Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T03:23:09.835Z Has data issue: false hasContentIssue false

1 - Basic physical principles of body diffusion-weighted MRI

Published online by Cambridge University Press:  10 November 2010

Bachir Taouli
Affiliation:
Mount Sinai School of Medicine, New York
Get access

Summary

Introduction

The possibility of sensitizing nuclear magnetic resonance (NMR) signals to molecular diffusion was recognized in the early, pioneering days of NMR by Hahn, Carr and Purcell. In the 1960s, the Stejskal–Tanner pulse sequence for measuring diffusion properties was introduced and has been a mainstay of diffusion NMR every since. The Stejskal–Tanner sequence is also the prototypical pulse sequence for diffusion-weighted imaging (DWI), although for human imaging there are a number of variants and alternative sequences that help manage the practical challenges of clinical scanning.

Until recently, DWI in humans has been dominated by brain applications, to a large degree because the relatively long transverse relaxation times (T2) in the brain help maintain a sufficient signal-to-noise ratio (SNR) and the good field homogeneity helps minimize imaging artifacts. However, recent improvements in scanning hardware and pulse sequence design have now made feasible good quality DWI for the body, and body applications are becoming increasingly common.

In this chapter, we review the basic physical principals of DWI, emphasizing issues particularly pertinent to body applications. We begin with diffusion NMR physics, covering both the relevant concepts of molecular diffusion and the essential theory for the Stejskal–Tanner pulse sequence. We will consider practical aspects of image acquisition, such as sequence selection and artifact reduction. The analysis of DWI data and an overview of selected important body applications will be discussed.

Diffusion NMR physics

Molecules within a liquid move in a complicated pattern that can be regarded as a random process.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hahn, EL.Spin echoes. Phys Rev 1950;80:580–94.CrossRef
Carr, HY, Purcell, EM.Effects of diffusion on free precession in NMR experiments. Phys Rev 1954;94:630.CrossRefGoogle Scholar
Stejskal, EO, Tanner, JE.Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 1965;42:288–92.CrossRefGoogle Scholar
Tanner, JE, Stejskal, EO.Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient, spin-echo method. J Chem Phys 1968;49:1768–77.CrossRefGoogle Scholar
Thoeny, HC, Keyzer, F.Extracranial applications of diffusion-weighted magnetic resonance imaging. Eur Radiol 2007;17 (6):1385–93.CrossRefGoogle ScholarPubMed
Colagrande, S, Carbone, SF, Carusi, LM, Cova, M, Villari, N.Magnetic resonance diffusion-weighted imaging: extraneurological applications. Radiologia Med 2006;111 (3):392–419.CrossRefGoogle ScholarPubMed
Einstein, A.Diffusion. Ann Phys 1905;17:549.CrossRefGoogle Scholar
Jensen, JH, Helpern, JA, Ramani, A, Lu, HZ, Kaczynski, K.Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005;53 (6):1432–40.CrossRefGoogle ScholarPubMed
Basser, PJ, Mattiello, J, Lebihan, D.MR diffusion tensor spectroscopy and imaging. Biophys J 1994;66 (1):259–67.CrossRefGoogle Scholar
Basser, PJ, Pierpaoli, C.Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 1996;111 (3):209–19.CrossRefGoogle ScholarPubMed
Clark, CA, Hedehus, M, Moseley, ME.Diffusion time dependence of the apparent diffusion tensor in healthy human brain and white matter disease. Magn Reson Med 2001;45 (6):1126–9.CrossRefGoogle ScholarPubMed
Qin, W, Yu, CS, Zhang, F, et al. Effects of echo time on diffusion quantification of brain white matter at 1.5T and 3.0T. Magn Reson Med 2009;61 (4):755–60.CrossRefGoogle Scholar
Kim, S, Chi-Fishman, G, Barnett, AS, Pierpaoli, C.Dependence on diffusion time of apparent diffusion tensor of ex vivo calf tongue and heart. Magn Reson Med 2005;54 (6):1387–96.CrossRefGoogle ScholarPubMed
Callaghan, PT.Principles of Nuclear Magnetic Resonance Microscopy. Oxford: Oxford University Press; 1993.Google Scholar
Basser, PJ, Mattiello, J, Lebihan, D.Estimation of the effective self-diffusion tensor from the NMR spin-echo. J Magn Reson B 1994;103 (3):247–54.CrossRefGoogle ScholarPubMed
LeBihan, D, Breton, E, Lallemand, D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168 (2):497–505.CrossRefGoogle Scholar
Luciani, A, Vignaud, A, Cavet, M, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging: pilot study. Radiology 2008;249 (3):891–9.CrossRefGoogle ScholarPubMed
Yamada, I, Aung, W, Himeno, Y, Nakagawa, T, Shibuya, H.Diffusion coefficients in abdominal organs and hepatic lesions: Evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 1999;210 (3):617–23.CrossRefGoogle ScholarPubMed
Mitra, PP, Sen, PN, Schwartz, LM.Short-time behavior of the diffusion coefficient as a geometrical probe of porous media. Phys Rev B 1993;47:8565.CrossRefGoogle ScholarPubMed
Mulkern, RV, Gudbjartsson, H, Westin, CF, et al. Multi-component apparent diffusion coefficients in human brain. NMR Biomed 1999;12 (1):51–62.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Clark, CA, Bihan, D.Water diffusion compartmentation and anisotropy at high b values in the human brain. Magn Reson Med 2000;44 (6):852–9.3.0.CO;2-A>CrossRefGoogle Scholar
Mulkern, RV, Zengingonul, HP, Robertson, RL, et al. Multi-component apparent diffusion coefficients in human brain: relationship to spin-lattice relaxation. Magn Reson Med 2000;44 (2):292–300.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Meier, C, Dreher, W, Lebrfritz, D.Diffusion in compartmental systems. I. A comparison of an analytical model with simulations. Magn Reson Med 2003;50 (3):500–9.CrossRefGoogle ScholarPubMed
Falangola, MF, Jensen, JH, Babb, JS, et al. Age-related non-Gaussian diffusion patterns in the prefrontal brain. J Magn Reson Imag 2008;28 (6):1345–50.CrossRefGoogle ScholarPubMed
Lu, HZ, Jensen, JH, Ramani, A, Helpern, JA.Three-dimensional characterization of non-gaussian water diffusion in humans using diffusion kurtosis imaging. NMRBiomed 2006;19 (2):236–47.Google ScholarPubMed
Bennett, KM, Hyde, JS, Schmainda, KM.Water diffusion heterogeneity index in the human brain is insensitive to the orientation of applied magnetic field gradients. Magn Reson Med 2006;56 (2):235–9.CrossRefGoogle ScholarPubMed
Ozarslan, E, Basser, PJ, Shepherd, TM, et al. Observation of anomalous diffusion in excised tissue by characterizing the diffusion-time dependence of the MR signal. J Magn Reson 2006;183 (2):315–23.CrossRefGoogle ScholarPubMed
Sukstanskii, AL, Yablonskiy, DA.Effects of restricted diffusion on MR signal formation. J Magn Reson 2002;157 (1):92–105.CrossRefGoogle ScholarPubMed
Sukstanskii, AL, Ackerman, JJH, Yablonskiy, DA.Effects of barrier-induced nuclear spin magnetization inhomogeneities on diffusion-attenuated MR signal. Magn Reson Med 2003;50 (4):735–42.CrossRefGoogle ScholarPubMed
Stehling, MK, Turner, R, Mansfield, P.Echo-planar imaging: magnetic-resonance imaging in a fraction of a second. Science 1991;254 (5028):43–50.CrossRefGoogle Scholar
Alsop, DC.Phase insensitive preparation of single-shot RARE: application to diffusion imaging in humans. Magn Reson Med 1997;38 (4):527–33.CrossRefGoogle ScholarPubMed
Reese, TG, Heid, O, Weisskoff, RM, Wedeen, VJ.Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 2003;49 (1):177–82.CrossRefGoogle ScholarPubMed
Haacke, EM, Brown, RW, Thompson, MR, Venkatesan, R.Magnetic Resonance Imaging: Physical Principles and Sequence Design. New York:Wiley-Liss; 1999.Google Scholar
Kilickesmez, O, Yirik, G, Bayramoglu, S, Cimilli, T, Aydin, S.Non-breath-hold high b-value diffusion-weighted MRI with parallel imaging technique: apparent diffusion coefficient determination in normal abdominal organs. Diagnost Intervent Radiol 2008;14 (2):83–7.Google ScholarPubMed
Zech, CJ, Herrmann, KA, Dietrich, O, et al. Black-blood diffusion-weighted EPI acquisition of the liver with parallel imaging: comparison with a standard T2-weighted sequence for detection of focal liver lesions. Investig Radiol 2008;43 (4):261–6.CrossRefGoogle ScholarPubMed
Nasu, K, Kuroki, Y, Kuroki, S, et al. Diffusion-weighted single shot echo planar imaging of colorectal cancer using a sensitivity-encoding technique. Jap J Clin Oncol 2004;34 (10):620–6.CrossRefGoogle ScholarPubMed
Weih, KS, Driesel, W, Mengershausen, M, Norris, DG.Online motion correction for diffusion-weighted segmented-EPI and FLASH imaging. Magn Reson Materials Phys Biol Med 2004;16 (6):277–83.CrossRefGoogle ScholarPubMed
Atkinson, D, Porter, DA, Hill, DLG, Calamante, F, Connelly, A.Sampling and reconstruction effects due to motion in diffusion-weighted interleaved echo planar imaging. Magn Reson Med 2000;44 (1):101–9.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Butts, K, deCrespigny, A, Pauly, JM, Moseley, M.Diffusion-weighted interleaved echo-planar imaging with a pair of orthogonal navigator echoes. Magn Reson Med 1996;35 (5):763–70.CrossRefGoogle ScholarPubMed
Ordidge, RJ, Helpern, JA, Qing, ZX, Knight, RA, Nagesh, V.Correction of motional artifacts in diffusion-weighted MR-images using navigator echoes. Magn Reson Imag 1994;12 (3):455–60.CrossRefGoogle ScholarPubMed
Spuentrup, E, Buecker, A, Koelker, C, Guenther, RW, Stuber, M.Respiratory motion artifact suppression in diffusion-weighted MR imaging of the spine. Eur Radiol 2003;13 (2):330–6.Google ScholarPubMed
Asbach, P, Hein, PA, Stemmer, A, et al. Free-breathing echo-planar imaging based diffusion-weighted magnetic resonance imaging of the liver with prospective acquisition correction. J Comput Assist Tomogr 2008;32 (3):372–8.CrossRefGoogle ScholarPubMed
Murtz, P, Flacke, S, Traber, F, et al. Abdomen: Diffusion-weighted MR imaging with pulse-triggered single-shot sequences. Radiology 2002;224 (1):258–64.CrossRefGoogle ScholarPubMed
Erturk, SM, Alberich-Bayarri, A, Herrmann, KA, Marti-Bonmati, L, Ros, PR.Use of 3.0-T MR imaging for evaluation of the abdomen. Radiographics 2009;29 (6):1547–64.CrossRefGoogle ScholarPubMed
Ivancevic, MK, Kwee, TC, Takahara, T, et al. Diffusion-weighted MR imaging of the liver at 3.0 tesla using Tracking Only Navigator Echo (TRON): a feasibility study. J Magn Reson Imag 2009;30 (5):1027–33.CrossRefGoogle ScholarPubMed
Manenti, G, Di Roma, M, Mancino, S, et al. Malignant renal neoplasms: correlation between ADC values and cellularity in diffusion weighted magnetic resonance imaging at 3 T. Radiologia Med 2008;113 (2):199–213.CrossRefGoogle ScholarPubMed
Gibbs, P, Pickles, MD, Turnbull, LW.Diffusion imaging of the prostate at 3.0 tesla. Investig Radiol 2006;41 (2):185–8.CrossRefGoogle ScholarPubMed
Bazelaire, CMJ, Duhamel, GD, Rofsky, NM, Alsop, DC. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 2004;230 (3):652–9.CrossRefGoogle Scholar
Meiboom, S, Gill, D.Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 1958;29:688–91.CrossRefGoogle Scholar
Norris, DG.Selective parity RARE imaging. Magn Reson Med 2007;58 (4):643–9.CrossRefGoogle ScholarPubMed
Williams, CFM, Redpath, TW, Norris, DG.A novel fast split-echo multi-shot diffusion-weighted MRI method using navigator echoes. Mag Reson Med 1999;41 (4):734–42.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Deng, J, Omary, RA, Larson, AC.Multishot diffusion-weighted SPLICE PROPELLER MRI of the abdomen. Magn Reson Med 2008;59 (5):947–53.CrossRefGoogle ScholarPubMed
Roux, P.Non-CPMG fast spin echo with full signal. J Magn Reson 2002;155 (2):278–92.CrossRefGoogle ScholarPubMed
Norris, DG, Driesel, W.Online motion correction for diffusion-weighted imaging using navigator echoes: application to RARE imaging without sensitivity loss. Magn Reson Med 2001;45 (5):729–33.CrossRefGoogle ScholarPubMed
Pipe, JG, Farthing, VG, Forbes, KP.Multishot diffusion-weighted FSE using PROPELLER MRI. Magn Reson Med 2002;47:42–52.CrossRefGoogle ScholarPubMed
Deng, J, Miller, FH, Salem, R, Omary, RA, Larson, AC.Multishot diffusion-weighted PROPELLER magnetic resonance imaging of the abdomen. Investig Radiol 2006;41 (10):769–75.CrossRefGoogle ScholarPubMed
Gmitro, AF, Kono, M, Theilmann, RJ, et al. Radial GRASE: implementation and applications. Magn Reson Med 2005;53 (6):1363–71.CrossRefGoogle ScholarPubMed
Lo, GG, Ai, V, Chan, JKF, et al. Diffusion-weighted magnetic resonance imaging of breast lesions: first experiences at 3 T. J Comput Assist Tomogr 2009;33 (1):63–9.CrossRefGoogle ScholarPubMed
Nolte, UG, Finsterbusch, J, Frahm, J.Rapid isotropic diffusion mapping without susceptibility artifacts: whole brain studies using diffusion-weighted single-shot STEAM MR imaging. Magn Reson Med 2000;44 (5):731–6.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Cremillieux, Y, WheelerKingshott, CA, Briguet, A, Doran, SJ.STEAM-Burst: a single-shot, multi-slice imaging sequence without rapid gradient switching. Magn Reson Med 1997;38 (4):645–52.CrossRefGoogle ScholarPubMed
Steidle, G, Schick, F.Echoplanar diffusion tensor imaging of the lower leg musculature using eddy current nulled stimulated echo preparation. Magn Reson Med 2006;55 (3):541–8.CrossRefGoogle ScholarPubMed
Jeong, EK, Kim, SE, Kholmovski, EG, Parker, DL.High-resolution DTI of a localized volume using 3D single-shot Diffusion-Weighted STimulated Echo-Planar Imaging (3D ss-DWSTEPI). Magn Reson Med 2006;56 (6):1173–81.CrossRefGoogle Scholar
Buxton, RB.The diffusion sensitivity of fast steady-state free precession imaging. Magn Reson Med 1993;29 (2):235–43.CrossRefGoogle ScholarPubMed
Carney, CE, Wong, STS, Patz, S.Analytical solution and verification of diffusion effect in SSFP. Magn Reson Med 1991;19 (2):240–6.CrossRefGoogle ScholarPubMed
Zur, Y, Bosak, E, Kaplan, N.A new diffusion SSFP imaging technique. Magn Reson Med 1997;37 (5):716–22.CrossRefGoogle ScholarPubMed
Bosak, E, Harvey, PR.Navigator motion correction of diffusion weighted 3D SSFP imaging. Magn Reson Materials Phys Biol Med 2001;12 (2–3):167–76.CrossRefGoogle ScholarPubMed
Miller, KL, Pauly, JM.Nonlinear phase correction for navigated diffusion imaging. Magn Reson Med 2003;50 (2):343–53.CrossRefGoogle ScholarPubMed
Miller, KL, Hargreaves, BA, Gold, GE, Pauly, JM.Steady-state diffusion-weighted imaging of in vivo knee cartilage. Magn Reson Med 2004;51 (2):394–8.CrossRefGoogle ScholarPubMed
Wu, EX, Buxton, RB.Effect of diffusion on the steady-state magnetization with pulsed field gradients. J Magn Reson 1990;90 (2):243–53.Google Scholar
Jeong, EK, Kim, SE, Parker, DL.High-resolution diffusion-weighted 3D MRI, using diffusion-weighted driven-equilibrium (DW-DE) and multishot segmented 3D-SSFP without navigator echoes. Magn Reson Med 2003;50 (4):821–9.CrossRefGoogle ScholarPubMed
Jiang, HY, Zijl, PCM, Kim, J, Pearlson, GD, Mori, S.DtiStudio: Resource program for diffusion tensor computation and fiber bundle tracking. Comput Meth Programs Biomed 2006;81 (2):106–16.CrossRefGoogle ScholarPubMed
Burdette, JH, Elster, AD, Ricci, PE.Acute cerebral infarction: quantification of spin-density and T2 shine-through phenomena on diffusion-weighted MR images. Radiology 1999;212 (2):333–9.CrossRefGoogle ScholarPubMed
Song, SK, Sun, SW, Ramsbottom, MJ, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 2002;17 (3):1429–36.CrossRefGoogle Scholar
Pajevic, S, Pierpaoli, C.Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 1999;42 (3):526–40.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Kan, JH, Heemskerk, AM, Ding, ZH, et al. DTI-based muscle fiber tracking of the quadriceps mechanism in lateral patellar dislocation. J Magn Reson Imag 2009;29 (3):663–70.CrossRefGoogle ScholarPubMed
Notohamiprodjo, M, Glaser, C, Herrmann, KA, et al. Diffusion tensor imaging of the kidney with parallel imaging: Initial clinical experience. Investig Radiol 2008;43 (10):677–85.CrossRefGoogle ScholarPubMed
Glass, HI, Garreta, C.Quantitative limitations of exponential curve fitting. Phys Med Biol 1971;16 (1):119–30.CrossRefGoogle ScholarPubMed
Shrager, RI, Weiss, GH, Spencer, RGS.Optimal time spacings for T-2 measurements: monoexponential and biexponential systems. NMR Biomed 1998;11 (6):297–305.3.0.CO;2-A>CrossRefGoogle Scholar
Jones, DK, Basser, PJ.“Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data. Magn Reson Med 2004;52 (5):979–93.CrossRefGoogle ScholarPubMed
Dehmeshki, J, Ruto, AC, Arridge, S, et al. Analysis of MTR histograms in multiple sclerosis using principal components and multiple discriminant analysis. Magn Reson Med 2001;46 (3):600–9.CrossRefGoogle ScholarPubMed
Lin, FC, Yu, CS, Jiang, TZ, et al. Discriminative analysis of relapsing neuromyelitis optica and relapsing-remitting multiple sclerosis based on two-dimensional histogram from diffusion tensor imaging. Neuroimage 2006;31 (2):543–9.CrossRefGoogle ScholarPubMed
Kim, S, Pickup, S, Hsu, H, Poptani, H.Diffusion tensor MRI in rat models of invasive and well-demarcated brain tumors. NMR Biomed 2008;21 (3):208–16.CrossRefGoogle ScholarPubMed
Zhang, JY, Zijl, PCM, Laterra, J, et al. Unique patterns of diffusion directionality in rat brain tumors revealed by high-resolution diffusion tensor MRI. Magn Reson Med 2007;58 (3):454–62.CrossRefGoogle ScholarPubMed
Taouli, B, Koh, DM.Diffusion-weighted MR imaging of the liver. Radiology 2010;254 (1):47–66.CrossRefGoogle ScholarPubMed
Taouli, B, Tolia, AJ, Losada, M, et al. Diffusion-weighted MRI for quantification of liver fibrosis: preliminary experience. Am J Roentgenol 2007;189 (4):799–806.CrossRefGoogle ScholarPubMed
Dale, BM, Braithwaite, AC, Boll, DT, Merkle, EM.Field strength and diffusion encoding technique affect the apparent diffusion coefficient measurements in diffusion-weighted imaging of the abdomen. Investig Radiol 2010;45 (2):104–8.CrossRefGoogle ScholarPubMed
Kreeftenberg, HG Jr, Mooyaart, EL, Huizenga, JR, Sluiter, WJ, Kreeftenberg, HG.Quantification of liver iron concentration with magnetic resonance imaging by combining T1-, T2-weighted spin echo sequences and a gradient echo sequence. Netherl J Med 2000;56 (4):133–7.CrossRefGoogle Scholar
Gomori, J, Horev, G, Tamary, H, et al. Hepative iron overload: quantitative MR imaging. Radiology 1991;179 (2):367–9.CrossRefGoogle Scholar
Patel, J, Sigmund, EE, Rusinek, H, et al. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imag 2010;31 (3):589–600.CrossRefGoogle ScholarPubMed
Zhang, J, Sigmund, E, Rusinek, H, et al., eds. Quantification of renal diffusion-weighted images using a bi-exponential model. Proc 17th Scientific Meeting International Society for Magnetic Resonance in Medicine: Honolulu; 2009.Google Scholar
Zhang, JL, Sigmund, EE, Chandarana, H, et al. Variability of renal apparent diffusion coefficients: limitations of the monoexponential model for diffusion quantification. Radiology 2010;254 (3):783–92.CrossRefGoogle ScholarPubMed
Kim, S, Jain, M, Harris, AB, et al. T1 hyperintense renal lesions: characterization with diffusion-weighted MR imaging versus contrast-enhanced MR imaging. Radiology 2009;251 (3):796–807.CrossRefGoogle ScholarPubMed
Taouli, B, Thakur, RK, Mannelli, L, et al. Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology 2009;251 (2):398–407.CrossRefGoogle ScholarPubMed
Thoeny, HC, Keyzer, F, Oyen, RH, Peeters, RR. Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 2005;235 (3):911–17.Google ScholarPubMed
Thoeny, HC, Zumstein, D, Simon-Zoula, S, et al. Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 2006;241 (3):812–21.CrossRefGoogle ScholarPubMed
Chandarana, H, Hecht, E, Taouli, B, Sigmund, E, eds. Diffusion tensor imaging of in vivo human kidney at 3 T: robust anisotropy measurement in the medulla. Proc 16th Scientific Meeting International Society for Magnetic Resonance in Medicine: Toronto; 2008.Google Scholar
Kim, S, Naik, M, Sigmund, EE, Taouli, B.Diffusion-weighted MR imaging of the kidneys and the urinary tract. Magn Reson Imag Clin N Am 2008;16 (4):585–96.CrossRefGoogle ScholarPubMed
Ries, M, Jones, RA, Basseau, F, Moonen, CTW, Grenier, N.Diffusion tensor MRI of the human kidney. J Magn Reson Imag 2001;14 (1):42–9.CrossRefGoogle ScholarPubMed
Chandarana, H, Lee, V, Barash, I, Sigmund, E, eds. Understanding renal DTI at 3T: FA and MD changes with water loading. Proc 17th Scientific Meeting International Society for Magnetic Resonance in Medicine: Honolulu; 2009 April;.Google Scholar
Chandarana, H, Lee, V, Stoffel, D, et al., eds. Evaluation of normal and dysfunctional renal transplants using DTI. Proc 17th Scientific Meeting International Society for Magnetic Resonance in Medicine: Honolulu; 2009.Google Scholar
Zelhof, B, Pickles, M, Liney, G, et al. Correlation of diffusion-weighted magnetic resonance data with cellularity in prostate cancer. BJU Int 2009;103 (7):883–8.CrossRefGoogle ScholarPubMed
Hosseinzadeh, K, Schwarz, SD.Endorectal diffusion-weighted imaging in prostate cancer to differentiate malignant and benign peripheral zone tissue. J Magn Reson Imag 2004;20 (4):654–61.CrossRefGoogle ScholarPubMed
Kim, CK, Park, BK, Han, JJ, Kang, TW, Lee, HM.Diffusion-weighted imaging of the prostate at 3 T for differentiation of malignant and benign tissue in transition and peripheral zones: preliminary results. J Comput Assist Tomogr 2007;31 (3):449–54.CrossRefGoogle Scholar
Morgan, VA, Kyriazi, S, Ashley, SE, DeSouza, NM.Evaluation of the potential of diffusion-weighted imaging in prostate cancer detection. Acta Radiol 2007;48 (6):695–703.CrossRefGoogle ScholarPubMed
Xu, JQ, Humphrey, PA, Kibel, AS, et al. Magnetic resonance diffusion characteristics of histologically defined prostate cancer in humans. Magn Reson Med 2009;61 (4):842–50.CrossRefGoogle ScholarPubMed
Takayama, Y, Kishimoto, R, Hanaoka, S, et al. ADC value and diffusion tensor imaging of prostate cancer: changes in carbon-ion radiotherapy. J Magn Reson Imag 2008;27 (6):1331–5.CrossRefGoogle ScholarPubMed
Manenti, G, Carlani, M, Mancino, S, et al. Diffusion tensor magnetic resonance imaging of prostate cancer. Investig Radiol 2007;42 (6):412–19.CrossRefGoogle ScholarPubMed
Sinha, S, Sinha, U.In vivo diffusion tensor imaging of the human prostate. Magn Reson Med 2004;52 (3):530–7.CrossRefGoogle ScholarPubMed
Gurses, B, Kabakci, N, Kovanlikaya, A, et al. Diffusion tensor imaging of the normal prostate at 3 Tesla. Eur Radiol 2008;18 (4):716–21.CrossRefGoogle ScholarPubMed
Mulkern, RV, Barnes, AS, Haker, SJ, et al. Biexponential characterization of prostate tissue water diffusion decay curves over an extended b-factor range. Magn Reson Imag 2006;24 (5):563–8.CrossRefGoogle ScholarPubMed
Shinmoto, H, Oshio, K, Tanimoto, A, et al. Biexponential apparent diffusion coefficients in prostate cancer. Magn Reson Imag 2009;27 (3):355–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×