Book contents
- Frontmatter
- Contents
- Preface
- Introduction
- Generalized hexagons and BLT-sets
- Orthogonally divergent spreads of Hermitian curves
- Lifts of nuclei in finite projective spaces
- Large minimal blocking sets, strong representative systems, and partial unitals
- The complement of a geometric hyperplane in a generalized polygon is usually connected
- Locally co-Heawood graphs
- A theorem of Parmentier characterizing projective spaces by polarities
- Geometries with diagram (diagram omitted)
- Remarks on finite generalized hexagons and octagons with a point-transitive automorphism group
- Block-transitive t-designs, II: large t
- Generalized Fischer spaces
- Ovoids and windows in finite generalized hexagons
- Flag transitive L.C2 geometries
- On nonics, ovals and codes in Desarguesian planes of even order
- Orbits of arcs in projective spaces
- There exists no (76,21,2,7) strongly regular graph
- Group-arcs of prime power order on cubic curves
- Planar Singer groups with even order multiplier groups
- On a footnote of Tits concerning Dn-geometries
- The structure of the central units of a commutative semifield plane
- Partially sharp subsets of PΓL(n, q)
- Partial ovoids and generalized hexagons
- A census of known flag-transitive extended grids
- Root lattice constructions of ovoids
- Coxeter groups in Coxeter groups
- A local characterization of the graphs of alternating forms
- A local characterization of the graphs of alternating forms and the graphs of quadratic forms over GF(2)
- On some locally 3-transposition graphs
- Coherent configurations derived from quasiregular points in generalized quadrangles
- Veldkamp planes
- The Lyons group has no distance-transitive representation
- Intersection of arcs and normal rational curves in spaces of odd characteristic
- Flocks and partial flocks of the quadratic cone in PG(3, q)
- Some extended generalized hexagons
- Nuclei in finite non-Desarguesian projective planes
Generalized hexagons and BLT-sets
Published online by Cambridge University Press: 07 September 2010
- Frontmatter
- Contents
- Preface
- Introduction
- Generalized hexagons and BLT-sets
- Orthogonally divergent spreads of Hermitian curves
- Lifts of nuclei in finite projective spaces
- Large minimal blocking sets, strong representative systems, and partial unitals
- The complement of a geometric hyperplane in a generalized polygon is usually connected
- Locally co-Heawood graphs
- A theorem of Parmentier characterizing projective spaces by polarities
- Geometries with diagram (diagram omitted)
- Remarks on finite generalized hexagons and octagons with a point-transitive automorphism group
- Block-transitive t-designs, II: large t
- Generalized Fischer spaces
- Ovoids and windows in finite generalized hexagons
- Flag transitive L.C2 geometries
- On nonics, ovals and codes in Desarguesian planes of even order
- Orbits of arcs in projective spaces
- There exists no (76,21,2,7) strongly regular graph
- Group-arcs of prime power order on cubic curves
- Planar Singer groups with even order multiplier groups
- On a footnote of Tits concerning Dn-geometries
- The structure of the central units of a commutative semifield plane
- Partially sharp subsets of PΓL(n, q)
- Partial ovoids and generalized hexagons
- A census of known flag-transitive extended grids
- Root lattice constructions of ovoids
- Coxeter groups in Coxeter groups
- A local characterization of the graphs of alternating forms
- A local characterization of the graphs of alternating forms and the graphs of quadratic forms over GF(2)
- On some locally 3-transposition graphs
- Coherent configurations derived from quasiregular points in generalized quadrangles
- Veldkamp planes
- The Lyons group has no distance-transitive representation
- Intersection of arcs and normal rational curves in spaces of odd characteristic
- Flocks and partial flocks of the quadratic cone in PG(3, q)
- Some extended generalized hexagons
- Nuclei in finite non-Desarguesian projective planes
Summary
Abstract
An alternative construction for the dual G2(q)-hexagon is given for q odd and different from 3n.
Introduction
In, W.M. Kantor has constructed the generalized quadrangle associated with the Fisher-Thas-Walker flock as a group coset geometry starting from the dual G2(q)-hexagon. Analyzing Kantor's construction, the following question arises in a natural way: is it possible to define new points and new lines in a generalized quadrangle Q associated with a flock of the quadratic cone, in such a way that the new point-line geometry H is a generalized hexagon?
For q odd, we prove that the only possibility is that Q is the Kantor generalized quadrangle constructed in and H is the dual G2(q)-hexagon. If q ≠ 3n, using a twisted cubic of PG(3, q) we obtain an alternative construction of the dual G2(q)-hexagon similar to the construction of a generalized quadrangle using a BLT-set. For q even, we are able to prove a strong connection between the existence of H and the (q+1)-arcs of PG(3, q) but the answer is not complete due to difficulties of the same type that arise when studying BLT-sets in even characteristic.
We would like to express our thanks to S. E. Payne, J. A. Thas and H. Van Maldeghem for critical remarks on earlier versions of this paper, and to W. M. Kantor for useful discussions during his visit in Rome. In particular, Theorem 2.1 generalizes a result of W. M. Kantor (private communication).
- Type
- Chapter
- Information
- Finite Geometries and Combinatorics , pp. 5 - 16Publisher: Cambridge University PressPrint publication year: 1993