Book contents
- Frontmatter
- Contents
- Preface
- Introduction
- Generalized hexagons and BLT-sets
- Orthogonally divergent spreads of Hermitian curves
- Lifts of nuclei in finite projective spaces
- Large minimal blocking sets, strong representative systems, and partial unitals
- The complement of a geometric hyperplane in a generalized polygon is usually connected
- Locally co-Heawood graphs
- A theorem of Parmentier characterizing projective spaces by polarities
- Geometries with diagram (diagram omitted)
- Remarks on finite generalized hexagons and octagons with a point-transitive automorphism group
- Block-transitive t-designs, II: large t
- Generalized Fischer spaces
- Ovoids and windows in finite generalized hexagons
- Flag transitive L.C2 geometries
- On nonics, ovals and codes in Desarguesian planes of even order
- Orbits of arcs in projective spaces
- There exists no (76,21,2,7) strongly regular graph
- Group-arcs of prime power order on cubic curves
- Planar Singer groups with even order multiplier groups
- On a footnote of Tits concerning Dn-geometries
- The structure of the central units of a commutative semifield plane
- Partially sharp subsets of PΓL(n, q)
- Partial ovoids and generalized hexagons
- A census of known flag-transitive extended grids
- Root lattice constructions of ovoids
- Coxeter groups in Coxeter groups
- A local characterization of the graphs of alternating forms
- A local characterization of the graphs of alternating forms and the graphs of quadratic forms over GF(2)
- On some locally 3-transposition graphs
- Coherent configurations derived from quasiregular points in generalized quadrangles
- Veldkamp planes
- The Lyons group has no distance-transitive representation
- Intersection of arcs and normal rational curves in spaces of odd characteristic
- Flocks and partial flocks of the quadratic cone in PG(3, q)
- Some extended generalized hexagons
- Nuclei in finite non-Desarguesian projective planes
Coxeter groups in Coxeter groups
Published online by Cambridge University Press: 07 September 2010
- Frontmatter
- Contents
- Preface
- Introduction
- Generalized hexagons and BLT-sets
- Orthogonally divergent spreads of Hermitian curves
- Lifts of nuclei in finite projective spaces
- Large minimal blocking sets, strong representative systems, and partial unitals
- The complement of a geometric hyperplane in a generalized polygon is usually connected
- Locally co-Heawood graphs
- A theorem of Parmentier characterizing projective spaces by polarities
- Geometries with diagram (diagram omitted)
- Remarks on finite generalized hexagons and octagons with a point-transitive automorphism group
- Block-transitive t-designs, II: large t
- Generalized Fischer spaces
- Ovoids and windows in finite generalized hexagons
- Flag transitive L.C2 geometries
- On nonics, ovals and codes in Desarguesian planes of even order
- Orbits of arcs in projective spaces
- There exists no (76,21,2,7) strongly regular graph
- Group-arcs of prime power order on cubic curves
- Planar Singer groups with even order multiplier groups
- On a footnote of Tits concerning Dn-geometries
- The structure of the central units of a commutative semifield plane
- Partially sharp subsets of PΓL(n, q)
- Partial ovoids and generalized hexagons
- A census of known flag-transitive extended grids
- Root lattice constructions of ovoids
- Coxeter groups in Coxeter groups
- A local characterization of the graphs of alternating forms
- A local characterization of the graphs of alternating forms and the graphs of quadratic forms over GF(2)
- On some locally 3-transposition graphs
- Coherent configurations derived from quasiregular points in generalized quadrangles
- Veldkamp planes
- The Lyons group has no distance-transitive representation
- Intersection of arcs and normal rational curves in spaces of odd characteristic
- Flocks and partial flocks of the quadratic cone in PG(3, q)
- Some extended generalized hexagons
- Nuclei in finite non-Desarguesian projective planes
Summary
Abstract
An automorphism of a Coxeter diagram M leads in a natural way to a Coxeter subgroup of the Coxeter group of type M. We introduce admissible partitions of Coxeter diagrams in order to generalize this situation. An admissible partition of a Coxeter diagram provides a Coxeter subgroup in a similar way. Our main result is a local criterion for the admissibility of a partition.
Introduction
We may ask in general which Coxeter groups arise as subgroups of a given Coxeter group. This question is of course far too general. However, there are Coxeter groups which arise canonically as subgroups of a given Coxeter group. Let for instance (W, S) be a Coxeter system and let S1 be a subset of S, then (∧S1), S1) is again a Coxeter system.
Our purpose here is to introduce another way to obtain Coxeter subgroups in a given Coxeter group. In the example above we considered residues; the procedure, which will be treated here, has also a geometric background. We will deal with subcomplexes of the Coxeter complex which behave like subcomplexes fixed by a polarity. We do not go into the details concerning these geometric aspects. However, our procedure is motivated by the following consideration:
Let I be a set, let M be a Coxeter diagram over I and let (W, S) be the associated Coxeter system. Let l : W → No denote the length function.
- Type
- Chapter
- Information
- Finite Geometries and Combinatorics , pp. 277 - 288Publisher: Cambridge University PressPrint publication year: 1993
- 10
- Cited by