Book contents
- Frontmatter
- Contents
- PREFACE
- Introduction
- Generalized Steiner systems of type 3-(v, {4,6}, 1)
- Some remarks on D.R. Hughes' construction of M12 and its associated designs
- On k-sets of class [0,1,2,n]2 in PG(r,q)
- Covering graphs and symmetric designs
- Arcs and blocking sets
- Flat embeddings of near 2n-gons
- Codes, caps and linear spaces
- Geometries originating from certain distance-regular graphs
- Transitive automorphism groups of finite quasifields
- On k-sets of type (m,n) in projective planes of square order
- On k-sets of type (m,n) in a Steiner system S(2, l, v)
- Some translation planes of order 81
- A new partial geometry constructed from the Hoffman-Singleton graph
- Locally cotriangular graphs
- Coding theory of designs
- On shears in fixed-point-free affine groups
- On (k,n)-arcs and the falsity of the Lunelli-Sce conjecture
- Cubic surfaces whose points all lie on their 27 lines
- Existence results for translation nets
- Translation planes having PSL(2,w) or SL(3,w) as a collineation group
- Sequenceable groups: a survey
- Polar spaces embedded in a projective space
- On relations among the projective geometry codes
- Partition loops and affine geometries
- Regular cliques in graphs and special 1½ designs
- Bericht über Hecke Algebren und Coxeter Algebren eindlicher Geometrien
- On buildings and locally finite Tits geometries
- Moufang conditions for finite generalized quadrangles
- Embedding geometric lattices in a projective space
- Coverings of certain finite geometries
- On class-regular projective Hjelmslev planes
- On multiplicity-free permutation representations
- On a characterization of the Grassmann manifold representing the lines in a projective space
- Affine subplanes of projective planes
- Point stable designs
- Other talks
- Participants
Bericht über Hecke Algebren und Coxeter Algebren eindlicher Geometrien
Published online by Cambridge University Press: 05 April 2013
- Frontmatter
- Contents
- PREFACE
- Introduction
- Generalized Steiner systems of type 3-(v, {4,6}, 1)
- Some remarks on D.R. Hughes' construction of M12 and its associated designs
- On k-sets of class [0,1,2,n]2 in PG(r,q)
- Covering graphs and symmetric designs
- Arcs and blocking sets
- Flat embeddings of near 2n-gons
- Codes, caps and linear spaces
- Geometries originating from certain distance-regular graphs
- Transitive automorphism groups of finite quasifields
- On k-sets of type (m,n) in projective planes of square order
- On k-sets of type (m,n) in a Steiner system S(2, l, v)
- Some translation planes of order 81
- A new partial geometry constructed from the Hoffman-Singleton graph
- Locally cotriangular graphs
- Coding theory of designs
- On shears in fixed-point-free affine groups
- On (k,n)-arcs and the falsity of the Lunelli-Sce conjecture
- Cubic surfaces whose points all lie on their 27 lines
- Existence results for translation nets
- Translation planes having PSL(2,w) or SL(3,w) as a collineation group
- Sequenceable groups: a survey
- Polar spaces embedded in a projective space
- On relations among the projective geometry codes
- Partition loops and affine geometries
- Regular cliques in graphs and special 1½ designs
- Bericht über Hecke Algebren und Coxeter Algebren eindlicher Geometrien
- On buildings and locally finite Tits geometries
- Moufang conditions for finite generalized quadrangles
- Embedding geometric lattices in a projective space
- Coverings of certain finite geometries
- On class-regular projective Hjelmslev planes
- On multiplicity-free permutation representations
- On a characterization of the Grassmann manifold representing the lines in a projective space
- Affine subplanes of projective planes
- Point stable designs
- Other talks
- Participants
Summary
HECKE ALGEBREN
Seien Ω1, Ω2,…,Ωn paarweise disjunkte Mengen, und sei I eine auf der Grundmenge definierte symmetrische und reflexive Relation. Eine Teilmenge F ⊂ Ω heisst eine Fahne, wenn für je zwei Elemente ω, τ, ∈ F die Beziehung to ω I τ besteht. Wir wollen das Tupel G = (Ω1,…, Ωn, I) eine Geometrie vom Rang rg(G) = n nennen, wenn die beiden folgenden Aussagen gelten:
(Gl) Aus to ω I τ und ω, τ ∈ Ωifur ein i folgt ω = τ.
(G2) Maximdle Fahnen haben n Elemente.
Im folgenden setzen wir voraus, dab das Tupel G eine Geometrie ist. Ist F eine Fahne von G, dann ist die Teilmenge
ΩF = { ω ∈ Ω \ F | F ∪ {ω} Fahne }
die Grundmenge einer Geometrie vom Rang rg(G) - |F|, die wir die in der Fahne F abgeleitete Geometrie GF nennen wollen.
Ähnlich ist für jede Teilmenge J ⊃ {1, 2,…, n} die Menge
die Grundmenge einer Geometrie vom Rang |J|, welche wir die Teilgeometrie vom Typ J nennen wollen. Zwei maximale Fahnen F und G der Geometrie G heissen i-benachbart, in Zeichen F ĩ G, wenn sie sich um höchstens ein Element aus Ωi. unterscheiden, wenn also |F\G| = |G\F| ≥ 1 und G\F, F\G⊃Ωi gilt. Offenbar ist die so definierte Relation der i-Nachbarschaft eine Äquivalenzrelation auf der Menge der maximalen Fahnen der Geometrie.
- Type
- Chapter
- Information
- Finite Geometries and DesignsProceedings of the Second Isle of Thorns Conference 1980, pp. 260 - 271Publisher: Cambridge University PressPrint publication year: 1981
- 2
- Cited by