Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T20:07:36.077Z Has data issue: false hasContentIssue false

16 - Early evolution of body size in bats

Published online by Cambridge University Press:  05 June 2012

Gregg F. Gunnell
Affiliation:
Duke University, North Carolina
Nancy B. Simmons
Affiliation:
American Museum of Natural History, New York
Get access

Summary

Introduction

Size is the single most important factor affecting physiology, locomotion, ecology and behavior of mammals (MacNab, 2007 and citations therein). Understanding evolution of size is important in all organisms, but especially so in cases like bats which exhibit many energetically expensive behaviors (e.g., powered flight, echolocation, long-distance migration), as well as characteristics that represent extreme energy-saving mechanisms (e.g., torpor and hibernation). Most bat species are small: from data in Smith et al. (2004), the central tendency in size in extant bats, as estimated by the median value, is around 14 g (Figure 16.1). However, size in bats as a group spans three orders of magnitude, ranging from 2–3 g (e.g., Craseonycteris, Thyroptera, Furipterus, some vespertilionids; Smith et al., 2004) to a few species exceeding 1 kg (e.g., Acerodon jubatus, Pteropus vampyrus; Kunz and Pierson, 1994). This variation in size scales a number of fundamental traits in bats, including physiological features (e.g., basal metabolic rate; McNab and Bonaccorso, 2001; MacNab, 2003, Speakman and Thomas, 2003); aerodynamic performance (Norberg, 1986, 1990; Rayner, 1986; Watts et al., 2001); dimensions of limb bones and their biomechanical properties (Swartz, 1997, 1998; Swartz and Middleton, 2008); behaviors (e.g., extreme dietary habits like carnivory; Norberg and Fenton, 1988); echolocation call parameters (Jones, 1999); and most life-history traits (e.g., litter mass; Hayssen and Kunz, 1996). These traits likely have an important phylogenetic component of variation, as has been shown, for instance, for the relationship of basal metabolic rate to body mass (Cruz-Neto et al., 2001; cf. MacNab, 2007). Besides the many dependent variables responding to body mass in various ways, size is a fundamental trait that should be understood by itself as an evolving character in bat lineages.

Type
Chapter
Information
Evolutionary History of Bats
Fossils, Molecules and Morphology
, pp. 530 - 555
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altenbach, J. C. 1979 Locomotor morphology of the Vampire Bat, American Society of Mammalogists, Special Publication 6 1Google Scholar
Barclay, R. M. R.Brigham, R. M. 1991 Prey detection, dietary niche breadth and body size in bats: why are aerial insectivorous bats so small?American Naturalist 137 693Google Scholar
Calder, W. A. 1996 Size, Function, and Life HistoryNew YorkDover PublicationsGoogle Scholar
Cruz-Neto, A. P.Jones, K. E. 2007 Exploring the evolution of the basal metabolic rate in batsFunctional and Evolutionary Ecology of BatsZubaid, A.McCracken, G. F.Kunz, T. H.OxfordOxford University Press56Google Scholar
Cruz-Neto, A. P.Garland, T.Abe, A. S. 2001 Diet, phylogeny and basal metabolic rate in phyllostomid batsZoology 104 49CrossRefGoogle ScholarPubMed
De Esteban Trivigno, S.Mendoza, M.De Renzi, M. 2008 Body Mass Estimation in Xenarthra: a predictive equation suitable for all quadrupedal terrestrial placentals?Journal of Morphology 269 1276CrossRefGoogle ScholarPubMed
Eick, G. N.Jacobs, D. S.Matthee, C. A. 2005 A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant batsMolecular Biology and Evolution 22 1869CrossRefGoogle ScholarPubMed
Eiting, T. P.Gunnell, G. F. 2009 Global completeness of the bat fossil recordJournal of Mammalian Evolution 16 151CrossRefGoogle Scholar
Epstein, J. H.Olival, K. J.Pulliam, J. R. C. 2009
Farris, J. S. 1970 Methods for computing Wagner treesSystematic Zoology 19 83CrossRefGoogle Scholar
Giannini, N. P.Kalko, E. K. V. 2005 The guild structure of animalivorous leaf-nosed bats of Barro Colorado Island, Panama, revisitedActa Chiropterologica 7 131CrossRefGoogle Scholar
Goloboff, P. A.Mattoni, C. I.Quinteros, A. S. 2006 Continuous characters analyzed as suchCladistics 22 589CrossRefGoogle Scholar
Goloboff, P. A.Farris, J. S.Nixon, K. 2008 TNT, a free program for phylogenetic analysisCladistics 24 774CrossRefGoogle Scholar
Gould, G. C.MacFadden, B. J. 2004 Gigantism, dwarfism, and Cope's Rule: “Nothing in evolution makes sense without a phylogeny”Tributes to Malcolm C. McKenna: His Students, His LegacyGould, G. C.Bell, S. K.Bulletin of the American Museum of Natural History 285 219Google Scholar
Gunnell, G. F.Simmons, N. B. 2005 Fossil evidence and the origin of batsJournal of Mammalian Evolution 12 209CrossRefGoogle Scholar
Habersetzer, J.Storch, G. 1987 Klassifikation und funktionelle Flügelmorphologie paläogener Fledermäuse (Mammalia, Chiroptera)Courier Forschungsinstitut Senckenberg 91 11Google Scholar
Hayssen, V.Kunz, T. H. 1996 Allometry of litter mass in bats: comparisons with maternal size, wing morphology, and phylogenyJournal of Mammalogy 77 476CrossRefGoogle Scholar
Hermsen, E. J.Hendricks, J. R. 2008 W(h)ither fossils? Studying morphological character evolution in the age of molecular sequencesAnnals of the Missouri Botanical Garden 95 72CrossRefGoogle Scholar
Hutcheon, J. M.Garland, Jr., T. 2004 Are megabats big?Journal of Mammalian Evolution 11 257CrossRefGoogle Scholar
Jones, G. 1999 Scaling of echolocation call parameters in batsJournal of Experimental Biology 202 3359Google ScholarPubMed
Kunz, T. H.Pierson, E. D. 1994 Bats of the world: an introductionWalker's Bats of the WorldNowak, R. M.Baltimore, MDJohns Hopkins University Press1Google Scholar
MacNab, B. K. 2003 Standard energetics of phyllostomid bats: the inadequacies of phylogenetic-contrast analysesComparative Biochemistry and Physiology 135A 357CrossRefGoogle Scholar
MacNab, B. K. 2007 The evolution of energetics in birds and mammalsThe Quintessential Naturalist: Honoring the Life and Legacy of Oliver P. PearsonKelt, D. A.Lessa, E. P.Salazar-Bravo, J.Patton, J. L.University of California Publications, Zoology 134 67Google Scholar
MacNab, B. K.Bonaccorso, F. J. 2001 The metabolism of New Guinean pteropodid batsJournal of Comparative Physiology B 171 201CrossRefGoogle Scholar
McMahon, T. A. 1975 Allometry and biomechanics: limb bones in adult ungulatesAmerican Naturalist 109 547CrossRefGoogle Scholar
Murphy, W. J.Eizirik, E.O'Brien, S. J. 2001 Resolution of the early placental mammal radiation using Bayesian phylogeneticsScience 294 2348CrossRefGoogle ScholarPubMed
Niklas, K. J. 1994 Plant Allometry. The Scaling of Form and ProcessChicago, ILUniversity of Chicago PressGoogle Scholar
Norberg, U. M. 1986 On the evolution of flight and wing forms in batsBat Flight/Fledermausflug. BIONA Report 5Nachtigall, W.StuttgartGustav Fischer13Google Scholar
Norberg, U. M. 1990 Vertebrate Flight: Mechanics, Physiology, Morphology, Ecology and EvolutionBerlinSpringer-VerlagCrossRefGoogle Scholar
Norberg, U. M. 1994 Wing design, flight performance, and habitat use in batsEcological Morphology: Integrative Organismal BiologyWainright, P. C.Reill, M.Chicago, ILUniversity of Chicago Press205Google Scholar
Norberg, U. M. 1998 Morphological adaptations for flight in batsBat Biology and ConservationKunz, T. H.Racey, P. A.Washington, DCSmithsonian Institution Press93Google Scholar
Norberg, U. M.Fenton, M. B. 1988 Carnivorous bats?Biological Journal of the Linnean Society 33 383CrossRefGoogle Scholar
Prasad, A. B.Allard, M. W.NISC Comparative Sequencing ProgramGreen, E. D. 2008 Confirming the phylogeny of mammals by use of large comparative sequence datasetsMolecular Biology and Evolution 25 1795CrossRefGoogle Scholar
Pennycuick, C. J. 1986 Mechanical constraints on the evolution of flightThe Origin of Birds and the Evolution of FlightPadian, K.Memoirs of the California Academy of Sciences 8 83Google Scholar
Rayner, J. 1986 Vertebrate flapping mechanics and aerodynamics, and the evolution of flight in batsBat Flight/Fledermausflug. BIONA Report 5Nachtigall, W.StuttgartGustav Fischer27Google Scholar
Riskin, D. K.Bertram, J. E. A.Hermanson, J. W. 2005 Testing the hindlimb-strength hypothesis: non-aerial locomotion by Chiroptera is not constrained by the dimensions of the femur or tibiaJournal of Experimental Biology 208 1309CrossRefGoogle ScholarPubMed
Roberts, L. H. 1975 Confirmation of the echolocation pulse production mechanism of Journal of Mammalogy 56 218CrossRefGoogle Scholar
Simmons, N. B.Geisler, J. H. 1998 Phylogenetic relationships of , , , and to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in MicrochiropteraBulletin of the American Museum of Natural History 235 1Google Scholar
Simmons, N. B.Seymour, K. L.Habersetzer, J.Gunnell, G. F. 2008 Primitive early Eocene bat from Wyoming and the evolution of flight and echolocationNature 451 818CrossRefGoogle ScholarPubMed
Simmons, N. B.Seymour, K. L.Habersetzer, J.Gunnell, G. F. 2010 Inferring echolocation in ancient batsNature 466 E8CrossRefGoogle ScholarPubMed
Schutt, W. A.Simmons, N. B. 2005 Quadrupedal bats: form, function, and evolutionFunctional and Evolutionary Ecology of BatsZubaid, A.McCracken, G. F.Kunz, T. H.OxfordOxford University Press145Google Scholar
Smith, F. A.Lyons, S. K.Morgan, E. K. 2004 Body mas of Late Quaternary mammals. Ecological Archives E084–094Ecology 84 3403CrossRefGoogle Scholar
Speakman, J. R.Thomas, D. W. 2003 Physiological ecology and energetics of batsBat EcologyKunz, T. H.Fenton, M. B.Chicago, ILUniversity of Chicago Press430Google Scholar
Speakman, J. R.Racey, P. A. 1991 No cost of echolocation for bats in flightNature 350 421CrossRefGoogle ScholarPubMed
Swartz, S. M. 1997 Allometric patterning in the limb skeleton of bats: implications for the mechanics and energetics of powered flightJournal of Morphology 234 2773.0.CO;2-6>CrossRefGoogle Scholar
Swartz, S. M. 1998 Skin and bones: the mechanical properties of bat wing tissuesBats: Phylogeny, Morphology, Echolocation, and Conservation BiologyKunz, T. H.Racey, P. A.Washington, DCSmithsonian Institution Press109Google Scholar
Swartz, S. M.Middleton, K. M. 2008 Biomechanics of the bat limb skeleton: scaling, material properties and mechanicsCell Tissues Organs 187 59CrossRefGoogle ScholarPubMed
Swartz, S. M.Bishop, K.Aguirre, M.-F. I. 2005 Dynamic complexity of wing form in bats: implications for flight performanceFunctional and Evolutionary Ecology of BatsZubaid, A.McCracken, G. F.Kunz, T. H.OxfordOxford University Press110Google Scholar
Teeling, E. C.Springer, M. S.Madsen, O. 2005 A molecular phylogeny for bats illuminates biogeography and the fossil recordScience 307 580CrossRefGoogle ScholarPubMed
Tejedor, M. F.Czaplewski, N. J.Goin, F. J.Aragón, E. 2005 The oldest record of South American batsJournal of Vertebrate Paleontology 25 990CrossRefGoogle Scholar
Vaughan, T. A. 1977 Foraging behavior of the giant leaf-nosed bat ()East African Wildlife Journal 15 237CrossRefGoogle Scholar
Veselka, N.McErlain, D. D.Holdsworth, D. W. 2010 A bony connection signals laryngeal echolocation in batsNature 463 939CrossRefGoogle ScholarPubMed
Watts, P.Mitchell, E. J.Swartz, S. M. 2001 A computational model for estimating the mechanics of horizontal flapping flight in bats: model description and validationJournal of Experimental Biology 204 2873Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×