Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T17:07:33.150Z Has data issue: false hasContentIssue false

6 - Some Classical Topics

Published online by Cambridge University Press:  06 July 2010

John Swallow
Affiliation:
Davidson College, North Carolina
Get access

Summary

Knowing the Galois correspondence for subfields of ℂ and some strategies for the determination of Galois groups of field extensions is, of course, just the beginning. It is of interest to determine the Galois groups of families of polynomials, to determine field extensions of a ℚ with a specified Galois group, to find generalizations of the Galois theory of subfields of ℂ to arbitrary fields, and to apply the tools of Galois theory to solve problems further a field. In this chapter, we give introductions to several of these topics.

Roots of Unity and Cyclotomic Extensions

Perhaps the most basic polynomials are those of the form Xn − 1. In this section, we study their roots, called roots of unity, and the field extensions they generate. We first define roots of unity and cyclotomic extensions.

Definition 30.1 (Root of Unity, Primitive Root of Unity). A root of unity ω is a root, in the complex numbers, of a polynomial of the form Xn − 1 for some n ∈ ℕ. We say that ω is a primitive root of unity of order n, or a primitive nth root, if ω is a root of Xn − 1, but not of Xm − 1 for any 1 ≤ m < n.

Note that the definition of a root of unity ω is equivalent to saying that ω is an element of finite order in the multiplicative group ℂ* of ℂ, and it will be useful to view roots of unity in this way. You may wish to recall some results on finite cyclic groups, particularly concerning which elements of a cyclic group are generators of that group.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Some Classical Topics
  • John Swallow, Davidson College, North Carolina
  • Book: Exploratory Galois Theory
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755200.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Some Classical Topics
  • John Swallow, Davidson College, North Carolina
  • Book: Exploratory Galois Theory
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755200.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Some Classical Topics
  • John Swallow, Davidson College, North Carolina
  • Book: Exploratory Galois Theory
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755200.008
Available formats
×