google Scholar
Bergmans, P., “A simple converse for broadcast channels with additive white Gaussian noise,” IEEE Trans. Inform. Theory, vol. 20, no. 2, pp. 279280, 1974.Google Scholar
Korner, J. and Marton, K., “General broadcast channels with degraded message sets,” IEEE Trans. Inform. Theory, vol. 23, no. 1, pp. 6064, 1977.Google Scholar
El Gamal, A., “The capacity of a class of broadcast channels,” IEEE Trans. Inform. Theory, vol. 25, no. 2, pp. 166169, 1979.Google Scholar
Caire, G. and Shamai, S., “On the achievable throughput of a multiantenna Gaussian broadcast channel,” IEEE Trans. Inform. Theory, vol. 49, no. 7, pp. 16911706, 2003.Google Scholar
Weingarten, H., Steinberg, Y., and Shamai, S., “The capacity region of the Gaussian multiple-input multiple-output broadcast channel,” IEEE Trans. Inform. Theory, vol. 52, no. 9, pp. 39363964, 2006.Google Scholar
Tomlinson, M., “New automatic equaliser employing modulo arithmetic,” Electronics Letters, vol. 7, no. 5, pp. 138139, 1971.Google Scholar
Harashima, H. and Miyakawa, H., “Matched-transmission technique for channels with intersymbol interference,” IEEE Trans. Commun., vol. 20, no. 4, pp. 774780, 1972.Google Scholar
Yu, W. and Cioffi, J. M., “Trellis precoding for the broadcast channel,” IEEE Global Commun. Conf. (GLOBECOM’01), vol. 2, pp. 13441348, 2001.Google Scholar
Windpassinger, C., Fischer, R. F. H., Vencel, T., and Huber, J. B., “Precoding in multiantenna and multiuser communications,” IEEE Trans. Wireless Commun., vol. 3, no. 4, pp. 13051316, 2004.Google Scholar
Windpassinger, C., Fischer, R. F. H., and Huber, J. B., “Lattice-reduction-aided broadcast precoding,” IEEE Trans. Commun., vol. 52, no. 12, pp. 20572060, 2004.Google Scholar
Joham, M., Brehmer, J., and Utschick, W., “MMSE approaches to multiuser spatio-temporal Tomlinson–Harashima precoding,” ITG Conf. Source Channel Coding, pp. 387394, 2004.Google Scholar
Hochwald, B. M., Peel, C. B., and Swindlehurst, A. L., “A vector-perturbation technique for near-capacity multiantenna multiuser communication—part II: perturbation,” IEEE Trans. Commun., vol. 53, no. 3, pp. 537544, 2005.Google Scholar
Barrenechea, M., Joham, M., Mendicute, M., and Utschick, W., “Analysis of vector precoding at high SNR: rate bounds and ergodic results,” IEEE Global Commun. Conf. (GLOBECOM’10), pp. 1–5, 2010.Google Scholar
Costa, M. H. M., “Writing on dirty paper,” IEEE Trans. Inform. Theory, vol. 29, no. 3, pp. 439441, 1983.Google Scholar
Erez, U., Shamai, S., and Zamir, R., “Capacity and lattice strategies for canceling known interference,” IEEE Trans. Inform. Theory, vol. 51, no. 11, pp. 38203833, 2005.Google Scholar
Erez, U. and ten Brink, S., “A close-to-capacity dirty paper coding scheme,” IEEE Trans. Inform. Theory, vol. 51, no. 10, pp. 34173432, 2005.Google Scholar
Khina, A. and Erez, U., “On the robustness of dirty paper coding,” IEEE Trans. Commun., vol. 58, no. 5, pp. 14371446, 2010.Google Scholar
Jindal, N., Rhee, W., Vishwanath, S., Jafar, S. A., and Goldsmith, A., “Sum power iterative water-filling for multi-antenna Gaussian broadcast channels,” IEEE Trans. Inform. Theory, vol. 51, no. 4, pp. 15701580, 2005.Google Scholar
Kobayashi, M. and Caire, G., “An iterative water-filling algorithm for maximum weighted sum-rate of Gaussian MIMO-BC,” IEEE J. Sel. Areas Commun., vol. 24, no. 8, pp. 16401646, 2006.Google Scholar
Wu, Y., Wang, M., Xiao, C., Ding, Z., and Gao, X., “Linear precoding for MIMO broadcast channels with finite-alphabet constraints,” IEEE Trans. Wireless Commun., vol. 11, no. 8, pp. 29062920, 2012.Google Scholar
Jafar, S. A. and Goldsmith, A., “Isotropic fading vector broadcast channels: the scalar upper bound and loss in degrees of freedom,” IEEE Trans. Inform. Theory, vol. 51, no. 3, pp. 848857, 2005.Google Scholar
Davoodi, A. G. and Jafar, S. A., “Aligned image sets under channel uncertainty: settling conjectures on the collapse of degrees of freedom under finite precision CSIT,” IEEE Trans. Inform. Theory, vol. 62, pp. 56035618, 2016.Google Scholar
Lapidoth, A., Shamai, S., and Wigger, M., “On the capacity of a MIMO fading broadcast channel with imperfect transmitter side-information,” Allerton Conf. Commun., Control and Computing, 2005.Google Scholar
Caire, G., Jindal, N., and Shamai, S., “On the required accuracy of transmitter channel state information in multiple antenna broadcast channels,” Asilomar Conf. Signals, Systems and Computers, pp. 287–291, 2007.Google Scholar
Hammarwall, D., Bengtsson, M., and Ottersten, B., “Utilizing the spatial information provided by channel norm feedback in SDMA systems,” IEEE Trans. Signal Process., vol. 56, no. 7, pp. 32783293, 2008.Google Scholar
Raghavan, V., Hanly, S. V., and Veeravalli, V. V., “Statistical beamforming on the Grassmann manifold for the two-user broadcast channel,” IEEE Trans. Inform. Theory, vol. 59, no. 10, pp. 64646489, 2013.Google Scholar
Wang, J., Jin, S., Gao, X., Wong, K.-K., and Au, E., “Statistical eigenmode-based SDMA for two-user downlink,” IEEE Trans. Signal Process., vol. 60, no. 10, pp. 53715383, 2012.Google Scholar
Serbetli, S. and Yener, A., “Transceiver optimization for multiuser MIMO systems,” IEEE Trans. Signal Process., vol. 52, no. 1, pp. 214226, 2004.Google Scholar
Visotsky, E. and Madhow, U., “Optimum beamforming using transmit antenna arrays,” IEEE Veh. Techn. Conf. (VTC’99), vol. 1, pp. 851856, 1999.Google Scholar
Chiang, M., Tan, C. W., Palomar, D. P., O’Neill, D., and Julian, D., “Power control by geometric programming,” IEEE Trans. Wireless Commun., vol. 6, no. 7, pp. 26402651, 2007.Google Scholar
Hande, P., Rangan, S., Chiang, M., and Wu, X., “Distributed uplink power control for optimal SIR assignment in cellular data networks,” IEEE/ACM Trans. Netw., vol. 16, no. 6, pp. 14201433, 2008.Google Scholar
Wiesel, A., Eldar, Y. C., and Shamai, S., “Zero-forcing precoding and generalized inverses,” IEEE Trans. Signal Process., vol. 56, no. 9, pp. 44094418, 2008.Google Scholar
Lozano, A., Tulino, A. M., and Verdú, S., “Optimum power allocation for multiuser OFDM with arbitrary signal constellations,” IEEE Trans. Commun., vol. 56, pp. 828837, 2008.Google Scholar
Lozano, A., Tulino, A. M., and Verdú, S., “Multiuser mercury/waterfilling for downlink OFDM with arbitrary signal constellations,” Proc. Int’l Symp. Spread Spectrum Tech. and Applications (ISSSTA’06), 2006.Google Scholar
Hochwald, B. and Vishwanath, S., “Space–time multiple access: linear growth in the sum rate,” Allerton Conf. Commun., Control and Computing, 2002.Google Scholar
Yoo, T. and Goldsmith, A., “On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 528541, 2006.Google Scholar
Boccardi, F. and Huang, H., “Zero-forcing precoding for the MIMO broadcast channel under per-antenna power constraints,” IEEE Workshop on Signal Process. Adv. in Wireless Commun. (SPAWC’06), pp. 1–5, 2006.Google Scholar
Caire, G., Jindal, N., Kobayashi, M., and Ravindran, N., “Multiuser MIMO achievable rates with downlink training and channel state feedback,” IEEE Trans. Inform. Theory, vol. 56, no. 6, pp. 28452866, 2010.Google Scholar
Tang, T., Heath, R. W. Jr., Cho, S., and Yun, S., “Opportunistic feedback for multiuser MIMO systems with linear receivers,” IEEE Trans. Commun., vol. 55, no. 5, pp. 10201032, 2007.Google Scholar
Gesbert, D. and Alouini, M.-S., “How much feedback is multi-user diversity really worth?IEEE Int’l Conf. Commun. (ICC’04), vol. 1, pp. 234238, June 2004.Google Scholar
Sanayei, S. and Nosratinia, A., “Exploiting multiuser diversity with only 1-bit feedback,” IEEE Wireless Commun. Netw. Conf. (WCNC’05), vol. 2, pp. 978983, 2005.Google Scholar
Swannack, C., Uysal-Biyikoglu, E., and Wornell, G. W., “Finding NEMO: near mutually orthogonal sets and applications to MIMO broadcast scheduling,” Int’l Conf. Wireless Networks, Commun., Mobile Computing, June 2005.Google Scholar
Swannack, C., Uysal-Biyikoglu, E., and Wornell, G. W., “MIMO broadcast scheduling with limited channel state information,” Allerton Conf. on Comm. Control and Comp., Sep. 2005.Google Scholar
Yoo, T., Jindal, N., and Goldsmith, A., “Multi-antenna downlink channels with limited feedback and user selection,” IEEE J. Sel. Areas Commun., vol. 25, no. 7, pp. 14781491, 2007.Google Scholar
Jindal, N., “MIMO broadcast channels with finite-rate feedback,” IEEE Trans. Inform. Theory, vol. 52, no. 11, pp. 50455060, 2006.Google Scholar
Ding, P., Love, D. J., and Zoltowski, M. D., “Multiple antenna broadcast channels with shape feedback and limited feedback,” IEEE Trans. Signal Process., vol. 55, pp. 34173428, July 2007.Google Scholar
Choi, W., Forenza, A., Andrews, J. G., and Heath, R. W. Jr., “Opportunistic space-division multiple access with beam selection,” IEEE Trans. Commun., vol. 55, no. 12, pp. 23712380, 2007.Google Scholar
Huang, K., Andrews, J. G., and Heath, R. W. Jr., “Performance of orthogonal beamforming for SDMA with limited feedback,” IEEE Trans. Veh. Techn., vol. 58, no. 1, pp. 152164, 2009.Google Scholar
Jindal, N., “Antenna combining for the MIMO downlink channel,” IEEE Trans. Wireless Commun., vol. 7, no. 10, pp. 38343844, 2008.Google Scholar
Huang, K.-B., Heath, R. W. Jr., and Andrews, J. G., “SDMA with a sum feedback rate constraint,” IEEE Trans. Signal Process., vol. 55, no. 7, pp. 38793891, 2007.Google Scholar
Swannack, C., Wornell, G. W., and Uysal-Biyikoglu, E., “MIMO broadcast scheduling with quantized channel state information,” IEEE Int’l Symp. Inform. Theory (ISIT’06), pp. 1788–1792, July 2006.Google Scholar
“Downlink MIMO for EUTRA,” 3GPP TSG RAN WG1 # 44/R1–060335, Tech. Rep., Feb. 2006.Google Scholar
Chae, C. B., Mazzarese, D., Jindal, N., and Heath, R. W. Jr., “Coordinated beamforming with limited feedback in the MIMO broadcast channel,” IEEE J. Sel. Areas Commun., vol. 26, no. 8, pp. 15051515, 2008.Google Scholar
Thiele, L., Schellmann, M., Zirwas, W., and Jungnickel, V., “Capacity scaling of multiuser MIMO with limited feedback in a multicell environment,” Asilomar Conf. Signals, Systems and Computers, Nov. 2007.Google Scholar
Ravindran, N. and Jindal, N., “Limited feedback-based block diagonalization for the MIMO broadcast channel,” IEEE J. Sel. Areas Commun., vol. 26, no. 8, pp. 14731482, 2008.Google Scholar
Bhagavatula, R. and Heath, R. W. Jr., “Adaptive bit partitioning for multicell intercell interference nulling with delayed limited feedback,” IEEE Trans. Signal Process., vol. 59, no. 8, pp. 38243836, 2011.Google Scholar
Bhagavatula, R. and Heath, R. W., “Adaptive limited feedback for sum-rate maximizing beamforming in cooperative multicell systems,” IEEE Trans. Signal Process., vol. 59, no. 2, pp. 800– 811, 2011.Google Scholar
Kobayashi, M., Jindal, N., and Caire, G., “Training and feedback optimization for multiuser MIMO downlink,” IEEE Trans. Commun., vol. 59, no. 8, pp. 22282240, 2011.Google Scholar
Du, X., Tadrous, J., and Sabharwal, A., “Sequential beamforming for multiuser MIMO with full-duplex training,” IEEE Trans. Wireless Commun., vol. 15, no. 12, pp. 85518564, 2016.Google Scholar
Nam, J. and Ahn, J.-Y., “Joint spatial division and multiplexing—benefits of antenna correlation in multi-user MIMO,” IEEE Int’l Symp. Inform. Theory (ISIT’13), pp. 619–623, Jul. 2013.Google Scholar
Nam, J., Caire, G., and Ha, J., “On the role of transmit correlation diversity in multiuser MIMO systems,” IEEE Trans. Inform. Theory, vol. 63, no. 1, pp. 336354, 2017.Google Scholar
Yin, H., Gesbert, D., Filippou, M., and Liu, Y., “A coordinated approach to channel estimation in large-scale multiple-antenna systems,” IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 264273, 2013.Google Scholar
Jeon, Y., Song, C., Lee, S. R., Maeng, S., Jung, J., and Lee, I., “New beamforming designs for joint spatial division and multiplexing in large-scale MISO multi-user systems,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 30293041, 2017.Google Scholar
You, L., Gao, X., Xia, X.-G., Ma, N., and Peng, Y., “Pilot reuse for massive MIMO transmission over spatially correlated Rayleigh fading channels,” IEEE Trans. Wireless Commun., vol. 14, no. 6, pp. 33523366, 2015.Google Scholar
Wong, K. K., “Maximizing the sum-rate and minimizing the sum-power of a broadcast 2-user 2-input multiple-output antenna system using a generalized zeroforcing approach,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 34063412, 2006.Google Scholar
Viswanathan, H., Venkatesan, S., and Huang, H., “Downlink capacity evaluation of cellular networks with known-interference cancellation,” IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 802811, 2003.Google Scholar
Choi, L.-U. and Murch, R. D., “A transmit preprocessing technique for multiuser MIMO systems using a decomposition approach,” IEEE Trans. Wireless Commun., vol. 3, no. 1, pp. 2024, 2004.Google Scholar
Spencer, Q. H., Swindlehurst, A. L., and Haardt, M., “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Process., vol. 52, no. 2, pp. 461471, 2004.Google Scholar
Boccardi, F. and Huang, H. C., “A near-optimum technique using linear precoding for the MIMO broadcast channel,” IEEE Int’l Conf. Acoustics, Speech and Signal Process. (ICASSP’07), vol. 3, pp. III–17, 2007.Google Scholar
Zhang, R., “Cooperative multi-cell block diagonalization with per-base-station power constraints,” IEEE J. Sel. Areas Commun., vol. 28, no. 9, pp. 14351445, 2010.Google Scholar
Shen, Z., Chen, R., Andrews, J. G., Heath, R. W. Jr., and Evans, B. L., “Low complexity user selection algorithms for multiuser MIMO systems with block diagonalization,” IEEE Trans. Signal Process., vol. 54, no. 9, pp. 36583663, 2006.Google Scholar
Ko, K. and Lee, J., “Multiuser MIMO user selection based on chordal distance,” IEEE Trans. Commun., vol. 60, no. 3, pp. 649654, 2012.Google Scholar
Sadek, M., Tarighat, A., and Sayed, A. H., “A leakage-based precoding scheme for downlink multi-user MIMO channels,” IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 17111721, 2007.Google Scholar
Geng, C., Naderializadeh, N., Avestimehr, A. S., and Jafar, S. A., “On the optimality of treating interference as noise,” IEEE Trans. Inform. Theory, vol. 61, no. 4, pp. 17531767, 2015.Google Scholar
Björnson, E., Bengtsson, M., and Ottersten, B., “Optimal multiuser transmit beamforming: a difficult problem with a simple solution structure,” IEEE Signal Process. Mag., vol. 31, no. 4, pp. 142148, 2014.Google Scholar
Liu, Y.-F., Dai, Y.-H., and Luo, Z.-Q., “Coordinated beamforming for MISO interference channel: complexity analysis and efficient algorithms,” IEEE Trans. Signal Process., vol. 59, no. 3, pp. 11421157, 2011.Google Scholar
Björnson, E. and Jorswieck, E., “Optimal resource allocation in coordinated multi-cell systems,” Found. Trends Commun. Inform. Theory, vol. 9, no. 2–3, pp. 113– 381, 2013.Google Scholar
Peel, C. B., Hochwald, B. M., and Swindlehurst, A. L., “A vector-perturbation technique for near-capacity multiantenna multiuser communication—part I: channel inversion and regularization,” IEEE Trans. Commun., vol. 53, no. 1, pp. 195202, 2005.Google Scholar
Park, S., Park, J., Yazdan, A., and Heath, R. W. Jr., “Optimal user loading in massive MIMO systems with regularized zero forcing precoding,” IEEE Wireless Commun. Letters, vol. 6, no. 1, pp. 118121, 2017.Google Scholar
Vojcic, B. R. and Jang, W. M., “Transmitter precoding in synchronous multiuser communications,” IEEE Trans. Commun., vol. 46, no. 10, pp. 13461355, 1998.Google Scholar
Joham, M., Utschick, W., and Nossek, J. A., “Linear transmit processing in MIMO communications systems,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 2700– 2712, 2005.Google Scholar
Stojnic, M., Vikalo, H., and Hassibi, B., “Rate maximization in multi-antenna broadcast channels with linear preprocessing,” IEEE Trans. Wireless Commun., vol. 5, no. 9, pp. 23382342, 2006.Google Scholar
Jie, C. and Swindlehurst, A. L., “Applying bargaining solutions to resource allocation in multiuser MIMO-OFDMA broadcast systems,” IEEE J. Sel. Topics Signal Process., vol. 6, no. 2, pp. 127139, 2012.Google Scholar
Weeraddana, P. C., Codreanu, M., Latva-aho, M., and Ephremides, A., “Weighted sum-rate maximization for a set of interfering links via branch and bound,” IEEE Trans. Signal Process., vol. 59, no. 8, pp. 39773996, 2011.Google Scholar
Shi, S., Schubert, M., and Boche, H., “Rate optimization for multiuser MIMO systems with linear processing,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 4020– 4030, 2008.Google Scholar
Stankovic, V. and Haardt, M., “Generalized design of multi-user MIMO precoding matrices,” IEEE Trans. Wireless Commun., vol. 7, no. 3, pp. 953961, 2008.Google Scholar
Christensen, S. S., Agarwal, R., de Carvalho, E., and Cioffi, J. M., “Weighted sumrate maximization using weighted MMSE for MIMO-BC beamforming design,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 47924799, 2008.Google Scholar
Shi, Q., Razaviyayn, M., Luo, Z.-Q., and He, C., “An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel,” IEEE Int’l Conf. Acoustics, Speech and Signal Process. (ICASSP’11), pp. 3060–3063, 2011.Google Scholar
Girnyk, M. A., Müller, A., Vehkaperä, M., Rasmussen, L. K., and Debbah, M., “On the asymptotic sum rate of downlink cellular systems with random user locations,” IEEE Wireless Commun. Letters, vol. 4, no. 3, pp. 333336, 2015.Google Scholar
Marzetta, T. L., “How much training is required for multiuser MIMO?” Asilomar Conf. Signals, Systems and Computers, pp. 359–363, 2006.Google Scholar
Marzetta, T. L., “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 35903600, 2010.Google Scholar
Hoydis, J., ten Brink, S., and Debbah, M., “Massive MIMO in the UL/DL of cellular networks: how many antennas do we need?IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 160171, 2013.Google Scholar
Yang, H. and Marzetta, T. L., “Performance of conjugate and zero-forcing beamforming in large-scale antenna systems,” IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 172179, 2013.Google Scholar
Ngo, H. Q., Larsson, E. G., and Marzetta, T. L., “Energy and spectral efficiency of very large multiuser MIMO systems,” IEEE Trans. Commun., vol. 61, no. 4, pp. 14361449, 2013.Google Scholar
Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., and Tufvesson, F., “Scaling up MIMO: opportunities and challenges with very large arrays,” IEEE Signal Process. Mag., vol. 30, no. 1, pp. 4060, 2013.Google Scholar
Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., and Zhang, R., “An overview of massive MIMO: benefits and challenges,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 742758, 2014.Google Scholar
Truong, K. T., Lozano, A., and Heath, R. W. Jr., “Optimal training in continuous flat-fading massive MIMO systems,” Eur. Wireless Conf., pp. 1–6, 2014.Google Scholar
Larsson, E. G., Edfors, O., Tufvesson, F., and Marzetta, T. L., “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186– 195, 2014.Google Scholar
Zheng, K., Zhao, L., Mei, J., Shao, B., Xiang, W., and Hanzo, L., “Survey of large-scale MIMO systems,” IEEE Commun. Surv. Tutor., vol. 17, no. 3, pp. 17381760, 2015.Google Scholar
Guo, X., Chen, S., Zhang, J., Mu, X., and Hanzo, L., “Optimal pilot design for pilot contamination elimination/reduction in large-scale multiple-antenna aided OFDM systems,” IEEE Trans. Wireless Commun., vol. 15, no. 11, pp. 72297243, 2016.Google Scholar
Garcia-Rodriguez, A. and Masouros, C., “Exploiting the increasing correlation of space constrained massive MIMO for CSI relaxation,” IEEE Trans. Commun., vol. 64, no. 4, pp. 15721587, 2016.Google Scholar
Mollén, C., Larsson, E. G., and Eriksson, T., “Waveforms for the massive MIMO downlink: amplifier efficiency, distortion, and performance,” IEEE Trans. Commun., vol. 64, no. 12, pp. 50505063, 2016.Google Scholar
Nan, Y., Zhang, L., and Sun, X., “Efficient downlink channel estimation scheme based on block-structured compressive sensing for TDD massive MU-MIMO systems,” IEEE Wireless Commun. Letters, vol. 4, no. 4, pp. 345348, 2015.Google Scholar
Jacobsson, S., Durisi, G., Coldrey, M., Goldstein, T., and Studer, C., “Quantized precoding for massive MU-MIMO,” IEEE Trans. Commun., vol. 65, no. 11, pp. 4670– 4684, 2017.Google Scholar
Björnson, E., Hoydis, J., and Sanguinetti, L., “Massive MIMO networks: spectral, energy, and hardware efficiency,” Found. Trends Signal Process., vol. 11, no. 3–4, pp. 154655, 2017.Google Scholar
Appaiah, K., Ashikhmin, A., and Marzetta, T. L., “Pilot contamination reduction in multi-user TDD systems,” IEEE Int’l Conf. Commun. (ICC’10), pp. 1–5, 2010.Google Scholar
Fernandes, F., Ashikhmin, A., and Marzetta, T. L., “Inter-cell interference in noncooperative TDD large scale antenna systems,” IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 192201, 2013.Google Scholar
Upadhya, K., Vorobyov, S. A., and M. Vehkaper a, “Downlink performance of superimposed pilots in massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 66306644, 2018.Google Scholar
Huang, J., Berry, R. A., and Honig, M. L., “Distributed interference compensation for wireless networks,” IEEE J. Sel. Areas Commun., vol. 24, no. 5, pp. 10741084, 2006.Google Scholar
Shen, K. and Yu, W., “Fractional programming for communication systems—part I: power control and beamforming,” IEEE Trans. Signal Process., vol. 66, no. 10, pp. 26162630, 2018.Google Scholar
Whitehead, J. F., “Signal-level-based dynamic power control for co-channel interference management,” IEEE Veh. Techn. Conf. (VTC’93), pp. 499–502, 1993.Google Scholar
Yates, R. D., “A framework for uplink power control in cellular radio systems,” IEEE J. Sel. Areas Commun., vol. 13, no. 7, pp. 13411347, 1995.Google Scholar
Simonsson, A. and Furuskar, A., “Uplink power control in LTE—overview and performance,” IEEE Veh. Techn. Conf. (VTC’08 Fall), pp. 1–5, 2008.Google Scholar
Castellanos, C. U., Villa, D. L., Rosa, C., Pedersen, K. I., Calabrese, F. D., Michaelsen, P.-H., and Michel, J., “Performance of uplink fractional power control in UTRAN LTE,” IEEE Veh. Techn. Conf. (VTC’08 Spring), pp. 2517–2521, 2008.Google Scholar
Sørensen, J. H. and De Carvalho, E., “Pilot decontamination through pilot sequence hopping in massive MIMO systems,” IEEE Global Commun. Conf. (GLOBECOM’14), pp. 3285–3290, 2014.Google Scholar
Alwakeel, A. S. and Mehana, A. M. H., “Achievable rates in uplink massive MIMO systems with pilot hopping,” IEEE Trans. Commun., vol. 65, no. 10, pp. 4232– 4246, 2017.Google Scholar
Lei, H., Zhang, L., Zhang, X., and Yang, D., “A novel multi-cell OFDMA system structure using fractional frequency reuse,” IEEE Int’l Symp. Personal, Indoor and Mobile Radio Commun. (PIMRC’07), pp. 1–5, 2007.Google Scholar
Atzeni, I., Arnau, J., and Debbah, M., “Fractional pilot reuse in massive MIMO systems,” IEEE Int’l Conf. Commun. Workshop (ICCW’15), pp. 1030–1035, 2015.Google Scholar
Zhu, X., Wang, Z., Qian, C., Dai, L., Chen, J., Chen, S., and Hanzo, L., “Soft pilot reuse and multicell block diagonalization precoding for massive MIMO systems,” IEEE Trans. Veh. Techn., vol. 65, no. 5, pp. 32853298, 2016.Google Scholar
Lee, T., Kim, H. S., Park, S., and Bahk, S., “Mitigation of sounding pilot contamination in massive MIMO systems,” IEEE Int’l Conf. Commun. (ICC’14), pp. 1191– 1196, Jun. 2014.Google Scholar
Li, Y., Wang, R., and Zhang, Z., “Massive MIMO downlink goodput analysis with soft pilot or frequency reuse,” IEEE Wireless Commun. Letters, vol. 7, no. 3, pp. 448451, 2018.Google Scholar
Björnson, E., Larsson, E. G., and Debbah, M., “Massive MIMO for maximal spectral efficiency: how many users and pilots should be allocated?IEEE Trans. Wireless Commun., vol. 15, no. 2, pp. 12931308, 2016.Google Scholar
Guo, K. and Ascheid, G., “Performance analysis of multi-cell MMSE based receivers in MU-MIMO systems with very large antenna arrays,” IEEE Wireless Commun. Netw. Conf. (WCNC’13), pp. 3175–3179, Apr. 2013.Google Scholar
Li, X., Björnson, E., Larsson, E. G., Zhou, S., and Wang, J., “Massive MIMO with multi-cell MMSE processing: exploiting all pilots for interference suppression,” EURASIP J. Wireless Commun. Netw., vol. 2017, no. 1, p. 117, 2017.Google Scholar
Krishnan, N., Yates, R. D., and Mandayam, N. B., “Uplink linear receivers for multi-cell multiuser MIMO with pilot contamination: large system analysis,” IEEE Trans. Wireless Commun., vol. 13, no. 8, pp. 43604373, 2014.Google Scholar
Zhangi, Q., Jin, S., Morales, D., McKay, M., and Zhu, H., “Optimal pilot length for uplink massive MIMO systems with pilot reuse,” IEEE Int’l Conf. Acoustics, Speech and Signal Process. (ICASSP’16), pp. 3536–3540, 2016.Google Scholar
Chien, T. V., Björnson, E., and Larsson, E. G., “Joint pilot design and uplink power allocation in multi-cell massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 20002015, 2018.Google Scholar
Ngo, H. Q., Matthaiou, M., and Larsson, E. G., “Massive MIMO with optimal power and training duration allocation,” IEEE Wireless Commun. Letters, vol. 3, no. 6, pp. 605608, 2014.Google Scholar
Varanasi, M. K. and Aazhang, B., “Multistage detection in asynchronous code-division multiple-access communications,” IEEE Trans. Commun., vol. 38, no. 4, pp. 509519, 1990.Google Scholar
Shental, O., Venkatesan, S., Ashikhmin, A., and Valenzuela, R. A., “Massive BLAST: an architecture for realizing ultra-high data rates for large-scale MIMO,” IEEE Wireless Commun. Letters, vol. 7, no. 3, pp. 404407, 2018.Google Scholar
Ngo, H. Q. and Larsson, E. G., “No downlink pilots are needed in TDD massive MIMO,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 29212935, 2017.Google Scholar
Ngo, H. Q., Larsson, E. G., and Marzetta, T. L., “Massive MU-MIMO downlink TDD systems with linear precoding and downlink pilots,” Allerton Conf. Commun., Control, and Computing, pp. 293–298, 2013.Google Scholar
Khansefid, A. and Minn, H., “Achievable downlink rates of MRC and ZF precoders in massive MIMO with uplink and downlink pilot contamination,” IEEE Trans. Commun., vol. 63, no. 12, pp. 48494864, 2015.Google Scholar
Zuo, J., Zhang, J., Yuen, C., Jiang, W., and Luo, W., “Multicell multiuser massive MIMO transmission with downlink training and pilot contamination precoding,” IEEE Trans. Veh. Techn., vol. 65, no. 8, pp. 63016314, 2016.Google Scholar
Song, B., Cruz, R. L., and Rao, B. D., “Network duality for multiuser MIMO beamforming networks and applications,” IEEE Trans. Commun., vol. 55, no. 3, pp. 618630, 2007.Google Scholar
Dahrouj, H. and Yu, W., “Coordinated beamforming for the multicell multi-antenna wireless system,” IEEE Trans. Wireless Commun., vol. 9, no. 5, pp. 17481759, 2010.Google Scholar
Huang, Y., Tan, C. W., and Rao, B. D., “Joint beamforming and power control in coordinated multicell: max–min duality, effective network and large system transition,” IEEE Trans. Wireless Commun., vol. 12, no. 6, pp. 27302742, 2013.Google Scholar
Qian, L. P., Zhang, Y. J., and Huang, J., “MAPEL: achieving global optimality for a non-convex wireless power control problem,” IEEE Trans. Wireless Commun., vol. 8, no. 3, pp. 15531563, 2009.Google Scholar
Yang, H. and Marzetta, T. L., “A macro cellular wireless network with uniformly high user throughputs,” IEEE Veh. Techn. Conf. (VTC’14 Fall), pp. 1–5, 2014.Google Scholar
Jose, J., Ashikhmin, A., Marzetta, T. L., and Vishwanath, S., “Pilot contamination and precoding in multi-cell TDD systems,” IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 26402651, 2011.Google Scholar
Li, X., Björnson, E., Larsson, E. G., Zhou, S., and Wang, J., “A multi-cell MMSE precoder for massive MIMO systems and new large system analysis,” IEEE Global Commun. Conf. (GLOBECOM’15), pp. 1–6, Dec. 2015.Google Scholar
Zhang, Q., Jin, S., McKay, M., Morales-Jimenez, D., and Zhu, H., “Power allocation schemes for multicell massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 14, no. 11, pp. 59415955, 2015.Google Scholar
Ngo, H. Q and Larsson, E. G., “EVD-based channel estimation in multicell multiuser MIMO systems with very large antenna arrays,” IEEE Int’l Conf. Acoustics, Speech and Signal Process. (ICASSP’12), pp. 3249–3252, 2012.Google Scholar
Müller, R. R., Cottatellucci, L., and Vehkaperä, M., “Blind pilot decontamination,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 773786, 2014.Google Scholar
Zhu, X., Wang, Z., Dai, L., and Qian, C., “Smart pilot assignment for massive MIMO,” IEEE Commun. Letters, vol. 19, no. 9, pp. 16441647, 2015.Google Scholar
Hu, D., He, L., and Wang, X., “Semi-blind pilot decontamination for massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 15, no. 1, pp. 525536, 2016.Google Scholar
Sohn, J. Y., Yoon, S. W., and Moon, J., “On reusing pilots among interfering cells in massive MIMO,” IEEE Trans. Wireless Commun., vol. 16, no. 12, pp. 80928104, 2017.Google Scholar
Elijah, O., Leow, C. Y., Rahman, T. A., Nunoo, S., and Iliya, S. Z., “A comprehensive survey of pilot contamination in massive MIMO—5G system,” IEEE Commun. Surv. Tutor., vol. 18, no. 2, pp. 905923, 2016.Google Scholar
Li, M., Jin, S., and Gao, X., “Spatial orthogonality-based pilot reuse for multi-cell massive MIMO transmission,” Int’l Conf. Wireless Commun. and Signal Process., pp. 1–6, Oct. 2013.Google Scholar
Yin, H., Gesbert, D., and Cottatellucci, L., “Dealing with interference in distributed large-scale MIMO systems: a statistical approach,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 942953, 2014.Google Scholar
Wang, Z., Qian, C., Dai, L., Chen, J., Sun, C., and Chen, S., “Location-based channel estimation and pilot assignment for massive MIMO systems,” IEEE Int’l Conf. Commun. Workshop (ICCW’15), pp. 1264–1268, Jun. 2015.Google Scholar
Yin, H., Cottatellucci, L., Gesbert, D., Müller, R. R., and He, G., “Robust pilot decontamination based on joint angle and power domain discrimination,” IEEE Trans. Signal Process., vol. 64, no. 11, pp. 29903003, 2016.Google Scholar
Chen, Z. and Yang, C., “Pilot decontamination in wideband massive MIMO systems by exploiting channel sparsity,” IEEE Trans. Wireless Commun., vol. 15, no. 7, pp. 50875100, 2016.Google Scholar
Haghighatshoar, S. and Caire, G., “Massive MIMO pilot decontamination and channel interpolation via wideband sparse channel estimation,” IEEE Trans. Wireless Commun., vol. 16, no. 12, pp. 83168332, 2017.Google Scholar
Björnson, E., Hoydis, J., and Sanguinetti, L., “Massive MIMO has unlimited capacity,” IEEE Trans. Wireless Commun., vol. 17, no. 1, pp. 574590, 2018.Google Scholar
Ashikhmin, A., Li, L., and Marzetta, T. L., “Interference reduction in multi-cell massive MIMO systems with large-scale fading precoding,” IEEE Trans. Inform. Theory, vol. 64, no. 9, pp. 63406361, 2018.Google Scholar
Adhikary, A., Ashikhmin, A., and Marzetta, T. L., “Uplink interference reduction in large-scale antenna systems,” IEEE Trans. Commun., vol. 65, no. 5, pp. 2194– 2206, 2017.Google Scholar
Björnson, E., Hoydis, J., Kountouris, M., and Debbah, M., “Massive MIMO systems with non-ideal hardware: energy efficiency, estimation, and capacity limits,” IEEE Trans. Inform. Theory, vol. 60, no. 11, pp. 71127139, 2014.Google Scholar
Björnson, E., Larsson, E. G., and Marzetta, T. L., “Massive MIMO: ten myths and one critical question,” IEEE Commun. Mag., vol. 54, no. 2, pp. 114123, 2016.Google Scholar
Mollén, C., Choi, J., Larsson, E. G., and Heath, R. W. Jr., “Uplink performance of wideband massive MIMO with one-bit ADCs,” IEEE Trans. Wireless Commun., vol. 16, no. 1, pp. 87100, 2017.Google Scholar
Björnson, E., Matthaiou, M., and Debbah, M., “Massive MIMO with non-ideal arbitrary arrays: hardware scaling laws and circuit-aware design,” IEEE Trans. Wireless Commun., vol. 14, no. 8, pp. 43534368, 2015.Google Scholar
Prabhu, H., Rodrigues, J. N., Liu, L., and Edfors, O., “A 60pJ/b 300Mb/s 1288 massive MIMO precoder-detector in 28nm FD-SOI,” in IEEE Int’l Solid-State Circuits Conf. (ISSCC’17), 2017, pp. 60–61.Google Scholar
Prabhu, H., Rodrigues, J., Edfors, O., and Rusek, F., “Approximative matrix inverse computations for very-large MIMO and applications to linear pre-coding systems,” IEEE Wireless Commun. Netw. Conf. (WCNC’13), pp. 2710–2715, 2013.Google Scholar
Kammoun, A., Müller, A., Björnson, E., and Debbah, M., “Linear precoding based on polynomial expansion: large-scale multi-cell MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 861875, 2014.Google Scholar
Nagy, B., Elsabrouty, M., and Elramly, S., “Fast converging weighted Neumann series precoding for massive MIMO systems,” IEEE Wireless Commun. Letters, vol. 7, no. 2, pp. 154157, 2018.Google Scholar
Qin, X., Yan, Z., and He, G., “A near-optimal detection scheme based on joint steepest descent and Jacobi method for uplink massive MIMO systems,” IEEE Commun. Letters, vol. 20, no. 2, pp. 276279, 2016.Google Scholar
Dai, L., Gao, X., Su, X., Han, S., I, C.-L., and Wang, Z., “Low-complexity soft-output signal detection based on Gauss–Seidel method for uplink multiuser large-scale MIMO systems,” IEEE Trans. Veh. Techn., vol. 64, no. 10, pp. 48394845, 2015.Google Scholar
Boroujerdi, M. N., Haghighatshoar, S., and Caire, G., “Low-complexity statistically robust precoder/detector computation for massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 65166530, 2018.Google Scholar
Björnson, E., Sanguinetti, L., Hoydis, J., and Debbah, M., “Optimal design of energy-efficient multi-user MIMO systems: is massive MIMO the answer?IEEE Trans. Wireless Commun., vol. 14, no. 6, pp. 30593075, 2015.Google Scholar
Molisch, A. F., Ratnam, V. V., Han, S., Li, Z., Nguyen, S. L. H., Li, L., and Haneda, K., “Hybrid beamforming for massive MIMO: a survey,” IEEE Commun. Mag., vol. 55, no. 9, pp. 134141, 2017.Google Scholar
Kudathanthirige, D. and Amarasuriya, G., “Sum rate analysis of massive MIMO downlink with hybrid beamforming,” IEEE Global Commun. Conf. (GLOBECOM’17), 2017.Google Scholar
Kennedy, R. A., Sadeghi, P., Abhayapala, T. D., and Jones, H. M., “Intrinsic limits of dimensionality and richness in random multipath fields,” IEEE Trans. Signal Process., vol. 55, no. 6, pp. 25422556, 2007.Google Scholar
Moustakas, A. L., Baranger, H. U., Balents, L., Sengupta, A. M., and Simon, S. H., “Communication through a diffusive medium: coherence and capacity,” Science, vol. 287, no. 5451, pp. 287290, 2000.Google Scholar
Poon, A. S. Y., Brodersen, R. W., and Tse, D. N. C., “Degrees of freedom in multiple-antenna channels: a signal space approach,” IEEE Trans. Inform. Theory, vol. 51, no. 2, pp. 523536, 2005.Google Scholar
Marzetta, T. L., “Spatially-stationary propagating random field model for massive MIMO small-scale fading,” IEEE Int’l Symp. Inform. Theory (ISIT’18), pp. 391– 395, 2018.Google Scholar
Huang, Y., Li, Y., Ren, H., Lu, J., and Zhang, W., “Multi-panel MIMO in 5G,” IEEE Commun. Mag., vol. 56, no. 3, pp. 5661, 2018.Google Scholar
Hu, S., Rusek, F., and Edfors, O., “Beyond massive MIMO: the potential of data transmission with large intelligent surfaces,” IEEE Trans. Signal Process., vol. 66, no. 10, pp. 27462758, 2018.Google Scholar
Mi, D., Dianati, M., Zhang, L., Muhaidat, S., and Tafazolli, R., “Massive MIMO performance with imperfect channel reciprocity and channel estimation error,” IEEE Trans. Commun., vol. 65, no. 9, pp. 37343749, 2017.Google Scholar
Rogalin, R., Bursalioglu, O. Y., Papadopoulos, H., Caire, G., Molisch, A. F., Michaloliakos, A., Balan, V., and Psounis, K., “Scalable synchronization and reciprocity calibration for distributed multiuser MIMO,” IEEE Trans. Wireless Commun., vol. 13, no. 4, pp. 18151831, 2014.Google Scholar
Wei, H., Wang, D., Zhu, H., Wang, J., Sun, S., and You, X., “Mutual coupling calibration for multiuser massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 15, no. 1, pp. 606619, 2016.Google Scholar
Vieira, J., Rusek, F., Edfors, O., Malkowsky, S., Liu, L., and Tufvesson, F., “Reciprocity calibration for massive MIMO: proposal, modeling, and validation,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 30423056, 2017.Google Scholar
Jiang, X., Decurninge, A., Gopala, K., Kaltenberger, F., Guillaud, M., Slock, D., and Deneire, L., “A framework for over-the-air reciprocity calibration for TDD massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 17, no. 9, pp. 59755990, 2018.Google Scholar
Raeesi, O., Gokceoglu, A., Zou, Y., Björnson, E., and Valkama, M., “Performance analysis of multi-user massive MIMO downlink under channel non-reciprocity and imperfect CSI,” IEEE Trans. Commun., vol. 66, no. 6, pp. 24562471, 2018.Google Scholar
Alexiou, A. et al., “Duplexing, resource allocation and inter-cell coordination: design recommendations for next generation wireless systems,” Wireless Commun. Mob. Comput., vol. 5, no. 1, pp. 7793, 2005.Google Scholar
Mungara, R. K., Thibault, I., and Lozano, A., “Full-duplex MIMO in cellular networks: system-level performance,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 31243137, 2017.Google Scholar
Jiang, Z., Molisch, A. F., Caire, G., and Niu, Z., “Achievable rates of FDD massive MIMO systems with spatial channel correlation,” IEEE Trans. Wireless Commun., vol. 14, no. 5, pp. 28682882, 2015.Google Scholar
Rao, X. and Lau, V. K. N., “Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems,” IEEE Trans. Signal Process., vol. 62, no. 12, pp. 32613271, 2014.Google Scholar
You, L., Gao, X., Swindlehurst, A. L., and Zhong, W., “Channel acquisition for massive MIMO-OFDM with adjustable phase shift pilots,” IEEE Trans. Signal Process., vol. 64, no. 6, pp. 14611476, 2016.Google Scholar
Masood, M., Afify, L. H., and Al-Naffouri, T. Y., “Efficient coordinated recovery of sparse channels in massive MIMO,” IEEE Trans. Signal Process., vol. 63, no. 1, pp. 104118, 2015.Google Scholar
Zhang, X., Zhong, L., and Sabharwal, A., “Directional training for FDD massive MIMO,” IEEE Trans. Wireless Commun., vol. 17, no. 8, pp. 51835197, 2018.Google Scholar
Ding, Y. and Rao, B. D., “Dictionary learning-based sparse channel representation and estimation for FDD massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 17, no. 8, pp. 54375451, 2018.Google Scholar
Lee, B., Choi, J., Seol, J.-Y., Love, D. J., and Shim, B., “Antenna grouping based feedback compression for FDD-based massive MIMO systems,” IEEE Trans. Commun., vol. 63, no. 9, pp. 32613274, 2015.Google Scholar
Adhikary, A., Nam, J., Ahn, J.-Y., and Caire, G., “Joint spatial division and multiplexing—the large-scale array regime,” IEEE Trans. Inform. Theory, vol. 59, no. 10, pp. 64416463, 2013.Google Scholar
Xu, Y., Yue, G., and Mao, S., “User grouping for massive MIMO in FDD systems: new design methods and analysis,” IEEE Access, vol. 2, pp. 947959, 2014.Google Scholar
Ma, J., Zhang, S., Li, H., Zhao, N., and Leung, V. C. M., “Base station selection for massive MIMO networks with two-stage precoding,” IEEE Wireless Commun. Letters, vol. 6, no. 5, pp. 598601, 2017.Google Scholar
Chen, J. and Lau, V. K. N., “Two-tier precoding for FDD multi-cell massive MIMO time-varying interference networks,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 12301238, 2014.Google Scholar
Li, Z., Han, S., Sangodoyin, S., Wang, R., and Molisch, A. F., “Joint optimization of hybrid beamforming for multi-user massive MIMO downlink,” IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 36003614, 2018.Google Scholar
Haghighatshoar, S. and Caire, G., “Massive MIMO channel subspace estimation from low-dimensional projections,” IEEE Trans. Signal Process., vol. 65, no. 2, pp. 303318, 2017.Google Scholar
Ngo, H. Q., Marzetta, T. L., and Larsson, E. G., “Analysis of the pilot contamination effect in very large multicell multiuser MIMO systems for physical channel models,” IEEE Int’l Conf. Acoustics, Speech and Signal Process. (ICASSP’11), pp. 3464–3467, 2011.Google Scholar
Sun, C., Gao, X., Jin, S., Matthaiou, M., Ding, Z., and Xiao, C., “Beam division multiple access transmission for massive MIMO communications,” IEEE Trans. Commun., vol. 63, no. 6, pp. 21702184, 2015.Google Scholar
Yang, H. and Marzetta, T. L., “Massive MIMO with max–min power control in line-of-sight propagation environment,” IEEE Trans. Commun., vol. 65, no. 11, pp. 46854693, 2017.Google Scholar
Masouros, C. and Matthaiou, M., “Space-constrained massive MIMO: hitting the wall of favorable propagation,” IEEE Commun. Letters, vol. 19, no. 5, pp. 771– 774, 2015.Google Scholar
Payami, S. and Tufvesson, F., “Channel measurements and analysis for very large array systems at 2.6 GHz,” Eur. Conf. Antennas and Propagation (EUCAP’12), pp. 433–437, 2012.Google Scholar
Amiri, A., Angjelichinoski, M., de Carvalho, E., and Heath, R. W Jr., “Extremely large aperture massive MIMO: low complexity receiver architectures,” IEEE Global Commun. Conf. Workshop (GLOBECOM Workshop’18), Dec. 2018.Google Scholar
Li, X., Zhou, S., Björnson, E., and Wang, J., “Capacity analysis for spatially non-wide sense stationary uplink massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 14, no. 12, pp. 70447056, 2015.Google Scholar
Sanguinetti, L., Kammoun, A., and Debbah, M., “Asymptotic analysis of multicell massive MIMO over Rician fading channels,” IEEE Int’l Conf. Acoustics, Speech and Signal Process. (ICASSP’17), pp. 3539–3543, 2017.Google Scholar
Gao, X., Edfors, O., Rusek, F., and Tufvesson, F., “Linear pre-coding performance in measured very-large MIMO channels,” IEEE Veh. Techn. Conf. (VTC’11 Fall), pp. 1–5, 2011.Google Scholar
Hoydis, J., Hoek, C., Wild, T., and ten Brink, S., “Channel measurements for large antenna arrays,” Int’l Symp. Wireless Commun. Systems (ISWCS’12), pp. 811–815, 2012.Google Scholar
Gao, X., Edfors, O., Rusek, F., and Tufvesson, F., “Massive MIMO performance evaluation based on measured propagation data,” IEEE Trans. Wireless Commun., vol. 14, no. 7, pp. 38993911, 2015.Google Scholar
Harris, P., Malkowsky, S., Vieira, J., Bengtsson, E., Tufvesson, F., Hasan, W. B., Liu, L., Beach, M., Armour, S., and Edfors, O., “Performance characterization of a real-time massive MIMO system with LOS mobile channels,” IEEE J. Sel. Areas Commun., vol. 35, no. 6, pp. 12441253, 2017.Google Scholar
Zhang, J., Zheng, Z., Zhang, Y., Xi, J., Zhao, X., and Gui, G., “3D MIMO for 5G NR: several observations from 32 to massive 256 antennas based on channel measurement,” IEEE Commun. Mag., vol. 56, no. 3, pp. 6270, 2018.Google Scholar
Bethanabhotla, D., Bursalioglu, O. Y., Papadopoulos, H. C., and Caire, G., “Optimal user-cell association for massive MIMO wireless networks,” IEEE Trans. Wireless Commun., vol. 15, no. 3, pp. 18351850, 2016.Google Scholar
Andrews, J. G., Baccelli, F., and Ganti, R. K., “A tractable approach to coverage and rate in cellular networks,” IEEE Trans. Commun., vol. 59, no. 11, pp. 31223134, 2011.Google Scholar
Shepard, C., Yu, H., Anand, N., Li, E., Marzetta, T., Yang, R., and Zhong, L., “Argos: practical many-antenna base stations,” Int’l Conf. Mobile Computing and Networking, pp. 53–64, 2012.Google Scholar
“Joint massive MIMO test between British Telecom and the University of Bristol,” https://spectrum.ieee.org/tech-talk/telecom/wireless/5g-researchers-achieve-new-spectrum-efficiency-record.Google Scholar
“The MAMMOET european project,” https://mammoet-project.eu/.Google Scholar
Nam, Y.-H., Ng, B. L., Sayana, K., Li, Y., Zhang, J., Kim, Y., and Lee, J., “Full-dimension MIMO (FD-MIMO) for next generation cellular technology,” IEEE Commun. Mag., vol. 51, no. 6, pp. 172179, 2013.Google Scholar
Alnajjar, K. A., Smith, P. J., Whiting, P., and Woodward, G. K., “Size and array shape for massive MIMO,” IEEE Wireless Commun. Letters, vol. 4, no. 6, pp. 653656, 2015.Google Scholar
Ji, H., Kim, Y., Lee, J., Onggosanusi, E., Nam, Y., Zhang, J., Lee, B., and Shim, B., “Overview of full-dimension MIMO in LTE-Advanced Pro,” IEEE Commun. Mag., vol. 55, no. 2, pp. 176184, 2017.Google Scholar
Nadeem, Q. U. A., Kammoun, A., Debbah, M., and Alouini, M. S., “Design of 5G full dimension massive MIMO systems,” IEEE Trans. Commun., vol. 66, no. 2, pp. 726740, 2018.Google Scholar
Lozano, A., Cox, D. C., and Bourk, T. R., “Uplink–downlink imbalance in TDMA personal communication systems,” IEEE Int’l Conf. Universal Personal Commun. (ICUPC’98), vol. 1, pp. 151155, 1998.Google Scholar
Haenggi, M., Stochastic geometry for wireless networks. Cambridge University Press, 2012.Google Scholar
George, G., Lozano, A., and Haenggi, M., “Distribution of the number of users per base station in cellular networks,” IEEE Wireless Commun. Letters, vol. 8, 2019.Google Scholar
Blaszczyszyn, B., Karray, M. K., and Keeler, H. P., “Wireless networks appear Poissonian due to strong shadowing,” IEEE Trans. Wireless Commun., vol. 14, no. 8, pp. 43794390, 2015.Google Scholar
George, G., Lozano, A., and Haenggi, M., “Massive MIMO forward link analysis for cellular networks,” Preprint, 2018.Google Scholar
Saleh, A. A. M., Rustako, A. J., and Roman, R., “Distributed antennas for indoor radio communications,” IEEE Trans. Commun., vol. 35, no. 12, pp. 12451251, 1987.Google Scholar
Heath, R. W. Jr., Wu, T., Kwon, Y. H., and Soong, A. C. K., “Multiuser MIMO in distributed antenna systems with out-of-cell interference,” IEEE Trans. Signal Process., vol. 59, no. 10, pp. 48854899, 2011.Google Scholar
Foschini, G. J., Karakayali, K., and Valenzuela, R. A., “Coordinating multiple antenna cellular networks to achieve enormous spectral efficiency,” IEE Proc., vol. 153, no. 4, pp. 548555, 2006.Google Scholar
Venkatesan, S., Lozano, A., and Valenzuela, R., “Network MIMO: overcoming intercell interference in indoor wireless systems,” Asilomar Conf. Signals, Systems and Computers, pp. 83–87, 2007.Google Scholar
Venkatesan, S., Huang, H., Lozano, A., and Valenzuela, R., “A WiMAX-based implementation of network MIMO for indoor wireless systems,” EURASIP J. Adv. Signal Process., vol. 2009, p. 9, Oct. 2009.Google Scholar
Huang, H., Trivellato, M., Hottinen, A., Shafi, M., Smith, P., and Valenzuela, R., “Increasing downlink cellular throughput with limited network MIMO coordination,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 29832989, 2009.Google Scholar
Gesbert, D., Hanly, S., Huang, H., Shamai, S., Simeone, O., and Yu, W., “Multi-cell MIMO cooperative networks: a new look at interference,” IEEE J. Sel. Areas Commun., vol. 28, no. 9, pp. 13801408, 2010.Google Scholar
Wang, P., Wang, H., Ping, L., and Lin, X., “On the capacity of MIMO cellular systems with base station cooperation,” IEEE Trans. Wireless Commun., vol. 10, no. 11, pp. 37203731, 2011.Google Scholar
Simeone, O., Levy, N., Sanderovich, A, O. Somekh, B. M. Zaidel, H. V. Poor, , and Shamai, S., “Information theoretic considerations for wireless cellular systems: the impact of cooperation,” Found. Trends Commun. Inform. Theory, vol. 7, 2012.Google Scholar
Huh, H., Tulino, A. M., and Caire, G., “Network MIMO with linear zero-forcing beamforming: large system analysis, impact of channel estimation, and reduced-complexity scheduling,” IEEE Trans. Inform. Theory, vol. 58, no. 5, pp. 2911– 2934, 2012.Google Scholar
Huh, H., Caire, G., Papadopoulos, H. C., and Ramprashad, S. A., “Achieving ‘massive MIMO’ spectral efficiency with a not-so-large number of antennas,” IEEE Trans. Wireless Commun., vol. 11, no. 9, pp. 32263239, 2012.Google Scholar
Lee, N., Heath, R. W. Jr., Morales-Jimenez, D., and Lozano, A., “Base station cooperation with dynamic clustering in super-dense cloud-RAN,” IEEE Global Commun. Conf. Workshops (GLOBECOM’13), pp. 784–788, Dec. 2013.Google Scholar
Lee, N., Morales-Jimenez, D., Lozano, A., and Heath, R. W. Jr., “Spectral efficiency of dynamic coordinated beamforming: a stochastic geometry approach,” IEEE Trans. Wireless Commun., vol. 14, no. 1, pp. 230241, 2015.Google Scholar
Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., and Marzetta, T. L., “Cell-free massive MIMO versus small cells,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 18341850, 2017.Google Scholar
Nguyen, L. D., Duong, T. Q., Ngo, H. Q., and Tourki, K., “Energy efficiency in cell-free massive MIMO with zero-forcing precoding design,” IEEE Commun. Letters, vol. 21, no. 8, pp. 18711874, 2017.Google Scholar
Nayebi, E., Ashikhmin, A., Marzetta, T. L., Yang, H., and Rao, B. D., “Precoding and power optimization in cell-free massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 44454459, 2017.Google Scholar
Ngo, H. Q., Tran, L. N., Duong, T. Q., Matthaiou, M., and Larsson, E. G., “On the total energy efficiency of cell-free massive MIMO,” IEEE Trans. Green Commun. Netw., 2017.Google Scholar
Attarifar, M., Abbasfar, A., and Lozano, A., “Random vs structured pilot assignment in cell-free massive MIMO wireless networks,” IEEE Int’l Conf. Commun. Workshops (ICCW’18), Jun. 2018.Google Scholar
“C-RAN the road towards green RAN,” China Mobile, Tech. Rep., Oct. 2011.Google Scholar
Checko, A., Christiansen, H. L., Yan, Y., Scolari, L., Kardaras, G., Berger, M. S., and Dittmann, L., “Cloud RAN for mobile networks—a technology overview,” IEEE Commun. Surv. Tutor., vol. 17, no. 1, pp. 405426, 2015.Google Scholar
Akyildiz, I. F., Jornet, J. M., and Han, C., “Terahertz band: next frontier for wireless communications,” Physical Commun., vol. 12, pp. 1632, 2014.Google Scholar
Cadambe, V. and Jafar, S. A., “Interference alignment and the degrees of freedom of the K-user interference channel,” IEEE Trans. Inform. Theory, vol. 54, no. 8, pp. 34253441, 2008.Google Scholar
Maddah-Ali, M., Motahari, A., and Khandani, A., “Communication over MIMO X channels: interference alignment, decomposition, and performance analysis,” IEEE Trans. Inform. Theory, vol. 54, no. 8, pp. 34573470, 2008.Google Scholar
Gomadam, K., Cadambe, V., and Jafar, S., “A distributed numerical approach to interference alignment and applications to wireless interference networks,” IEEE Trans. Inform. Theory, vol. 57, no. 6, pp. 33093322, 2011.Google Scholar
Peters, S. W. and Heath, R. W. Jr., “Interference alignment via alternating minimization,” IEEE Int’l Conf. Acoustics, Speech, and Signal Process. (ICASSP’09), pp. 2445–2448, Apr. 2009.Google Scholar
Mungara, R. K., Morales-Jimenez, D., and Lozano, A., “System-level performance of interference alignment,” IEEE Trans. Wireless Commun., vol. 14, no. 2, pp. 10601070, 2015.Google Scholar
Stuart, H. R., “Dispersive multiplexing in multimode optical fiber,” Science, vol. 289, no. 5477, pp. 281283, 2000.Google Scholar
Appaiah, K., Vishwanath, S., and Bank, S. R., “Advanced modulation and multiple-input multiple-output for multimode fiber links,” IEEE Photonics Techn. Letters, vol. 23, no. 20, pp. 14241426, 2011.Google Scholar
Appaiah, K., Vishwanath, S., and Bank, S. R., “Vector intensity-modulation and channel state feedback for multimode fiber optic links,” IEEE Trans. Commun., vol. 61, no. 7, pp. 29582969, 2013.Google Scholar
Timmers, M., Guenach, M., Nuzman, C., and Maes, J., “G.fast: evolving the copper access network,” IEEE Commun. Mag., vol. 51, no. 8, pp. 7479, 2013.Google Scholar
Elgala, H., Mesleh, R., and Haas, H., “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag., vol. 49, no. 9, pp. 5662, 2011.Google Scholar
Zeng, L., O’Brien, D. C., Minh, H. L., Faulkner, G. E., Lee, K., Jung, D., Oh, Y., and Won, E. T., “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Commun., vol. 27, no. 9, pp. 16541662, 2009.Google Scholar
Azhar, A. H., Tran, T., and O’Brien, D., “A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photonics Techn. Letters, vol. 25, no. 2, pp. 171174, 2013.Google Scholar
Stojanovic, M. and Preisig, J., “Underwater acoustic communication channels: propagation models and statistical characterization,” IEEE Commun. Mag., vol. 47, no. 1, pp. 8489, 2009.Google Scholar
Roy, S., Duman, T. M., McDonald, V., and Proakis, J. G., “High-rate communication for underwater acoustic channels using multiple transmitters and space–time coding: receiver structures and experimental results,” IEEE J. Ocean. Eng., vol. 32, no. 3, pp. 663688, 2007.Google Scholar
Bracewell, R. N., The Fourier transform and its applications. McGraw Hill, 1978.Google Scholar
Jaynes, E. T., Probability theory. Cambridge University Press, 2003.Google Scholar
Neeser, F. and Massey, J. L., “Proper complex random processes with applications to information theory,” IEEE Trans. Inform. Theory, vol. 39, no. 4, pp. 12931302, 1993.Google Scholar
Shalvi, O. and Weinstein, E., “New criteria for blind deconvolution of nonminimum phase systems (channels),” IEEE Trans. Inform. Theory, vol. 36, pp. 312– 321, 1990.Google Scholar
Wishart, J., “The generalised product moment distribution in samples from a normal multivariate population,” Biometrika, vol. 20A, no. 1–2, pp. 3252, 1928.Google Scholar
Muirhead, R. J., Aspects of multivariate statistical theory. Wiley, 1982.Google Scholar
Bronk, B. V., “Exponential ensemble for random matrices,” J. Math. Phys., vol. 6, p. 228, 1965.Google Scholar
Kang, M. and Alouini, M. S., “Water-filling capacity and beamforming performance of MIMO systems with covariance feedback,” IEEE Workshop Signal Process. Adv. in Wireless Commun. (SPAWC’03), pp. 556–560, 2003.Google Scholar
Park, M., Chae, C. B., and Heath, R. W. Jr., “Ergodic capacity of spatial multiplexing MIMO systems with ZF receivers for log-normal shadowing and Rayleigh fading channels,” IEEE Int’l Symp. Personal, Indoor and Mobile Radio Commun. (PIMRC’07), pp. 1–5, 2007.Google Scholar
Wigner, E., “Characteristic vectors of bordered matrices with infinite dimensions,” Ann. Math., vol. 62, pp. 546564, 1955.Google Scholar
Wigner, E., “Statistical properties of real symmetric matrices with many dimensions,” 4th Canadian Math. Congress, pp. 174–176, 1959.Google Scholar
Girko, V. L., “Circular law,” Theory Prob. Appl., vol. 29, pp. 694706, 1984.Google Scholar
Marčenko, V. A. and Pastur, L. A., “Distribution of eigenvalues for some sets of random matrices,” Math. USSR-Sbornik, vol. 1, p. 457, 1967.Google Scholar
Silverstein, J. W., “Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices,” J. Multivar. Anal., vol. 55, pp. 331339, 1995.Google Scholar
Voiculescu, D., “Asymptotically commuting finite rank unitary operators without commuting approximants,” Acta Sci. Math., vol. 45, pp. 429431, 1983.Google Scholar
Voiculescu, D., “Addition of certain non-commuting random variables,” Funct. Anal., vol. 66, pp. 323346, 1986.Google Scholar
Voiculescu, D., “Limit laws for random matrices and free products,” Inventiones Mathematicae, vol. 104, no. 1, pp. 201220, 1991.Google Scholar
Wigner, E. P., “The unreasonable effectiveness of mathematics in the natural sciences. Richard Courant lecture in mathematical sciences delivered at New York University, May 11, 1959,” Comm. Pure Appl. Math., vol. 13, no. 1, pp. 114, 1960.Google Scholar
Livio, M., Is God a mathematician? Simon and Schuster, 2009.Google Scholar
Schey, H. M., Div, grad, curl, and all that: an informal text on vector calculus. W. W. Norton and Company, 2005.Google Scholar
Abramowitz, M. and Stegun, I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, 1972.Google Scholar
Abreu, G., “Very simple tight bounds on the Q-function,” IEEE Trans. Commun., vol. 60, no. 9, pp. 24152420, 2012.Google Scholar
Hardy, G. H. and Wright, E. M., An introduction to the theory of numbers. Oxford University Press, 1979.Google Scholar
Boyd, S. and Vandenberghe, L., Convex optimization. Cambridge University Press, 2004.Google Scholar
Jensen, J. L. W. V., “Sur les fonctions convexes et les inégalités entre les valeurs moyennes,” Acta Mathematica, vol. 30, no. 1, pp. 175193, 1906.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×