Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T18:33:12.666Z Has data issue: false hasContentIssue false

10 - Ontogenetic and phylogenetic diversification in Marantaceae

Published online by Cambridge University Press:  07 October 2011

Livia Wanntorp
Affiliation:
Swedish Museum of Natural History
Louis P. Ronse De Craene
Affiliation:
Royal Botanic Garden Edinburgh
Get access

Summary

Introduction

The Marantaceae Petersen (31 genera; ~530 ssp.: Andersson, 1998) are a pantropically (80% America; 11% Asia; 9% Africa: Kennedy, 2000) distributed family of perennial herbs and lianas found in the understory of tropical lowland rainforests. They are characterized by a unique pollination mechanism combining secondary pollen presentation with an explosive style movement (Kunze, 1984; Claßen-Bockhoff, 1991; Claßen-Bockhoff and Heller, 2008a). The specific pollen transfer mechanism is found in conjunction with a high synorganization of morphologically modified floral elements and has been postulated to be a key innovation responsible for the radiation of the Marantaceae (Kennedy, 2000).

Flowers in Marantaceae are trimerous, with inconspicuous sepals and petals and extremely modified elements in the two androeceal whorls (Fig 10.1). In the outer whorl one or two petaloid ‘outer staminodes’ act as the showy organs of the flowers. The three elements of the inner whorl are functionally differentiated into: (1) a single (monothecate) anther, (2) a ‘fleshy (callose) staminode’ and (3) a ‘hooded (cucullate) staminode’ (Kunze, 1984; Claßen-Bockhoff, 1991). These organs closely interact with the style resulting in secondary pollen presentation, set-up of tension and finally the explosive pollination mechanism (e.g. Gris, 1859; Delpino, 1869; Schumann, 1902; Yeo, 1993; Claßen-Bockhoff and Heller, 2008a, b; Ley, 2008; Pischtschan and Claßen-Bockhoff, 2008; Fig 10.2). As the style movement demands a high degree of synorganization of floral parts and synchronization with the pollinator and as the movement is irreversible, providing the flowers with a single opportunity for pollination, one should expect rather uniform structures across the whole family, as slight morphological deviations might result in a loss of operability. However, the high degree of floral diversity in the Marantaceae contradicts this expectation (Kunze, 1984; Kennedy, 2000; Claßen-Bockhoff and Heller, 2008a; Ley, 2008). It instead raises the questions: how far are elements of a functional unit allowed to vary without jeopardizing the reproductive success, and has the variation of the flowers influenced speciation in the family?

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×