Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-03T05:18:43.848Z Has data issue: false hasContentIssue false

5 - The Floer homology groups

Published online by Cambridge University Press:  19 August 2009

S. K. Donaldson
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

This Chapter brings the first part of the book to its conclusion, with the construction of the Floer homology groups of a homology 3-sphere, using instantons over a 4-dimensional tube. Most of the technical work has been done in the previous two Chapters, but there are three further topics which we have kept for this Chapter. The first, which we take up in Section 5.1, is a discussion of compactness properties of instanton moduli spaces over manifolds with tubular ends. These are crucially important in Floer's theory, but the proofs are straightforward applications of the basic results summarised in Chapter 2. The next topic is the orientation of the moduli spaces or, better, of orientation line bundles formed from virtual index bundles. The key point here is a simple extension of the additive formula of Proposition 3.8. The other technical topic is a discussion of suitable perturbations of the instanton equation, which are constructed in Section 5.5. For purposes of exposition we give the main idea of Floer's theory at the earliest possible stage in this Chapter by working modulo 2 (which avoids orientations) and making a general position assumption (which avoids perturbations). These two extra topics are then fitted on to give the general definition of the Floer groups, using SU(2) bundles over homology spheres. In the last Section 5.6 we discuss a straightforward extension of the theory to SO(3) connections.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×