Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T01:56:45.593Z Has data issue: false hasContentIssue false

17 - Chronobiological aspects of primate research

Published online by Cambridge University Press:  05 June 2012

Hans G. Erkert
Affiliation:
University of Tübingen
Joanna M. Setchell
Affiliation:
University of Surrey, Roehampton
Deborah J. Curtis
Affiliation:
University of Surrey, Roehampton
Get access

Summary

INTRODUCTION

Terrestrial animals live in an environment that undergoes regular variations, ultimately induced by the geophysical conditions prevailing in our solar/earth system. Solar radiation and gravity, in combination with the earth's rotation around its inclined axis and its orbit around the sun, and the moon's revolution around earth, produce marked diurnal, seasonal and lunar as well as tidal periodicities in important physical environmental factors, such as light intensity, ambient temperature, humidity, precipitation, day and night length, and duration of twilight. As a consequence of these periodicities being superimposed on one another, many relevant biotic environmental factors, such as food availability and predator pressure, as well as social contact, communication and competition with conspecifics, and intra- and interspecific competition for food may also vary diurnally, seasonally, lunar periodically or tidally. In this way each animal's environment has a highly complex time structure, is highly repetitive in time and thus highly predictive. Reliable predictivity provides a good substrate for genetically fixed adaptations. Hence, in addition to other general or specific physiological, ecological and/or behavioural adaptations, animals have also evolved endogenous diurnal (circadian), annual (circannual), lunar (circalunar) and/or tidal (circatidal) rhythms.

In non-human primates (in the following referred to only as primates), adaptation to the time structure in their physical and biotic environment is restricted mainly to the development of a circadian timing system involved in the regulation of the pronounced daily (circadian) organisation of physiology and behaviour.

Type
Chapter
Information
Field and Laboratory Methods in Primatology
A Practical Guide
, pp. 252 - 270
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albers, H. E., Lydic, R., Gander, P. H. & Moore-Ede, M. C. (1984). Role of suprachiasmatic nuclei in the circadian timing system of the squirrel monkey. I. The generation of rhythmicity. Brain Res.300, 275–84
Alonso, C. (1989).Ecologiae comportamento de Callithrix jacchus (Primates: Callitrichidae) numa ilha de floresta atlantica. Rev. Nordest. Biol 6 105–37Google Scholar
Aschoff, J. & Tokura, H. (1986). Circadian activity rhythms in squirrel monkeys: entrainment by temperature cycles. J. Biol. Rhythms 1 91–9CrossRefGoogle ScholarPubMed
Aschoff, J., Daan, S. & Honma, K. I. (1982). Zeitgebers, entrainment, and masking: some unsettled questions. In Vertebrate Circadian Systems. Structure and Physiology, ed. J. Aschoff, S. Daan & G. A. Groos, pp. 13–24. Berlin: Springer-VerlagCrossRef
Bearder, S. K., Nekaris, K. A. I. & Buzzell, C. A. (2002). Dangers in the night: are some nocturnal primates afraid of the dark? In Eat or be Eaten. Predator Sensitive Foraging Among Primates, ed. L. E. Miller, pp. 21–43. Cambridge: Cambridge University PressCrossRef
Colquhoun, I. C. (1998). Cathemeral behaviour of Eulemur macaco macaco at Ambato Massif, Madagascar. Folia Primatol. 69 22–34CrossRefGoogle Scholar
Curtis, D. J. & Rasmussen, M. A. (2002). Cathemerality in lemurs. Evol. Anthropol. 11, Suppl. 1, 83–6CrossRefGoogle Scholar
Curtis, D. J. & Rasmussen, M. A. (2002). Cathemerality in lemurs. Evol. Anthropol. 11, Suppl. 1, 83–6CrossRefGoogle Scholar
Curtis, D. J.Zaramody, A. & Martin, R. D. (1999). Cathemeral activity in the mongoose lemur, Eulemur mongoz Am. J. Primatol. 47, 279–983.0.CO;2-U>CrossRefGoogle ScholarPubMed
Donati, G.Lunardi, A.Kappeler, P. M. & Borgognini Tarli, S. M. (2001). Nocturnal activity in the cathemeral red-fronted lemur (Eulemur fulvus rufus), with observations during a lunar eclipseAm. J. Primatol. 53 69–783.0.CO;2-R>CrossRefGoogle Scholar
DuMond, F. V. (1968). The squirrel monkey in a seminatural environment. In The Squirrel Monkey, ed. L. A. Rosenblum & R. W. Cooper, pp. 87–145. New York: Academic PressCrossRef
Engqvist, A. & Richard, A. (1991). Diet as a possible determinant of cathemeral activity patterns in primates. Folia Primatol. 57 169–72CrossRefGoogle ScholarPubMed
Erkert, H. G. (1974). Der Einfluss des Mondlichtes auf die Aktivitätsperiodik nachtaktiver SäugetiereOecologia 14 269–87CrossRefGoogle Scholar
Erkert, H. G., (1989a). Lighting requirements of nocturnal primates in captivity: a chronobiological approach. Zoo Biol 8 179–91CrossRefGoogle Scholar
Erkert, H. G., (1989b). Characteristics of the circadian activity rhythm in common marmosets (Callithrix j. jacchus). Am. J. Primatol. 17 271–86CrossRefGoogle Scholar
Erkert, H. G., (1997). Characteristics of the circadian activity rhythm in common marmosets (Callithrix j. jacchus). Am. J. Primatol. 17 271–86CrossRefGoogle Scholar
Erkert, H. G. (1997). Circadian rhythms in the marmoset: their significance for fundamental and applied research. In Marmosets and Tamarins in Biological and Biomedical Research, ed. C. H. Pryce, L. Scott & C. H. Schnell, pp. 128–44. Salisbury: DSSD Imagery
Erkert, H. G. (1999). Owl monkeys. In The UFAW Handbook on the Care and Management of Laboratory Animals, 7th edition, ed. T. Poole & P. English, pp. 574–90. Oxford: Blackwell
Erkert, H. G. & Gröber, J. (1986). Direct modulation of activity and body temperature of owl monkeys (Aotus lemurinus griseimembra) by low light intensities. Folia Primatol 47 171–88CrossRefGoogle ScholarPubMed
Erkert, H. G. & Schardt, U. (1991). Social entrainment of circadian activity rhythms in common marmosets, Callithrix j. jacchus (Primates). Ethology 87 189–202CrossRefGoogle Scholar
Erkert, H. G.Nagel, B. & Schanz, F.Thiemann-Jäger, A. (1984). Vergleichende Untersuchungen zur Chronobiologie nichtmenschlicher PrimatenVerh. Dt. Zool. Ges. 77 217Google Scholar
Farrer, D. N. & Ternes, J. W. (1969). Illumination intensity and behavioral circadian rhythms. In Circadian Rhythms in Nonhuman Primates, ed. F. H. Rohles, Bibl. Primat. Ges. 9 1–7 Basel: S. Karger
Glass, J. D.Tardiff, S. D. & Mrosowsky, N. (2001). Photic and nonphotic circadian phase resetting in a diurnal primate, the common marmosetAm. J. Physiol 280 R191–R197Google Scholar
Hawking, F. & Lobban, M. C. (1970). Circadian rhythms in macaca monkeys (physical activity, temperature, urine and microfilarial levels). J. Interdisc. Cycle Res. 1 267–90CrossRefGoogle Scholar
Kerl, J. & Rothe, H. (1996). Influence of cage size and cage equipment on physiology and behavior of common marmosets (Callithrix jacchus). Lab. Prim. News. 35 10–13Google Scholar
Klein D. C., Moore, R. Y & Reppert, S. M. (eds.) (1991). Suprachiasmatic Nucleus. The Mind's Clock. New York, Oxford: Oxford University Press
Kremers, J., Silveira, L. C. L., Yamada, E. S. & Lee, B. B. (1999). The ecology and evolution of primate color vision. In Color Vision: From Genes to Perception, ed. K. R. Gegenfurter & L. T. Sharpe, pp. 123–42. Cambridge: Cambridge University Press
Lerchl, A.Küderling, I.Kurre, J. & Fuchs, E. (1988). Locomotor activity registration by passive infrared detection in saddle back tamarins and tree shrews. Physiol. Behav. 44 281–84CrossRefGoogle ScholarPubMed
Martin, R. D. (1990). Primate Origins and Evolution: A Phylogenetic Reconstruction. London: Chapman & Hall
Martinez, J. L. (1988). Effects of selected illumination levels on circadian periodicity in the rhesus monkey (Macaca mulatta). J. Interdisc. Cycle Res 3 47–59CrossRefGoogle Scholar
Michael, R. P. & Bonsall, R. W. (1977). A 3-year study of an annual rhythm in plasma androgen levels in male rhesus monkeys (Macaca mulatta) in a constant laboratory environment. J. Reprod. Fert. 49 129–31CrossRefGoogle Scholar
Moore, R. Y. (1999). Circadian timing. In Fundamental Neuroscience, ed. M. J. Zigmond, F. E. Bloom, S. C. Landis, J. L. Roberts & L. R. Squire, pp. 1189–206. San Diego, CA: Academic Press
Moore-Ede, M. C., Sulzman, F. M. & Fuller, C. A. (1982). The Clocks that Time Us: Physiology of the Circadian Timing System. Cambridge, MA, London: Harvard University Press
Nash, L. T. (1986). Influence of moonlight levels on travelling and calling patterns in two sympatric species of Galago in Kenya. In Current Perspectives in Primate Social Dynamics, ed. D. M. Taub & F. A. King, pp. 357–67. New York: Van Nostrand Reinhold Co
Nash, L. T. (2000). Encounter rate estimates on Lepilemur leucopus and Microcebus murinus at Neza Mahafaly Special Reserve, Southwestern Madagascar. Lemur News5, 38–40
Niemitz, C. (1984). Biology of Tarsiers. Stuttgart, New York: Gustav Fischer Verlag
Overdorff, D. J. & Rasmussen, M. A. (1995). Determinants of nighttime activity in “diurnal” lemurid primates. In Creatures of the Dark: The Nocturnal Prosimians, ed. L. G. Alterman, G. A. Doyle & K. Izard, pp. 61–74. New York: Plenum PressCrossRef
Pálková, M.Sigmund, L. & Pálková, M. (1999). Effect of ambient temperature on the circadian activity rhythm in common marmosets, Callithrix j. jacchus (Primates). Chronobiol. Int. 16 149–61CrossRefGoogle Scholar
Pereira, M. E., Strohecker, R. A., Cavigelli, S. A. Hughes, C. L. & Pearson, D. D. (1999). Metabolic strategy and social behavior in Lemuridae. In New Directions in Lemur Studies, ed. B. Rakotosamimanana, H. Rasamimanana, J. U. Ganzhorn & S. M. Goodman, pp. 93–118. New York: Kluwer Academic/Plenum PublishersCrossRef
Petter-Rousseaux, A. (1975). Activité sexuelle de Microcebus murinus (Miller 1777) soumis à des régimes photopériodiques experimenteaux. Ann. Biol. Anim. Biochem. Biophys. 15 503–8CrossRefGoogle Scholar
Plant, T. M.Zumpe, D.Dauls, M. & Michael, R. P. (1974). An annual rhythm in the plasma testosterone of adult male rhesus monkeys maintained in the laboratory. J. Endocr. 62 403–4CrossRefGoogle ScholarPubMed
Rappold, I. & Erkert, H. G. (1994). Re-entrainment, phase-response and range of entrainment of circadian rhythms in owl monkeys (Aotus lemurinus g.) of different age. Biol. Rhythm Res 25 133–52CrossRefGoogle Scholar
Rauth-Widmann, B.Thiemann-Jäger, A. & Erkert, H. G. (1991). Significance of nonparametric light effects in entrainment of circadian rhythms in owl monkeys (Aotus lemurinus griseimembra) by light–dark cycles. Chronobiol. Int. 8 251–66CrossRefGoogle ScholarPubMed
Richter, C. P. (1968). Inherent twenty-four and lunar clocks of a primate – the squirrel monkey. Comm. Behav. Biol. 1 305–32Google Scholar
Schilling, A.Richard, J. P. & Servi`re, J. (1999). Duration of activity and period of circadian activity–rest rhythm in a photoperiod-dependent primate, Microcebus murinus. C. R. Acad. Sci. 322 759–70CrossRefGoogle Scholar
Schnell, C. R. & Wood, J. M. (1993). Measurement of blood pressure and heart rate by telemetry in conscious, unrestrained marmosets. Am. J. Physiol. 264 H1509–H1516Google ScholarPubMed
Schnell, C. R. & Wood, J. M. (1993). Measurement of blood pressure and heart rate by telemetry in conscious, unrestrained marmosets. Am. J. Physiol. 264 H1509–H1516Google ScholarPubMed
Sulzman, F. M.Fuller, C. A. & Moore-Ede, M. C. (1977a). Environmental synchronizers of squirrel monkey circadian rhythms. J. Appl. Physiol. 43 795–800CrossRefGoogle Scholar
Sulzman, F. M. (1977b). Feeding time synchronizes primate circadian rhythms. Physiol. Behav 18 775–9CrossRefGoogle Scholar
Sulzman, F. M. (1979). Tonic effects of light on the circadian system of the squirrel monkey. J. Comp. Physiol 129 43–50CrossRefGoogle Scholar
Tattersall, I. (1982). The Primates of Madagascar. New York: Columbia University Press
Tattersall, I. (1987). Cathemeral activity in primates: a definitionJ. Comp. Physiol 49 200–2Google Scholar
The Astronomical Almanac. Issued each year by The Nautical Almanac Office, U.S.A. and Her Majesty's Nautical Almanac Office, Royal Greenwich Observatory. Washington, DC: US Government Printing Office; London: HMSO
Thomas, R. M. & Curtis, D. J. (2001). A novel software application for the study of photoperiodic cueing mechanisms underlying circadian and circannual rhythms and lunar-periodic modulationsFolia Primatol 72 187Google Scholar
Tokura, H. & Aschoff, J. (1978). Circadian activity rhythms of the pig-tailed macaque, Macaca nemestrina, under constant illumination. Pflùgers Arch. 376 241–3CrossRefGoogle ScholarPubMed
Tokura, H. & Aschoff, J. (1983). Effects of temperature on the circadian rhythm of pig-tailed macaques Macaca nemestrinaAm. J. Physiol 245 R800–R804Google ScholarPubMed
Horn, R. N. (1975). Primate breeding season: photoperiodic regulation in captive Lemur catta. Folia Primatol. 24 203–20CrossRefGoogle ScholarPubMed
Schaik, C. P. & Kappeler, P. M. (1996). The social systems of gregarious lemurs: lack of convergence with anthropoids due to evolutionary disequilibrium?Ethology 102 915–41CrossRefGoogle Scholar
Wechselberger, E. (1995). Characteristika und Mechanismen der Synchronisation der Circadianperiodik des Weissbüscheläffchens, Callithrix j. jacchus. Ph.D. thesis, University of Tübingen
Wright, P. C. (1989). The nocturnal primate niche in the New World. J. Hum. Evol. 18 635–46CrossRefGoogle Scholar
Yellin, A. M. & Hauty, G. T. (1971). Activity cycles of the rhesus monkey (Macaca mulatta) under several experimental conditions, both in isolation and in a group situation. J. Interdisc. Cycle Res. 2 475–90CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×