Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T19:37:35.503Z Has data issue: false hasContentIssue false

9 - A bird? A plane? No, it's a bat: an introduction to the biomechanics of bat flight

Published online by Cambridge University Press:  05 June 2012

Gregg F. Gunnell
Affiliation:
Duke University, North Carolina
Nancy B. Simmons
Affiliation:
American Museum of Natural History, New York
Get access

Summary

Introduction

Bats are unique among mammals for their ability to fly. A substantial body of research has focused on understanding how they do so, and in 1990, Norberg's landmark volume provided an up-to-date understanding of diverse aspects of bat flight (Norberg, 1990). Building on work accomplished before 1990, our understanding of bat flight has changed significantly in the last two decades, and warrants an updated review. For example, many hypotheses about how bats fly were based either on aircraft aerodynamics or on studies of birds. In some respects, these predictions did fit bats well. However, recent advances in the study of bat flight have also revealed important differences between winged mammals and other fliers. Although we have, of course, always known that a bat is neither a bird nor a plane, the significance of the differences among bats and all other flyers are only now becoming clear.

In this chapter, we provide an overview of the morphology of bats from the perspective of their unique capacity for powered flight. Throughout the chapter, we provide references to classic literature concerning animal flight and the bat flight apparatus, and direct readers to sources of additional information where possible. We focus on relatively newer work that over the last 20 years has begun to change the ways in which we understand how bats carry out their remarkable flight behavior, and that has altered the way we understand the structural underpinnings of bat flight.

Type
Chapter
Information
Evolutionary History of Bats
Fossils, Molecules and Morphology
, pp. 317 - 352
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldridge, H. D. J. N. 1986 Kinematics and aerodynamics of the greater horseshoe bat, , in horizontal flight at various flight speedsJournal of Experimental Biology 126 479Google ScholarPubMed
Aldridge, H. D. J. N. 1987 Body accelerations during the wingbeat in six bat species: the function of the upstroke in thrust generationJournal of Experimental Biology 130 275Google Scholar
Aldridge, H. D. J. N. 1987 Turning flight of batsJournal of Experimental Biology 128 419Google ScholarPubMed
Aldridge, H. D. J. N.Rautenbach, I. L. 1987 Morphology, echolocation and resource partitioning in insectivorous batsJournal of Animal Ecology 56 763CrossRefGoogle Scholar
Alexander, R. M. 2003 Principles of Animal LocomotionPrinceton, NJPrinceton University PressCrossRefGoogle Scholar
Altenbach, J. S. 1979 Locomotor morphology of the vampire bat, Special Publication, American Society of Mammalogists 6 1Google Scholar
Altenbach, J. S.Hermanson, J. W. 1987 Bat flight muscle function and the scapulo-humeral lockRecent Advances in the Study of BatsFenton, M. B.Racey, P.Rayner, J. V. M.CambridgeCambridge University Press100Google Scholar
Anderson, J. D. 2005 Fundamentals of AerodynamicsNew YorkMcGraw-HillGoogle Scholar
Ansari, S. A.Zbikowski, R.Knowles, K. 2006 Aerodynamic modelling of insect-like flapping flight for micro air vehiclesProgress in Aerospace Sciences 42 129CrossRefGoogle Scholar
Azuma, A. 2006 The Biokinetics of Flying and SwimmingReston, VAAmerican Institute of Aeronautics and AstronauticsCrossRefGoogle Scholar
Basset, J. E.Studier, E. H. 1988 Methods for determining water balance in batsEcological and Behavioral Methods for the Study of BatsKunz, T. H.Washington, DCSmithsonian Institution Press373Google Scholar
Bergou, A. J.Xu, S.Wang, Z. J. 2007 Passive wing pitch reversal in insect flightJournal of Fluid Mechanics 591 321CrossRefGoogle Scholar
Biewener, A. A. 2003 Animal LocomotionOxfordOxford University PressGoogle Scholar
Birch, J. M.Dickson, W. B.Dickinson, M. H. 2004 Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbersJournal of Experimental Biology 207 1063CrossRefGoogle Scholar
Combes, S. A.Daniel, T. L. 2001 Shape, flapping and flexion: wing and fin design for forward flightJournal of Experimental Biology 204 2073Google ScholarPubMed
Combes, S. A.Daniel, T. L. 2003 Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Journal of Experimental Biology 206 2999CrossRefGoogle Scholar
Crowley, G. V.Hall, L. S. 1994 Histological observations on the wing of the grey-headed flying fox () (Chiroptera: Pteropodidae)Australian Journal of Zoology 42 215CrossRefGoogle Scholar
Currey, J. D. 1984 The Mechanical Adaptations of BonesPrinceton, NJPrinceton University PressCrossRefGoogle Scholar
Currey, J. D. 2002 Bones: Structure and MechanicsPrinceton, NJPrinceton University PressGoogle Scholar
Currey, J. D.Alexander, R. McN. 1985 The thickness of the walls of tubular bonesJournal of Zoology, London 206 453CrossRefGoogle Scholar
Daniel, T. L.Combes, S. A. 2002 Flexible wings and fins: bending by inertial or fluid-dynamic forces?Integrative and Comparative Biology 42 1044CrossRefGoogle ScholarPubMed
Dickinson, M. H. 1994 The effects of wing rotation on unsteady aerodynamic performance at low Reynolds numbersJournal of Experimental Biology 192 179Google ScholarPubMed
Dickinson, M. H. 1996 Unsteady mechanisms of force generation in aquatic and aerial locomotionAmerican Zoologist 36 537CrossRefGoogle Scholar
Dickinson, B. T. 2010 Hair receptor sensitivity to changes in laminar boundary layer shapeBioinspiration and Biomimetics 5 1CrossRefGoogle ScholarPubMed
Dickinson, M. H.Lehman, F. O.Sane, S. P. 1999 Wing rotation and the aerodynamic basis of insect flightScience 284 1954CrossRefGoogle ScholarPubMed
Ellington, C. P. 1975 Non-steady-state aerodynamics of the flight of Swimming and Flying in NatureWu, T. Y. T.Brokaw, C. J.Brennen, C.New YorkPlenum Press783CrossRefGoogle Scholar
Fry, S. N.Sayaman, R.Dickinson, M. H. 2005 The aerodynamics of hovering flight in Journal of Experimental Biology 208 2303CrossRefGoogle Scholar
Gupta, B. B. 1967 The histology and musculature of the plagiopatagium in batsMammalia 31 313CrossRefGoogle Scholar
Hedenström, A.Johansson, L. C.Wolf, M. 2007 Bat flight generates complex aerodynamic tracksScience 316 894CrossRefGoogle ScholarPubMed
Hedenström, A.Muijres, F. T.von Busse, R. 2009 High-speed stereo DPIV measurement of wakes of two bat species flying freely in a wind tunnelExperiments in Fluids 46 923CrossRefGoogle Scholar
Hedrick, T. L.Usherwood, J. R.Biewener, A. A. 2004 Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels () flying across a range of speedsJournal of Experimental Biology 207 1689CrossRefGoogle ScholarPubMed
Hermanson, J. W. 1998 Chiropteran muscle biology: a perspective from molecules to functionBat Biology and ConservationKunz, T. H.Racey, P. A.Washington, DCSmithsonian Institution Press127Google Scholar
Hermanson, J. W.Altenbach, J. S. 1981 Functional anatomy of the primary downstroke muscles in the Pallid bat, Journal of Mammalogy 64 795CrossRefGoogle Scholar
Hermanson, J. W.Altenbach, J. S. 1983 The functional anatomy of the shoulder of the Pallid bat, Journal of Mammalogy 64 62CrossRefGoogle Scholar
Hermanson, J. W.Altenbach, J. S. 1985 Functional anatomy of the shoulder and arm of the fruit-eating bat, Journal of Zoology 205 157CrossRefGoogle Scholar
Hermanson, J. W.Foehring, R. C. 1988 Histochemistry of flight muscles in the Jamaican fruit bat, – implications for motor controlJournal of Morphology 196 353CrossRefGoogle ScholarPubMed
Hermanson, J. W.Cobb, M. A.Schutt, W. A.Muradali, F.Ryan, J. M. 1993 Histochemical and myosin composition of vampire bat () pectoralis muscle targets a unique locomotory nicheJournal of Morphology 217 347CrossRefGoogle ScholarPubMed
Holbrook, K. A.Odland, G. F. 1978 A collagen and elastic network in the wing of a batJournal of Anatomy 126 21Google ScholarPubMed
Hubel, T. Y.Tropea, C. 2009 Experimental investigation of a flapping wing modelExperiments in Fluids 46 945CrossRefGoogle Scholar
Hubel, T. Y.Tropea, C. 2010 The importance of leading edge vortices under simplified flapping flight conditions at the size scale of birdsJournal of Experimental Biology 213 1930CrossRefGoogle Scholar
Hubel, T. Y.Hristov, N. I.Swartz, S. M.Breuer, K. S. 2009 Time-resolved wake structure and kinematics of bat flightExperiments in Fluids 46 933CrossRefGoogle Scholar
Hubel, T. Y.Riskin, D. K.Swartz, S. M.Breuer, K. S. 2010 Wake structure and wing kinematics: the flight of the lesser dog-faced fruit bat, Journal of Experimental Biology 213 3427CrossRefGoogle Scholar
Humphry, G. M. 1869 The myology of the limbs of Journal of Anatomical PhysiologyI 3 294Google Scholar
Iriarte-Díaz, J.Swartz, S. M. 2008 Kinematics of slow turn maneuvering in the fruit bat, Journal of Experimental Biology 211 3478CrossRefGoogle Scholar
Iriarte-Díaz, J.Riskin, D. K.Willis, D. J.Breuer, K. S.Swartz, S. M. 2011 Whole-body kinematics of a fruit bat reveal the influence of wing inertia on body accelerationsJournal of Experimental Biology 214 1546CrossRefGoogle ScholarPubMed
Jenkins, F. A.Dial, K. P.Goslow, G. E. 1988 A cineradiographic analysis of bird flight: the wishbone in starlings is a springScience 241 1495CrossRefGoogle ScholarPubMed
Johansson, L. C.Wolf, M.von Busse, R. 2008 The near and far wake of Pallas' long tongued bat ()Journal of Experimental Biology 211 2909CrossRefGoogle Scholar
Kundu, P. K.Cohen, I. M. 2008 Fluid MechanicsNew YorkAcademic PressGoogle Scholar
Lentink, D.Muller, U. K.Stamhuis, E. J. 2007 How swifts control their glide performance with morphing wingsNature 446 1082CrossRefGoogle ScholarPubMed
Lian, Y. S.Shyy, W.Ifju, P. G.Vernon, E. 2003 Membrane wing model for micro air vehiclesAmerican Institute of Aeronautics and Astronautics Journal 41 2492CrossRefGoogle Scholar
Lian, Y. S.Shyy, W.Viieru, D.Zhang, B. N. 2003 Membrane wing aerodynamics for micro air vehiclesProgress in Aerospace Sciences 39 425CrossRefGoogle Scholar
Macalister, A. 1872 The myology of the CheiropteraPhilosophical Transactions of the Royal Society of London 162 125CrossRefGoogle Scholar
Makanya, A. N.Mortola, J. P. 2007 The structural design of the bat wing web and its possible role in gas exchangeJournal of Anatomy 211 687CrossRefGoogle ScholarPubMed
Maxworthy, T. 1979 Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the “fling”Journal of Fluid Mechanics 93 47CrossRefGoogle Scholar
Meyers, R. A.Hermanson, J. W. 1994 Pectoralis muscle morphology in the little brown bat, : a non-convergence with birdsJournal of Morphology 219 269CrossRefGoogle ScholarPubMed
Miller, G. S. J. 1907 The families and genera of batsBulletin of the United States National Museum 57 1Google Scholar
Muijres, F. T.Johansson, L. C.Barfield, R. 2008 Leading-edge vortex improves lift in slow-flying batsScience 319 1250CrossRefGoogle ScholarPubMed
Norberg, U. M. 1970 Functional osteology and myology of the wing of Linnaeus (Chiroptera)Arkiv for Zoologi 33 483Google Scholar
Norberg, U. M. 1972 Functional osteology and myology of the wing of the dog-faced bat (É. Geoffroy) (Mammalia, Chiroptera)Zoomorphology 73 1Google Scholar
Norberg, U. M. 1976 Aerodynamics, kinematics and energetics of horizontal flapping flight in the long-eared bat Journal of Experimental Biology 65 179Google ScholarPubMed
Norberg, U. M. 1990 Vertebrate Flight: Flight Mechanics, Physiology, Morphology, Ecology, and EvolutionBerlinSpringer-VerlagCrossRefGoogle Scholar
Norberg, U. M.Rayner, J. M. V. 1987 Ecological morphology and flight in bats (Mammalia, Chiroptera) – wing adaptations, flight performance, foraging strategy and echolocationPhilosophical Transactions of the Royal Society of London Series B 316 337CrossRefGoogle Scholar
Norberg, U. M.Kunz, T. H.Steffensen, J. F.Winter, Y.von Helversen, O. 1993 The cost of hovering and forward flight in a nectar-feeding bat, , estimated from aerodynamic theoryJournal of Experimental Biology 182 207Google Scholar
Papadimitriou, H. M.Swartz, S. M.Kunz, T. H. 1996 Ontogenetic and anatomic variation in mineralization of the wing skeleton of the Mexican free-tailed bat, Journal of Zoology 240 411CrossRefGoogle Scholar
Purcell, E. M. 1977 Life at low Reynolds numberAmerican Journal of Physics 45 3CrossRefGoogle Scholar
Quay, W. B. 1970 Integument and derivativesBiology of BatsWimsatt, W. A.New YorkAcademic Press1Google Scholar
Rayner, J. M. V.Aldridge, H. D. J. N. 1985 Three-dimensional reconstruction of animal flight paths and the turning flight of microchiropteran batsJournal of Experimental Biology 118 247Google Scholar
Rayner, J. M. V.Jones, G.Thomas, A. L. R. 1986 Vortex flow visualizations reveal change in upstroke function with flight speed in batsNature 321 162CrossRefGoogle Scholar
Riskin, D. K.Willis, D. J.Iriarte-Díaz, J. 2008 Quantifying the complexity of bat wing kinematicsJournal of Theoretical Biology 254 604CrossRefGoogle ScholarPubMed
Riskin, D. K.Bahlman, J. W.Hubel, T. Y.Ratcliffe, J. M.Kunz, T. H.Swartz, S. M. 2009 Bats go head-under-heels: the biomechanics of landing on a ceilingJournal of Experimental Biology 212 944CrossRefGoogle ScholarPubMed
Riskin, D. K.Iriarte-Diaz, J.Middleton, K. M.Breuer, K. S.Swartz, S. M. 2010 The effect of body size on the wing movements of pteropodid bats, with insights into thrust and lift productionJournal of Experimental Biology 213 4110CrossRefGoogle ScholarPubMed
Sane, S. P. 2003 The aerodynamics of insect flightJournal of Experimental Biology 206 4191CrossRefGoogle ScholarPubMed
Saunders, M. B.Barclay, R. M. R. 1992 Ecomorphology of insectivorous bats: a test of predictions using two morphologically similar speciesEcology 73 1335CrossRefGoogle Scholar
Sears, K. E.Behringer, R. R.Rasweiler, J. J.Niswander, L. A. 2006 Development of bat flight: morphologic and molecular evolution of bat wing digitsProceedings of the National Academy of Sciences, USA 103 6581CrossRefGoogle ScholarPubMed
Shyy, W.Berg, M.Ljungqvist, D. 1999 Flapping and flexible wings for biological and micro air vehiclesProgress in Aerospace Sciences 35 455CrossRefGoogle Scholar
Song, A.Tian, X.Israeli, E. 2008 Aeromechanics of membrane wings, with implications for animal flightAmerican Institute of Aeronautics and Astronautics Journal 46 2096CrossRefGoogle Scholar
Spedding, G. R. 1987 The wake of a kestrel () in flapping flightJournal of Experimental Biology 127 59Google Scholar
Spedding, G. R.Rosén, M.Hedenström, A. 2003 A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speedsJournal of Experimental Biology 206 2313CrossRefGoogle Scholar
Srygley, R. B.Thomas, A. L. R. 2002 Unconventional lift-generating mechanisms in free-flying butterfliesNature 420 660CrossRefGoogle ScholarPubMed
Sterbing-D'Angelo, S.Chadha, M.Chiu, C. 2011 Bat wing sensors support flight controlProceedings of the National Academy of Sciences, USA 108 11291CrossRefGoogle ScholarPubMed
Stockwell, E. F. 2001 Morphology and flight manoeuvrability in New World leaf-nosed bats (Chiroptera: Phyllostomidae)Journal of Zoology 254 505CrossRefGoogle Scholar
Strickler, T. L. 1978 Functional osteology and myology of the shoulder in the ChiropteraContributions to Vertebrate EvolutionHecht, M. K.Szalay, F. S.New YorkS. Karger1Google Scholar
Studier, E. H. 1972 Some physical properties of wing membranes of batsJournal of Mammalogy 53 623CrossRefGoogle Scholar
Swartz, S. M. 1997 Allometric patterning in the limb skeleton of bats: implications for the mechanics and energetics of powered flightJournal of Morphology 234 2773.0.CO;2-6>CrossRefGoogle Scholar
Swartz, S. M.Middleton, K. M. 2008 Biomechanics of the bat limb skeleton: scaling, material properties and mechanicsCells Tissues Organs 187 59CrossRefGoogle ScholarPubMed
Swartz, S. M.Bennett, M. B.Carrier, D. R. 1992 Wing bone stresses in free flying bats and the evolution of skeletal design for flightNature 359 726CrossRefGoogle ScholarPubMed
Swartz, S. M.Groves, M. S.Kim, H. D.Walsh, W. R. 1996 Mechanical properties of bat wing membrane skinJournal of Zoology 239 357CrossRefGoogle Scholar
Swartz, S. M.Parker, A.Huo, C. 1998 Theoretical and empirical scaling patterns and topological homology in bone trabeculaeJournal of Experimental Biology 201 573Google ScholarPubMed
Swartz, S. M.Bishop, K. L.Ismael-Aguirre, M.-F. 2005 Dynamic complexity of wing form in bats: implications for flight performanceFunctional and Evolutionary Ecology of BatsAkbar, Z.McCracken, G.Kunz, T. H.OxfordOxford University Press110Google Scholar
Taylor, G. K.Nudds, R. L.Thomas, A. L. R. 2003 Flying and swimming animals cruise at a Strouhal number tuned for high power efficiencyNature 425 707CrossRefGoogle Scholar
Thomson, S. C.Speakman, J. R. 1999 Absorption of visible spectrum radiation by the wing membranes of living pteropodid batsJournal of Comparative Physiology B 169 187CrossRefGoogle ScholarPubMed
Tobalske, B. W.Dial, K. P. 2007 Aerodynamics of wing-assisted incline running in birdsJournal of Experimental Biology 210 1742CrossRefGoogle ScholarPubMed
Torres, G. E.Müller, T. J. 2004 Low-aspect-ratio wing aerodynamics at low Reynolds numbersAmerican Institute of Aeronautics and Astronautics Journal 42 865CrossRefGoogle Scholar
Usherwood, J. R.Hedrick, T. L.McGowan, C. P.Biewener, A. A. 2005 Dynamic pressure maps for wings and tails of pigeons in slow, flapping flight, and their energetic implicationsJournal of Experimental Biology 208 355CrossRefGoogle ScholarPubMed
van denBerg, C.Ellington, C. P. 1997 The three-dimensional leading-edge vortex of a “hovering” model hawkmothPhilosophical Transactions of the Royal Society of London Series B 352 329CrossRefGoogle Scholar
Vaughan, T. A. 1959 Functional morphology of three bats: , , Publications of the Museum of Natural History, University of Kansas 12 1Google Scholar
Vaughan, T. A. 1966 Morphology and flight characteristics of molossid batsJournal of Mammalogy 47 249CrossRefGoogle Scholar
Vogel, S. 1981 Life in Moving FluidsPrinceton, NJPrinceton University PressGoogle Scholar
Voigt, C. C.Winter, Y. 1999 Energetic cost of hovering flight in nectar-feeding bats (Phyllostomidae: Glossophaginae) and its scaling in moths, birds and batsJournal of Comparative Physiology B 169 38CrossRefGoogle ScholarPubMed
Warrick, D. R.Tobalske, B. W.Powers, D. R. 2005 Aerodynamics of the hovering hummingbirdNature 435 1094CrossRefGoogle ScholarPubMed
Warrick, D. R.Tobalske, B. W.Powers, D. R. 2009 Lift production in the hovering hummingbirdProceedings of the Royal Society of London Series B 276 3747CrossRefGoogle ScholarPubMed
Weis-Fogh, T. 1972 Energetics of hovering flight in hummingbirds and in Journal of Experimental Biology 56 79Google Scholar
Weis-Fogh, T. 1973 Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift productionJournal of Experimental Biology 59 169Google Scholar
Winter, Y. 1998 Energetic cost of hovering flight in a nectar-feeding bat measured with fast-response respirometryJournal of Comparative Physiology B 168 434CrossRefGoogle Scholar
Winter, Y.von Helversen, O. 1998 The energy cost of flight: do small bats fly more cheaply than birds?Journal of Comparative Physiology B 168 105CrossRefGoogle ScholarPubMed
Zook, J. M. 2005 The neuroethology of touch in bats: cutaneous receptors of the bat wingNeuroscience Abstracts 78 21Google Scholar
Zook, J. M. 2007 Somatosensory adaptations of flying mammalsEvolution of Nervous Systems: A Comprehensive ReferenceKaas, J. H.Krubitzer, L.Boston, MAElsevier Academic Press215CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×