Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T11:10:01.107Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2014

Grigory Isaakovich Barenblatt
Affiliation:
University of California, Berkeley
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Flow, Deformation and Fracture
Lectures on Fluid Mechanics and the Mechanics of Deformable Solids for Mathematicians and Physicists
, pp. 243 - 252
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, V. I. (1978). Mathematical Methods of Classical Mechanics. Springer-Verlag.CrossRefGoogle Scholar
Batchelor, G. K. (2002). An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Bažant, Z. P. (2002). Scaling of Structural Strength. Hermes-Penton Science.Google Scholar
Bridgman, P. W. (1931). Dimensional Analysis. Yale University Press.Google Scholar
Broberg, K. B. (1999). Cracks and Fracture. Academic Press.Google Scholar
Carpinteri, A. (ed.) (1996). Size-Scale Effects in the Failure Mechanisms of Materials and Structures. E. & F. N. Spon.
Chernyi, G. G. (1961). Introduction to Hypersonic Flows. Academic Press.Google Scholar
Chorin, A. J. (1994). Vorticity and Turbulence. Springer-Verlag.CrossRefGoogle Scholar
Chorin, A. J., and Marsden, J. E. (1992). A Mathematical Introduction to Fluid Mechanics, 3rd edn. Springer-Verlag.Google Scholar
Feynman, R. (2006). The Feynman Lectures on Physics, definitive edn. Addison-Wesley.Google Scholar
Friedrichs, K. O. (1966). Special Topics in Fluid Dynamics. Gordon and Breach.Google Scholar
Frisch, U. (1996). Turbulence. The Legacy of A. N. Kolmogorov. Cambridge University Press.Google Scholar
Galilei, Galileo (1638). Discorsi e Dimonstrazioni Matematiche Intorno a Duo Nuove Scienze. Elsevier, Leida. Also: Dialogues Concerning Two New Sciences. Easton Press (1999).Google Scholar
Germain, P. (1986). Mécanique. École Polytechnique. Ellipses.Google Scholar
Goldenfeld, N. D. (1992). Lectures on Phase Transitions and the Renormalization Group. Perseus Publishing.Google Scholar
Hayes, W. D., and Probstein, R. F. (2004). Hypersonic Inviscid Flow. Dover Publications.Google Scholar
Lamb, H. (1932). Hydrodynamics, 6th edn. Cambridge University Press.Google Scholar
Landau, L. D., and Lifshitz, E. M. (1986). Theory of Elasticity, 3rd edn. Elsevier.Google Scholar
Landau, L. D., and Lifshitz, E. M. (1987). Fluid Mechanics, 2nd edn. Elsevier.Google Scholar
Lighthill, M. J. (1986). An Informal Introduction to Theoretical Fluid Mechanics. Oxford University Press.Google Scholar
Love, A. E. H. (1944). A Treatise on the Mathematical Theory of Elasticity, 4th edn. MacMillan.Google Scholar
Mandelbrot, B. (1975). Les Objets Fractals: Forme, Hasard et Dimension. Flammarion, Paris.Google Scholar
Mandelbrot, B. (1977). Fractals, Form, Chance and Dimension. W. H. Freeman & Co.Google Scholar
Marsden, J. E., and Hughes, T. J. R. (1983). The Mathematical Foundations of Elasticity. Prentice Hall.Google Scholar
Monin, A. S., and Yaglom, A. M. (1975). Statistical Fluid Mechanics, Mechanics of Turbulence, Vol. II. MIT Press.Google Scholar
Monin, A. S., and Yaglom, A. M. (1971). Statistical Fluid Mechanics, Mechanics of Turbulence, Vol. I. MIT Press.Google Scholar
Muskhelishvili, N. I. (1963). Some Basic Problems of Mathematical Theory of Elasticity, 2nd English edn. P. Nordhoft.Google Scholar
Oswatisch, K. (1956). Gas Dynamics. Academic Press.Google Scholar
Prandtl, L., and Tietjens, O. (1931). Hydro und Aeromechanik, Vol. 2. Springer-Verlag.Google Scholar
Schlichting, H. (1968). Boundary Layer Theory, 6th edn. McGraw-Hill.Google Scholar
Suresh, S. (1998). Fatigue ofMaterials. Cambridge University Press.CrossRefGoogle Scholar
Timoshenko, S. P. (1953). History of Strength of Materials. McGraw-Hill.Google Scholar
Timoshenko, S. P., and Goodier, J. N. (1970). Theory of Elasticity. McGraw-Hill.Google Scholar
Todhunter, I., and Pearson, K. (1886). A History of the Theory of Elasticity and of the Strength of Materials, Vol. I. Cambridge University Press.Google Scholar
Van Dyke, M. (1982). An Album of Fluid Motion, 10th edn. Parabolic Press.Google Scholar
Von Kármán, Th. (1957). Aerodynamics. Cornell University Press.Google Scholar
Whitham, G. B. (1974). Linear and Non-linear Waves. J. Wiley & Sons.Google Scholar
Zeldovich, Ya. B., and Raizer, Yu. P. (2002). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. Dover Publications.Google Scholar
Adamsky, V. B. (1956). Integration of the system of self-similar equations in the problem of an impulsive load on a cold gas. Akust. Zh. 2, 3–9.Google Scholar
Atiyah, M. F., Bott, R., and Gårding, L. (1970). Lacunae for hyperbolic differential operators with constant co-efficients. Acta Math. 124, 109–189.CrossRefGoogle Scholar
Barenblatt, G. I. (1956). On certain problems of the theory of elasticity arising in the study of the mechanism of the hydraulic fracture of oil-bearing strata. J. Appl. Math. Mech. (PMM) 20 (4), 475–486.Google Scholar
Barenblatt, G. I. (1959). On the equilibrium cracks formed in brittle fracture. J. Appl. Math. Mech. (PMM) 23 (3), 434–444; (4) 706-721; (5) 893-900.CrossRefGoogle Scholar
Barenblatt, G. I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. In Advances in Applied Mechanics, H. L., Dryden and Th.von, Kármán (eds.), Vol. VII, pp. 55–129.Google Scholar
Barenblatt, G. I. (1964). On some general concepts of the mathematical theory of brittle fracture. J. Appl. Math. Mech. (PMM) 28 (4), 778–792.CrossRefGoogle Scholar
Barenblatt, G. I. (1996). Scaling, Self-Similarity and Intermediate Asymptotics. Cambridge University Press.CrossRefGoogle Scholar
Barenblatt, G. I. (2003). Scaling. Cambridge University Press.CrossRefGoogle Scholar
Barenblatt, G. I. (2008). A mathematical model of turbulent drag reduction by high-molecular-weight polymeric additions in a shear flow. Phys. Fluids 20, 091 702.CrossRefGoogle Scholar
Barenblatt, G. I., and Botvina, L. R. (1981). Incomplete similarity of fatigue in a linear range of crack growth. Fatigue Eng. Mater. Struct. 3, 193–212.Google Scholar
Barenblatt, G. I., and Chernyi, G. G. (1963). On the moment relations on the discontinuity surfaces in dissipative media. J. Appl. Math. Mech. (PMM) 27 (5), 1205–1218.CrossRefGoogle Scholar
Barenblatt, G. I., Chorin, A. J., and Prostokishin, V. M. (1997). Scaling laws in fully developed turbulent pipe flow. Appl. Mech. Rev. 50, 413–429.CrossRefGoogle Scholar
Barenblatt, G. I., Chorin, A. J., and Prostokishin, V. M. (2000). Self-similar intermediate structures in turbulent boundary layers at large Reynolds numbers. J. Fluid Mech. 410, 263–283.CrossRefGoogle Scholar
Barenblatt, G. I., Chorin, A. J., and Prostokishin, V. M. (2002). A model of turbulent boundary layer with non-zero pressure gradient. Proc. US Nat. Acad. Sci. 99, 5572–5576.CrossRefGoogle Scholar
Barenblatt, G. I., Entov, V. M., and Salganik, R. L. (1966). Kinetics of crack extension. Eng. J. Mech. Solids 1 (5), 53-69; 1 (6), 49–51.Google Scholar
Barenblatt, G. I., and Goldenfeld, N. D. (1995). Does fully developed turbulence exist? Reynolds number independence versus asymptotic covariance. Phys. Fluids 7 (12), 3078–3082.CrossRefGoogle Scholar
Barenblatt, G. I., and Monteiro, P. J. M. (2010). Scaling laws in nanomechanics. Physical Mesomech. 13 (5-6), 245–248.CrossRefGoogle Scholar
Batchelor, G. K. (1947). Kolmogoroff's theory of locally isotropic turbulence. Proc. Camb. Phil. Soc. 43 (4), 533–559.CrossRefGoogle Scholar
Batchelor, G. K. (1996). The Life and Legacy of G. I. Taylor. Cambridge University Press.Google Scholar
Bažant, Z. P. (2002). Scaling of Structural Strength. Hermes-Penton Science.Google Scholar
Benbow, J. J. (1960). Cone cracks in fused silica. Proc. Phys. Soc. B75, 697–699.Google Scholar
Blasius, H. (1908). Grenzschichten in Flüssigkeit mit kleiner Reibung. Z. Math. Phys. 56, 1–37.Google Scholar
Bok, B. J. (1972). The birth of stars. Scientific American 227 (2), 48–65.CrossRefGoogle Scholar
Botvina, L. R. (1989). The Kinetics of Fracture of Structural Materials, Nauka.Google Scholar
Boussinesq, J. (1877). Essai sur la théorie des eaux courants. Mémoirs Présentés par Divers Savants a l'Académie des Sciences, Paris 23 (1), 1–680.Google Scholar
Carpinteri, A. E. (1996). Strength and toughness in disordered materials: complete and incomplete similarity. In Size Scale Effects in the Failure Mechanisms of Materials and Structures, A. E., Carpinteri (ed.), pp. 3–26. E. & F. N. Spon.Google Scholar
Castaing, B., Gagne, Y., and Hopfinger, E. (1990). Velocity probability dencity functions of high Reynolds number turbulence. Physica D 46, 177–220.CrossRefGoogle Scholar
Cauchy, A. L. (1828). Sur les equations qui experiment les conditions d'equilibre ou les lois du movement des fluides. In Exercises de Mathématiques, Bure, Paris. Also in Oevres Complètes d'Augustin Cauchy, II Serie, Tom VIII, pp. 158–179. Gauthier-Villars (1890).Google Scholar
Chaplyguine, S. A. (1910). On the pressure of the plane-parallel flow on the blocking bodies (on the theory of aeroplanes). Mat. Sbornik 28, Moscow.Google Scholar
Chernyi, G. G. (1961). Introduction to Hypersonic Flows. Academic Press.Google Scholar
Chorin, A. J. (1977). Theories of turbulence. In Lecture Notes in Mathematics, Vol. 615, pp. 36–47. Springer-Verlag.Google Scholar
Chorin, A. J. (1994). Vorticity and Turbulence. Springer-Verlag.CrossRefGoogle Scholar
Chorin, A. J. (1998). New perspectives in turbulence. Quart. J. Appl. Math. XIV(4), 767–785.Google Scholar
Cottrell, A. H. (1967). The nature of metals. Scientific American 217 (3), 90–100.CrossRefGoogle Scholar
Dugdale, D. S. (1960). Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104.CrossRefGoogle Scholar
Ekman, V. W. (1910). On the change from steady to turbulent motion of liquids. Ark. Mat. Astronom. Fys. 6 (12).Google Scholar
Erm, L. P., and Joubert, P. N. (1991). Low Reynolds-number turbulent boundary layers. J. Fluid Mech. 230, 1–44.CrossRefGoogle Scholar
Fernholz, H. H., and Finley, P. J. (1996). The incompressible zero-pressure gradient turbulent boundary layer: an assessment of the data. Progr. Aero. Sci. 32, 245–311.CrossRefGoogle Scholar
Gilman, J. J. (1967). The nature of ceramics. Scientific American 217 (3), 113–124.CrossRefGoogle Scholar
Goldenfeld, N. D. (1992). Lectures on Phase Transitions and the Renormalization Group. Perseus Publishing.Google Scholar
Goodier, J. N. (1968). Mathematical theory of equilibrium cracks. In Fracture. An Advanced Treatise, Vol. II, H., Liebowitz (ed.), pp. 1–66.Google Scholar
Griffith, A. A. (1920). The phenomenon of rupture and flow in solids. Phil. Trans. Roy. Soc. London A221, 163–198.Google Scholar
Griffith, A. A. (1924). The theory of rupture. In Proc. 1st Int. Congress on Applied Mathematics, Delft, pp. 55–63.Google Scholar
Harmon, L. D. (1973). Recognition of faces. Scientific American 229 (5), 70–82.CrossRefGoogle ScholarPubMed
Hayden, H. W., Gibson, R. C., and Brophy, J. H. (1969). Superplastic steels. Scientific American 220 (3), 28–35.CrossRefGoogle Scholar
Heisenberg, W. (1948). On the theory of statistical and isotropic turbulence. Proc. Roy. Soc. London A195, 402–406.Google Scholar
Hooke, R. (1678). De Potentia Restitutiva. London.Google Scholar
Hunt, J. C. R., Phillips, O. M., and Williams, D. (eds.) (1991). Turbulence and stochastic processes: Kolmogorov's ideas 50 years on. Proc. Roy. Soc. London434.
Irwin, G. R. (1948). Fracture dynamics. In Fracturing of Metals, pp. 147–166. ASM, Cleveland, Ohio.Google Scholar
Irwin, G. R. (1957). Analysis of stresses and strains near the end of a crack traversing aplate. J. Appl. Mech. 24, 361–364.Google Scholar
Irwin, G. R. (1960). Plastic zone near a crack and fracture toughness. In Mechanical and Metallurgical Behaviour of Sheet Materials, Proc. Seventh Sagamore Conf.Google Scholar
Izakson, A. (1937). Formula for the velocity distribution near a wall. Zh. Exper. Teor. Fiz. 7 (7), 919–924.Google Scholar
Joseph, D., Funada, T., and Wang, J. (2008). Potential Flows of Viscous and Viscoelastic Fluids. Cambridge University Press.Google Scholar
Joukovsky, N. E. (1906). On attached vortices. Proc. Section of the Physical Sciences XIII, no. 2. Typography of Moscow University.Google Scholar
Joukovsky, N. E. (1910). Ueber die Konturen der Tragflächen der Drachenfliege. Z. für Flugtechnik and Motorluftschiffahrt I (22), 281–284.Google Scholar
Kelly, A. (1967). The nature of composite materials. Scientific American 217 (3), 160–179.CrossRefGoogle Scholar
Kline, S. J., Reynolds, W. C., Schraub, W. A., and Rundstadler, P. W. (1967). The structure of turbulent boundary layers. J. Fluid Mech. 30 (1), 741–773.CrossRefGoogle Scholar
Kolmogorov, A. N. (1941a). Local structure of turbulence in an incompressible fluid at very high Reynolds numbers. Dokl. Akad. Nauk SSSR 30 (4), 299–303. Also in Selected Works of A. N. Kolmogorov, Vol. I, pp. 312-318. Kluwer (1991).Google Scholar
Kolmogorov, A. N. (1941b). Energy dissipation in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 31 (1), 19–21. Also in Selected Works of A.N.Kolmogorov, Vol. I, pp. 324-327. Kluwer(1991).Google Scholar
Kolmogorov, A. M. (1942). The equations of turbulent motion of incompressible fluids. Izvestiya, Akad. Nauk SSSR, Ser. Fiz. 6 (1-2), 56–58. Also in Selected Works of A. N. Kolmogorov, Vol. I, pp. 328-330. Kluwer (1991).Google Scholar
Kolosov, G. V. (1909). On the application of complex functions theory to a plane problem of the mathematical theory of elasticity. Thesis, Yuriev (Dorpat) University.Google Scholar
Krogstad, P. A., and Antonia, P. A. (1999). Surface roughness effects in turbulent boundary layers. Exp. Fluids 27, 450–460.Google Scholar
Kudin, A. M., Barenblatt, G. I., Kalashnikov, V. N., Vlasov, S. A., and Belokon', V. S. (1973). Destruction of metallic obstacles by a jet of dilute polymer solution. Nature (London), Phys. Sci. 245, 95.CrossRefGoogle Scholar
Kutta, W. M. (1902). Auftriebskrafte in strömenden Flüssigkeiten. In Illustrierte Aeronautische Mitteilungen, München, p. 133.Google Scholar
Kutta, W. M. (1910). Uber eine mit den Grundlagen des Flugproblems in Bezielung stellende zweidimensionale Strömung. Sitzungberichte der Königlich Bayerischen Akademie der Wissenschaften. Mathematisch-Physikalische Klasse 2, 1–58.Google Scholar
Lax, P. (1968). Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 21, 467–490.CrossRefGoogle Scholar
Leonov, M. Ya., and Panasyuk, V. V. (1959). Development of the finest cracks in a solid. Prikladna Mech. 5, 391–401.Google Scholar
Lighthill, M. J. (1970). Turbulence. In Osborne Reynolds and Engineering Science Today, D. M., McDowell and J. D., Jackson (eds.), Manchester University Press. Also in Collected Papers of Sir James Lighthill, Vol. II, pp. 83-146. Oxford University Press (1997).Google Scholar
Mark, H. F. (1967). The nature of the polymeric materials. Scientific American, 217 (3), 149–156.CrossRefGoogle Scholar
Maružić, I., and Perry, A. E. (1995). A wall-wake model for the turbulence structure of boundary layers. Part 2. Further experimental support. J. Fluid. Mech. 298, 389–407.Google Scholar
Millikan, C. B. (1939). A critical discussion of turbulence in channels and circular pipes. In Proc. 5th Int. Congress in Applied Mechanics, Cambridge, MA, pp. 386–392.Google Scholar
Monin, A. S., and Yaglom, A. M. (1971). Statistical Fluid Mechanics, Mechanics of Turbulence, Vol. I. MIT Press.Google Scholar
Mott, Sir Nevill (1967). The solid state. Scientific American 217 (3), 80–89.CrossRefGoogle Scholar
Navier, C. L. M. H. (1822). Mémoire sur les lois du mouvement des fluides. Meémoires de l'Acadeémie Royale des Sciences de l'Institut de France 6, 389–449.Google Scholar
Navier, C. L. M. H. (1827). Meéoire sur les lois de l'equilibre et du mouvement des corps solides élastiques. Mémoires de l'Académie Royale des Sciences de l'Institut de France 7, 375–393.Google Scholar
Nigmatulin, R. I. (1965). A plane strong explosion on a boundary of two ideal, calorically perfect gases. Bulletin MGU, Ser. Matem. Mech. 1, 83–87.Google Scholar
Nikuradze, J. (1932). Gesetzmässigkeiten der turbulenten Strömung in glatten Röhren. VDI Forschungsheft, no. 356.Google Scholar
Obukhov, A. M. (1941a). Spectral energy distribution in a turbulent flow. Dokl. Akad. Nauk SSSR 32 (1), 22–24.Google Scholar
Obukhov, A. M. (1941b). Spectral energy distribution in a turbulent flow. Izvestiya Akad. Nauk SSSR, Ser. Geogr. Geofiz. 5 (4-5), 453–466.Google Scholar
Onsager, L. (1945). The distribution of energy in turbulence. Phys. Rev. 68 (11-12), 286.Google Scholar
Orowan, E. O. (1950). Fundamentals of brittle behavior of metals. In Fatigue and Fracture of Metals, W. M., Murray (ed.), pp. 139–167. Wiley.Google Scholar
Oswatisch, K. (1956). Gas Dynamics. Academic Press.Google Scholar
Panasyuk, V. V. (1968). Limiting Equilibrium of Brittle Bodies with Cracks. Naukova Dumka, Kiev.Google Scholar
Panton, R. I. (2002). Evaluation of the Barenblatt–Chorin–Prostokishin power law for boundary layers. Phys. Fluids 14 (5), 1806–1808.CrossRefGoogle Scholar
Paris, P. C., and Erdogan, F. (1963). A critical analysis of crack propagation laws. J. Basic Eng. Trans. ASME, Ser. D 85, 528–534.CrossRefGoogle Scholar
Perry, A. E., Hafer, S., and Chong, M. S. (2001). A possible reinterpretation of the Princeton superpipe data. J. Fluid Mech. 439, 395–401.CrossRefGoogle Scholar
Petrovsky, I. G. (1966). Ordinary Differential Equations. Prentice Hall.Google Scholar
Petrovsky, I. G. (1967). Partial Differential Equations. W. G. Saunders.Google Scholar
Petrovsky, I. G. (1971). Lectures on the Theory of Integral Equations. Mir Publishers.Google Scholar
Poisson, S. D. (1829). Sur les équations général de l'equilibre et du mouvement des corps solides élastiques et des fluides. J. de l'École Royale Polytechnique 13, 1–174.Google Scholar
Prandtl, L. (1905). Uber Flüssigkeits Bewegung bei sehr kleiner Reibung. In Verhandlungen des III Int. Math. Kongress (Heidelberg, 1904), pp. 484–491. Teubner, Leipzig. Also in Ludwig Prandtl: Gesammelte Abhandlungen, W. Tollmien, H. Schlichting, and H. Görtler (eds.), pp. 575-584. Springer-Verlag.Google Scholar
Prandtl, L. (1932). Zur turbulenten Strömung in Röhren and längs Platten. Ergebn. Aerodyn. Versuchsanstalt, Göttingen B4, 18–29.Google Scholar
Prandtl, L. (1945). Uber ein neues Formalsystem für die ausgebildete Turbulenz. Nacht. Akad. Wiss. Göttingen, Math.-Phys. Klasse, 6–18.Google Scholar
Prandtl, L., and Tietjens, O. (1931). Hydro und Aeromechanik, Vol. 2. Springer-Verlag.Google Scholar
Praskovsky, A. S., and Oncley, S. (1994). Measurement of Kolmogorov constant and intermittency exponent at very high Reynolds numbers. Phys. Fluids 6 (9), 2886–2889.CrossRefGoogle Scholar
Rayleigh, Lord J. W. (1877). On the irregular flight of a tennis ball. Messenger of Mathematics VII, 14–16. Also in Scientific Papers, Vol. 1, pp. 344-346. Cambridge University Press (1899).Google Scholar
Reynolds, O. (1883). An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and the law of resistance in a parallel channel. Phil. Trans. Roy. Soc. London 174, 935–982.CrossRefGoogle Scholar
Reynolds, O. (1894). On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. Roy. Soc. London 186, 123–161.Google Scholar
Richardson, L. F. (1922). Weather Prediction by Numerical Process. Cambridge University Press.Google Scholar
Ritchie, R. O. (2005). Incomplete self-similarity and fatigue crack growth. Int. J. Fracture 132, 97–203.CrossRefGoogle Scholar
Ritchie, R. O., and Knott, J. F. (1974). Micro cleavage cracking during fatigue crack propagation in low strength steel. Mat. Sci. Engng. 14, 7–14.CrossRefGoogle Scholar
Roesler, F. (1956). Brittle fracture near equilibrium. Proc. Phys. Soc. B69, 981–992.Google Scholar
Russell, J. S. (1844). Report on Waves. In Reports of the XIV Meeting of the British Association for the Advancement of Science. J. Murray.Google Scholar
Saint-Venant, Barré de A. J. C. (1843). Note á joindre au memoire sur la dynamique des fluides presenté le 14 avril 1834. Comptes Rendus de l'Académie des Sciences 17 (22), 1240–1243.Google Scholar
Schiller, L. (1922). Untersuchungen über laminare und turbulente Strömung. Forschungarbeiten Ing.-Wesen H. 248; ZAMM 2, 96–106.Google Scholar
Schlichting, H. (1968). Boundary Layer Theory, 6th edn. McGraw-Hill.Google Scholar
Sedov, L. I. (1946). Propagation of strong shock waves. J. Appl. Math. Mech. (PMM) 10, 241–250. (Pergamon Translation no. 1223).Google Scholar
Sedov, L. I. (1959). Similarity and Dimensional Methods in Mechanics. Academic Press.Google Scholar
Spurk, J. H., and Aksel, N. (2008). Fluid Mechanics. Springer-Verlag.Google Scholar
Stokes, G. G. (1845). On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans. Camb. Phil. Soc. VII (I), 287–319.Google Scholar
Taylor, G. I. (1941). The formation of a blast wave by a very intense explosion. Report RC-210, 27 June 1941, Civil Defense Research Committee.Google Scholar
Taylor, G. I. (1950). The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945. Proc. Roy. Soc. London A201, 175–186.Google Scholar
Teixeira, R. E., Babcock, H. P., Shaqfeh, E. S. G., and Chu, S. (2005). Shear thinning and tumbling dynamics of single polymers in the flow gradient plane. Macromolecules 38, 581.CrossRefGoogle Scholar
Teixeira, R. E., Dambel, A. K., Richter, D. H., Shaqfeh, E. S. G., and Chu, S. (2007). The individualistic dynamics of entangled DNA in solution. Macro-molecules 40, 2461.CrossRefGoogle Scholar
Töpfer, C. (1912). Anmerkungen zu dem Aufsatz von H. Blasius “Grenzschichten in Flüssigkeit mit kleiner Reibung”. Z. Math. Phys. 60, 397.Google Scholar
Trefil, J. (1999). Other Worlds. Images of the Cosmos from Earth and Space. National Geographic.Google Scholar
Van den Booghart, A. (1966). Crazing and characterization of brittle fracture in polymers. In Proc. Conf. Physical Basis of Yield and Fracture. Oxford University Press.Google Scholar
Vlasov, I. O., Derzhavina, A. I., and Ryzhov, O. S. (1974). On an explosion on the boundary of two media. Comput. Math. and Math. Phys. 14 (6), 1544–1552.CrossRefGoogle Scholar
von Kármán, Th. (1930). Mechanische Ähnlichkeit und Turbulenz. In Proc. III Int. Congr. Applied Mechanics, C. W., Oseen and W., Weibull (eds.), Vol. 1, pp. 81–93. AB Sveriges Litografska Truckenier.Google Scholar
von Kármán, Th., and Howarth, L. (1938). On the statistical theory of isotropic turbulence. Proc. Roy. Soc. London A164 (917), 192–215.Google Scholar
von Koch, H. (1904). Sur une courbe continue sans tangente obtenue par une construction géometrique élémentaire. Arkiv Mat. Astron. Fys. 2, 681–704.Google Scholar
von Mises, R. (1941). Some remarks on the laws of turbulent motion in tubes. In Th. von Kaérmaén Anniversary Volume, pp. 317–327. California Institute of Technology Press.Google Scholar
von Neumann, J. (1941). The point source solution. National Defense Research Committee, Div. B, Report AM-9, 30 June 1941.Google Scholar
von Weizsäcker, C. F. (1948). Der Spektrum der Turbulenz bei grossen Reynolds'schen Zahlen. Z. Physik 124 (7-12), 614–627.Google Scholar
von Weizsäcker, C. F. (1954). Genäherte Darstellung starker instationäzer Stosswellen durch Homologie-Lösungen. Z. Naturforschung 9A, 269–275.Google Scholar
Willis, J. R. (1967). A comparison of the fracture criteria of Griffith and Barenblatt. J. Mech. Phys. Solid 15, 151–162.CrossRefGoogle Scholar
Wu, X., and Moin, P. (2009). Direct numerical simulation of turbulence in a nominally zero-pressure gradient flat plate boundary layer. J. Fluid Mech. 630, 5–41.CrossRefGoogle Scholar
Yaglom, A. M. (1993). Similarity laws for wall turbulent flows: their limitation and generalizations. In Conf. on New Approaches and Concepts in Turbulence, Monte, Verita, Th., Dracos and A., Tsinober (eds.), pp. 7–27. Birkhäuser-Verlag.Google Scholar
Yaglom, A. M. (2000). The century achievements and unsolved problems. In New Trends in Turbulence, M., Lesieur, A., Yaglom and F., David (eds.), pp. 3–52. Springer-Verlag.Google Scholar
Zagarola, M. V. (1996). Mean flow scaling in turbulent pipe flow. Ph.D. thesis, Princeton University.Google Scholar
Zagarola, M. V., Smits, A. J., Orszag, S. A., and Yakhot, V. (1996). Experiments in high Reynolds number turbulent pipe flow. AIAA paper 95-0654, Reno, NV.CrossRefGoogle Scholar
Zeldovich, Ya. B. (1956). The motion of gas under the action of a short term pressure shock. Akust. Zh. 2 (1), 28–30. (Soviet Phys. Acoustics 2, 25–35.)Google Scholar
Zeldovich, Ya. B., and Raizer, Yu. P. (2002). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. Dover Publications.Google Scholar
Zheltov, Yu. P., and Christianovich, S. A. (1955). On the hydraulic fracture of oil strata. Izvestiya, USSR Acad. Sci., Technical Sci. 5, 3–41.Google Scholar
Zhukov, A. I., and Kazhdan, Ia. M. (1956). Motion of a gas due to the effect of a brief impulse. Soviet Phys. Acoustics 2 (4), 375–381.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Grigory Isaakovich Barenblatt, University of California, Berkeley
  • Book: Flow, Deformation and Fracture
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139030014.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Grigory Isaakovich Barenblatt, University of California, Berkeley
  • Book: Flow, Deformation and Fracture
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139030014.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Grigory Isaakovich Barenblatt, University of California, Berkeley
  • Book: Flow, Deformation and Fracture
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139030014.016
Available formats
×