Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T09:29:52.495Z Has data issue: false hasContentIssue false

4 - Phylogeny and evolutionary history of hystricognathous rodents from the Old World during the Tertiary: new insights into the emergence of modern “phiomorph” families

Published online by Cambridge University Press:  05 August 2015

Franck Barbière
Affiliation:
Universite Montpellier
Laurent Marivaux
Affiliation:
Universite Montpellier
Philip G. Cox
Affiliation:
University of York
Lionel Hautier
Affiliation:
Université de Montpellier II
Get access

Summary

Introduction

The modern Afro-Asian porcupines, the African cane-, mole- and dassie-rats, as well as the South American guinea pigs, chinchillas, capybaras, pacas, agoutis, etc., make up the natural group of the hystricognathous rodents (infra-order Hystricognathi Tullberg, 1899). The phylogenetic relationships between the hystricognaths from South America (caviomorphs (Caviomorpha Wood, 1955)) and Africa (phiomorphs (Phiomorpha sensu Lavocat, 1967; Thryonomyoidea sensu Wood, 1955)) are today well-supported by a body of anatomical (e.g. Wood, 1974; Lavocat, 1976; Bugge, 1985; George, 1985; Meng, 1990; Luckett and Hartenberger, 1993; Martin, 1994) and molecular (e.g. Nedbal et al., 1996; Huchon and Douzery, 2001; Huchon et al., 2002, 2007; Poux et al., 2006; Montgelard et al., 2008; Blanga-Kanfi et al., 2009; Churakov et al., 2010) evidence, and also by endoparasite studies (e.g. Hugot, 1999). In contrast, the phylogenetic and geographic origins of hystricognaths have been the subject of considerable controversy over the past several decades (e.g. Wood and Patterson, 1959; Hoffstetter, 1972; Wood, 1972, 1973, 1974, 1985; Lavocat, 1973, 1974, 1976; Hussain et al., 1978; Flynn et al., 1986; Jaeger, 19; Huchon and Douzery, 2001, 2002; Marivaux et al., 2002, 2004; Jaeger et al., 2010a), and critical issues about their historical biogeography, notably their arrival in South America, are still a matter of on-going debate (e.g. Poux et al., 2006; Bandoni de Oliveira et al., 2009; Sallam et al., 2009, 2011; Coster et al., 2010; Antoine et al., 2012). Although hystricognaths are absent from the earliest Tertiary fossil record at a global scale, their earliest known fossil occurrences date back to the late middle Eocene from both Africa and South America. This either suggests that hystricognaths have rapidly achieved a widespread distribution throughout the Old and New Worlds just after their emergence, or points out the existence of a significant Eocene gap in their fossil record. During the late Eocene and early Oligocene, the group exhibited a high diversity and morphological disparity on both landmasses, thereby suggesting a considerable amount of undocumented diversity in their early evolutionary history.

Type
Chapter
Information
Evolution of the Rodents
Advances in Phylogeny, Functional Morphology and Development
, pp. 87 - 138
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adkins, R. M., Gelke, E. L., Rowe, D. and Honeycutt, R. L. (2001). Molecular phylogeny and divergence time estimates for major rodent groups: evidence from multiple genes. Molecular Biology Evolution, 18, 777–791.CrossRefGoogle ScholarPubMed
Adkins, R. M., Walton, A. H. and Honeycutt, R. L. (2003). Higher-level systematics of rodents and divergence time estimates based on two congruent nuclear genes. Molecular Phylogenetics and Evolution, 26, 409–420.CrossRefGoogle ScholarPubMed
Antoine, P. O., Marivaux, L., Croft, D. A., et al. (2012). Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography. Proceedings of the Royal Society of London B, 279, 1319–1326.CrossRefGoogle ScholarPubMed
Bandoni de Oliveira, F., Molina, E. C. and Marroig, G. (2009). Paleogeography of the South Atlantic: a route for primates and rodents into the New World? In South American Primates: Comparative Perspectives in the Study of Behavior, Ecology, and Conservation. Developments in Primatology. Progress and Prospects, eds. Garber, P. A., Estrada, A., Bicca-Marques, J. C., Heymann, E. W., and Strier, K. B.. New York: Springer, pp. 55–68.Google Scholar
Berggren, W. A. and Prothero, D. R. (Eds.) (1992). Eocene–Oligocene Climatic and Biotic Evolution: an Overview. Princeton: Princeton University Press.CrossRefGoogle Scholar
Blanga-Kanfi, S., Miranda, H., Penn, O., et al. (2009). Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades. BMC Evolutionary Biology, 9, 71.CrossRefGoogle ScholarPubMed
Bohaty, S. M., Zachos, J. C., Florondo, F. and Delaney, M. L. (2009). Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography, 24, PA2207.CrossRefGoogle Scholar
Bremer, K. (1988). The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution, 42, 795–803.CrossRefGoogle ScholarPubMed
Bryant, J. D. and McKenna, M. C. (1995). Cranial anatomy and phylogenetic position of Tsaganomys altaicus (Mammalia: Rodentia) from the Hsanda Gol Formation (Oligocene), Mongolia. American Museum Novitates, 3156, 1–42.Google Scholar
Bugge, J. (1985). Systematic value of the carotid arterial pattern in rodents. In Evolutionary Relationships among Rodents, a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L.. New York: Plenum Press, pp. 381–402.Google Scholar
Chaimanee, Y., Chavasseau, O., Beard, K. C., et al. (2012). A new middle Eocene primate from Myanmar and the initial anthropoid colonization of Africa. Proceedings of the National Academy of Sciences, USA, 109, 10 293–10 297.CrossRefGoogle Scholar
Churakov, G., Sadasivuni, M. K., Rosenbloom, K. R., et al. (2010). Rodent evolution: back to the root. Molecular Biology and Evolution, 27, 1315–1326.CrossRefGoogle ScholarPubMed
Coster, P., Benammi, M., Lazzari, V., et al. (2010). Gaudeamus lavocati sp. nov. (Rodentia, Hystricognathi) from the early Oligocene of Zallah, Libya: first African caviomorph?Naturwissenschaften, 97, 697–706.CrossRefGoogle ScholarPubMed
Coster, P., Benammi, M., Salem, M., et al. (2012). New hystricognath rodents from the lower Oligocene of Central Libya (Zallah Oasis, Saharian desert): systematic, phylogeny and biochronologic implications. Annals of Carnegie Museum, 80, 239–259.Google Scholar
Dawson, M. D., Li, C. K. and Qi, T. (1984). Eocene ctenodactyloid rodents (Mammalia) of Eastern and Central Asia. In Papers in Vertebrate Paleontology Honoring Robert Warren Wilson, ed. Mengel, R. M.. Pittsburgh: Carnegie Museum of Natural History, pp. 138–150.Google Scholar
Dawson, M. R., Marivaux, L., Li, C.-K., Beard, K. C. and Métais, G. (2006). Laonastes and the “lazarus effect” in Recent mammals. Science, 311, 1456–1458.CrossRefGoogle Scholar
de Bruijn, H. (1986). Is the presence of the African family Thryonomyidae in the Miocene deposits of Pakistan evidence for faunal exchange?Proceedings of the Koninklijke Nederlandse Akademie Van Wetenshappen, Ser. B, 89, 125–134.Google Scholar
de Bruijn, H. and Hussain, S. T. (1985). Thryonomyidae from the lower Marchar Formation of Sindh, Pakistan. Palaeontology, 88, 155–166.Google Scholar
de Bruijn, H., Ünay, E., Saraç, G. and Yïlmaz, A. (2003). A rodent assemblage from the Eo/Oligocene boundary interval near Süngülü, Lesser Caucasus, Turkey. In Coloquios de Paleontologia. En honor al Dr. Remmert Daams. Surrounding Fossil Mammals: Dating, Evolution and Paleoenvirontment, eds. López-Martínez, N., Peláez-Campomanes, P. and Fernández, M. Henández. Madrid: Facultad de Ciencias Geologicas Departamento de Paleontologia, pp. 47–76.Google Scholar
Ducrocq, S. (1997). The anthracotheriid genus Bothriogenys (Mammalia, Artiodactyla) in Africa and Asia during the Paleogene: phylogenetical and paleobiogeographical relationships. Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie), 250, 1–44.Google Scholar
Fejfar, O. (1987). Oligocene rodents from Zallah Oasis, Libya. Münchner Geowiss Abhandlungen A, 10, 265–268.Google Scholar
Flynn, L. J. and Cheema, I. U. (1994). Baluchimyine rodents from the Zinda Pir Dome, Western Pakistan: systematic and biochronologic implications. In Rodents and Lagomorph Families of Asian Origins and Diversification, eds. Tomida, Y., Li, C. and Setoguchi, T.. Kyoto: National Science Museum Monographs, pp. 115–129.Google Scholar
Flynn, L. J. and Winkler, A. J. (1994). Dispersalist implications of Paraulacodus indicus: a South Asian rodent of African affinity. Historical Biology, 9, 223–235.CrossRefGoogle Scholar
Flynn, J. J. and Wyss, A. R. (1998). Recent advances in South American mammalian paleontology. Trends in Ecology and Evolution, 13, 449–454.CrossRefGoogle ScholarPubMed
Flynn, L. J., Jacobs, L. L. and Cheema, I. U. (1986). Baluchimyinae, a new ctenodactyloid rodent subfamily from the Miocene of Baluchistan. American Museum Novitates, 2841, 1–58.Google Scholar
Flynn, J. J., Wyss, A. R., Croft, D. A. and Charrier, R. (2003). The Tinguiririca Fauna, Chile: biochronology, paleoecology, biogeography, and a new earliest Oligocene South American Land Mammal “Age”. Palaeogeography, Palaeoclimatology, Palaeoecology, 195, 229–259.CrossRefGoogle Scholar
George, W. (1985). Reproductive and chromosomal characters of ctenodactylids as a key of their evolutionary relationships. In Evolutionary Relationships Among Rodents a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L.. New York: Plenum Press, pp. 453–474.Google Scholar
Hoffstetter, R. (1972). Origine et dispersion des Rongeurs Hystricognathes. Comptes rendus de l'Académie des Sciences, Paris, 274, 2867–2870.Google Scholar
Holroyd, P. (1994). An examination of dispersal origins for Fayum mammals. Unpublished PhD thesis, Duke University, Durham, USA.
Huchon, D. and Douzery, E. J.-P. (2001). From the Old World to the New World: a molecular chronicle of the phylogeny and biogeography of hystricognath rodents. Molecular Phylogenetics and Evolution, 20, 238–251.CrossRefGoogle ScholarPubMed
Huchon, D., Catzeflis, F. M. and Douzery, E. J.-P. (2000). Variance of molecular datings, evolution of rodents, and the phylogenetic affinities between Ctenodactylidae and Hystricognathi. Proceedings of the Royal Society B, 267, 393–402.CrossRefGoogle ScholarPubMed
Huchon, D., Madsen, O., Sibbald, M. J. J. B., et al. (2002). Rodent phylogeny and a timescale for the evolution of Glires: evidence from an extensive taxon sampling using three nuclear genes. Molecular Biology Evolution, 19, 1053–1065.CrossRefGoogle Scholar
Huchon, D., Chevret, P., Jordan, U., et al. (2007). Multiple molecular evidences for a living mammalian fossil. Proceedings of the National Academy of Sciences, USA, 104, 7495–7499.CrossRefGoogle ScholarPubMed
Hugot, J. P. (1999). Primates and their pinworm parasites: the Cameron hypothesis revisited. Systematic Biology, 48, 523–546.CrossRefGoogle ScholarPubMed
Hussain, S. T., De Bruijn, H. and Leinders, J. M. (1978). Middle Eocene rodents from the Kala Chitta Range (Punjab, Pakistan). Palaeontology, 81, 101–112.Google Scholar
Jaeger, J.-J. (1988). Rodent phylogeny: new data and old problems. In The Phylogeny and Classification of the Tetrapods, ed. Benton, M. J.. Oxford: The Systematics Association, pp. 177–199.Google Scholar
Jaeger, J.-J., Michaux, J. and Sabatier, M. (1980). Premières données sur les rongeurs de la formation de Ch'orora (Ethiopie) d’âge Miocène supérieur. I : Thryonomyidés. Palaeovertebrata, Mémoire Jubilaire en Hommage à René Lavocat, pp. 365–374.
Jaeger, J.-J., Denys, C. and Coiffait, B. (1985). New Phiomorpha and Anomaluridae from the late Eocene of North-West Africa: phylogenetic implications. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L.. New York: Plenum Press, pp. 567–588.Google Scholar
Jaeger, J.-J., Beard, K. C., Chaimanee, Y., et al. (2010a). Late middle Eocene epoch of Libya yields earliest known radiation of African anthropoids. Nature, 467, 1095–1098.CrossRefGoogle ScholarPubMed
Jaeger, J.-J., Marivaux, L., Salem, M., et al. (2010b). New rodent assemblages from the Eocene Dur at-Talhah escarpment (Sahara of Central Libya): systematic, biochronologic and paleobiogeographic implications. Zoological Journal of the Linnean Society, 160, 195–213.CrossRefGoogle Scholar
Janis, C. M. (1993). Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annual Review of Ecology and Systematics, 24, 467–500.CrossRefGoogle Scholar
Kalb, J. E., Jaegar, M., Jolly, C. J. and Kana, B. (1982). Preliminary geology, paleontology and paleoecology of a sangoan site at Andalee, Middle Awash Valley, Ethiopia. Journal of Archaeological Science, 9, 349–363.CrossRefGoogle Scholar
Lavocat, R. (1967). Les microfaunes du Néogène d'Afrique Orientale et leurs rapports avec celles de la région paléarctique. In Background to Evolution in Africa, eds. Bishop, W. W. and Clark, J. D.. Chicago: University of Chicago Press, pp. 67–72.Google Scholar
Lavocat, R. (1973). Les Rongeurs du Miocène d'Afrique Orientale. Mémoires et Travaux de l'Institut de Montpellier de l'Ecole Pratique des Hautes Etudes, Montpellier.Google Scholar
Lavocat, R. (1974). The interrelationships between the African and South American rodents and their bearing on the problem of the origin of South American monkeys. Journal of Human Evolution, 3, 323–326.CrossRefGoogle Scholar
Lavocat, R. (1976). Rongeurs Caviomorphes de l'Oligocène de Bolivie; II Rongeurs du bassin Deseadien de Salla-Luribay. Palaeovertebrata, 7, 15–90.Google Scholar
Leidy, J. (1871). Notice of some extinct rodents. Proceedings of the Academy of Natural Sciences of Philadelphia, 22, 230–232.Google Scholar
Li, C. K., Zheng, J. J. and Ting, S. Y. (1989). The skull of Cocomys linchaensis, an early Eocene ctenodactyloid rodent of Asia. In Papers on Fossil Rodents, in Honor of Albert Elmer Wood, eds. Black, C. C., and Dawson, M. R.. Los Angeles: Natural History Museum, pp. 179–192.Google Scholar
Lopez-Antonanzas, R., Sen, S. and Mein, P. (2004). Systematics and phylogeny of the cane rats (Rodentia: Thryonomyidae). Zoological Journal of the Linnean Society, 142, 423–444.CrossRefGoogle Scholar
Luckett, W. P. (1985). Superordinal and intraordinal affinities of rodents: developmental evidence from the dentition and placentation. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J. L.. New York: Plenum Press, pp. 227–276.CrossRefGoogle Scholar
Luckett, W. P. and Hartenberger, J. L. (1993). Monophyly or polyphyly of the Order Rodentia: possible conflict between morphological and molecular interpretations. Journal of Mammalian Evolution, 1, 127–147.CrossRefGoogle Scholar
Marivaux, L. and Welcomme, J.-L. (2003). Diatomyid and baluchimyine rodents from the Oligocene of Pakistan (Bugti Hills, Balochistan): systematic and paleobiogeographic implications. Journal of Vertebrate Paleontology, 23, 420–434.CrossRefGoogle Scholar
Marivaux, L., Benammi, M., Ducrocq, S., Jaeger, J.-J. and Chaimanee, Y. (2000). A new baluchimyine rodent from the Late Eocene of the Krabi Basin (Thailand): paleobiogeographic and biochronologic implications. Comptes rendus de l'Académie des Sciences, Paris, 331, 427–433.Google Scholar
Marivaux, L., Welcomme, J.-L., Vianey-Liaud, M. and Jaeger, J.-J. (2002). The role of Asia in the origin and diversification of hystricognathous rodents. Zoologica Scripta, 31, 225–239.CrossRefGoogle Scholar
Marivaux, L., Vianey-Liaud, M. and Jaeger, J.-J. (2004). High-level phylogeny of early Tertiary rodents: dental evidence. Zoological Journal of the Linnean Society, 142, 105–132.CrossRefGoogle Scholar
Marivaux, L., Ducrocq, S., Jaeger, J.-J., et al. (2005). New remains of Pondaungimys anomaluropsis (Rodentia, Anomaluroidea) from the latest middle Eocene Pondaung Formation of Central Myanmar. Journal of Vertebrate Paleontology, 25, 214–227.CrossRefGoogle Scholar
Marivaux, L., Adaci, M., Bensalah, M., et al. (2011). Zegdoumyidae (Rodentia, Mammalia), stem anomaluroid rodents from the early to middle Eocene of Algeria (Gour Lazib, Western Sahara): new dental evidence. Journal of Systematic Palaeontology, 9, 563–588.CrossRefGoogle Scholar
Marivaux, L., Lihoreau, F., Manthi, K. F. and Ducrocq, R. (2012). A new basal phiomorph (Rodentia, Hystricognathi) from the Late Oligocene of Lokone (Turkana Basin, Kenya). Journal of Vertebrate Paleontology, 32, 646–657.CrossRefGoogle Scholar
Martin, T. (1993). Early rodent incisor enamel evolution: phylogenetic implications. Journal of Mammalian Evolution, 1, 227–254.CrossRefGoogle Scholar
Martin, T. (1994). African origin of caviomorph rodents is indicated by incisor enamel microstructure. Paleobiology, 20, 5–13.CrossRefGoogle Scholar
Mathisen, M. and Morales, J. (1981). Stratigraphy, facies and depositional environments of the Venta del Moro vertebrate locality, Valencia, Spain. Estudios Geologicos, 37, 199–207.Google Scholar
McKenna, M. C. and Bell, S. K. (1997). Classification of Mammals Above the Species Level. New York: Columbia University Press.Google Scholar
Mein, P. and Pickford, M. (2008). Early Miocene Rodentia from the Northern Sperrgebiet, Namibia. Memoir of the Geological Survey of Namibia, 20, 235–290.Google Scholar
Mein, P. and Pickford, M. (2010). Vallesian rodents from Sheikh Abdallah, Western Desert, Egypt. Historical Biology, 22, 224–259.CrossRefGoogle Scholar
Meng, J. (1990). The auditory region of Reithroparamys delicatissimus (Mammalia, Rodentia) and its systematic implications. American Museum Novitates, 2972, 1–35.Google Scholar
Meng, J. and McKenna, M. C. (1998). Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature, 394, 364–367.CrossRefGoogle Scholar
Meng, J. and Wyss, A. R. (2001). The morphology of Tribosphenomys (Rodentiaformes, Mammalia): phylogenetic implications for basal Glires. Journal of Mammalian Evolution, 8, 1–70.CrossRefGoogle Scholar
Meng, J., Li, C., Beard, K. C., et al. (2007a). New material of Alagomyidae (Mammalia, Glires) from the late Paleocene Subeng Locality, Inner Mongolia. American Museum Novitates, 3597, 1–29.CrossRefGoogle Scholar
Meng, J., Li, C., Ni, X., Wang, Y. and Beard, K. C. (2007b). A new Eocene rodent from the Lower Arshanto Formation in the Nuhetingboerhe (Camp Margetts) area, Inner Mongolia. American Museum Novitates, 3569, 1–18.CrossRefGoogle Scholar
Mess, A. (2011). Character transformations and their functional significance as a key to the evolution of hystricognath Rodentia. Pesquisa Veterinária Brasileira, 31, 1108–1115.CrossRefGoogle Scholar
Mess, A., Mohr, B. and Martin, T. (2001). Evolutionary transformations of hystricognath Rodentia and the climatic change in the Eocene to Late Oligocene time interval. Zoosystematics and Evolution, 77, 193–206.Google Scholar
Montgelard, C., Bentz, S., Tirard, C., Verneau, O. and Catzeflis, F. M. (2002). Molecular systematics of Sciurognathi (Rodentia): the mitochondrial Cytochrome b and 12S rRNA genes support the Anomaluroidea (Pedetidae and Anomaluridae). Molecular Phylogenetics and Evolution, 22, 220–233.CrossRefGoogle Scholar
Montgelard, C., Forty, E., Arnal, V. and Matthee, C. A. (2008). Suprafamilial relationships among Rodentia and the phylogenetic effect of removing fast-evolving nucleotides in mitochondrial, exon and intron fragments. BMC Evolutionary Biology, 8, 321–337.CrossRefGoogle ScholarPubMed
Nedbal, M. A., Honeycutt, R. L. and Schlitter, D. A. (1996). Higher-level systematics of rodents (Mammalia, Rodentia): evidence from the mitochondrial 12S rRNA gene. Journal of Mammalian Evolution, 3, 201–237.CrossRefGoogle Scholar
Osborn, H. F. (1908). New fossil mammals from the Fayûm Oligocene, Egypt. American Museum of Natural History Bulletin, 26, 415–424.Google Scholar
Pages, R. D. M. (2001). NDE (Nexus Data Editor for Windows). Version 0.5.0 NDE. Glasgow, University of Glasgow.
Pickford, M., Senut, B., Morales, J., Mein, P. and Sanchez, I. M. (2008). Mammalia from the Lutetian of Namibia. Memoirs of the Geological Survey of Namibia, 20, 465–514.Google Scholar
Poux, C., Chevret, P., Huchon, D., De Jong, W. W. and Douzery, E. J.-P. (2006). Arrival and diversification of caviomorph rodents and platyrrhine primates in South America. Systematic Biology, 55, 228–244.CrossRefGoogle ScholarPubMed
Prothero, D. R. (2003). Tertiary history. In Encyclopedia of Life Support Systems. Oxford: EOLSS Publishers Co., pp. 1–16.Google Scholar
Rasmussen, D. T. and Gutierrez, M. (2009). A mammalian fauna from the Late Oligocene of northwestern Kenya. Palaeontographica, 288, 1–52.Google Scholar
Sallam, H. M., Seiffert, E. R., Steiper, M. E. and Simons, E. L. (2009). Fossil and molecular evidence constrain scenarios for the early evolutionary and biogeographic history of hystricognathous rodents. Proceedings of the National Academy of Sciences, USA, 106, 16 722–16 727.CrossRefGoogle ScholarPubMed
Sallam, H. M., Seiffert, E. R., Simons, E. L. and Brindley, C. (2010). A large-bodied anomaluroid rodent from the earliest late Eocene of Egypt: phylogenetic and biogeographic implications. Journal of Vertebrate Paleontology, 30, 1579–1593.CrossRefGoogle Scholar
Sallam, H. M., Seiffert, E. R. and Simons, E. L. (2011). Craniodental morphology and systematics of a new family of hystricognathous rodents (Gaudeamuridae) from the Late Eocene and Early Oligocene of Egypt. PLoS ONE, 6, 1–29.CrossRefGoogle ScholarPubMed
Sallam, H. M., Seiffert, E. R. and Simons, E. L. (2012). A basal phiomorph (Rodentia, Hystricognathi) from the late Eocene of the Fayum Depression, Egypt. Swiss Journal of Palaeontology, 131, 283–301.CrossRefGoogle Scholar
Seiffert, E. R. (2007). Evolution and extinction of Afro-Arabian primates near the Eocene–Oligocene boundary. Folia Primatologica, 78, 314–327.CrossRefGoogle ScholarPubMed
Seiffert, E. R. (2012). Early primate evolution in Afro-Arabia. Evolutionary Anthropology, 21, 239–253.CrossRefGoogle ScholarPubMed
Stevens, N. J., O'Connor, P. M., Gottfried, M. D., et al. (2006). Metaphiomys (Rodentia: Phiomyidae) from the Paleogene of Southwestern Tanzania. Journal of Vertebrate Paleontology, 80, 407–410.Google Scholar
Stevens, N. J., Holroyd, P. A., Roberts, E. M., O'Connor, P. M. and Gottfried, M. D. (2009). Kahawamys mbeyaensis (n. gen., n. sp.) (Rodentia: Thryonomyoidea) from the Late Oligocene Rukwa Rift Basin, Tanzania. Journal of Vertebrate Paleontology, 29, 631–634.CrossRefGoogle Scholar
Swofford, D. L. (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland, Massachusetts, Sinauer Associates.
Tabuce, R. and Marivaux, L. (2005). Mammalian interchanges between Africa and Eurasia: an analysis of temporal constraints on plausible anthropoid dispersal during the Paleogene. Anthropological Science, 113, 27–32.CrossRefGoogle Scholar
Tabuce, R., Marivaux, L., Lebrun, R., et al. (2009). Anthropoid vs. strepsirhine status of the African Eocene primates Algeripithecus and Azibius: craniodental evidence. Proceedings of the Royal Society of London B, 276, 4087–4094.CrossRefGoogle Scholar
Thomas, H. and Petter, G. (1986). Révision de la faune de mammifères du Miocène supérieur de Menacer (ex-Marceau), Algérie: discussion sur l’âge du gisement. Geobios, 19, 357–373.CrossRefGoogle Scholar
Thomas, H., Roger, S., Sen, S., Bourdillon-de-Grissac, C. and Al-Sulaimani, Z. (1989). Découverte de vertébrés fossiles dans l'Oligocène inférieur du Dhofar (Sultanat d'Oman). Geobios, 22, 101–120.CrossRefGoogle Scholar
Thomas, H., Roger, J., Sen, S. and Al-Sulaimani, Z. (1992). Early Oligocene vertebrates from Dhofar (Sultanate of Oman). In Geology of the Arab World, ed. Sadek, A.. Cairo: Cairo University, pp. 283–293.Google Scholar
Tong, Y. (1997). Middle Eocene small mammals from Liguanqiao Basin of Henan Province and Yuanqu Basin of Shanxi Province, Central China. Paleontologia Sinica, 26, 1–256.Google Scholar
Tullberg, T. (1899). Über das System der Nagetiese. Eine phylogenetische studie. Nova Acta Regiae Societatis Scientasium Upsaliersis, 18, 1–514.Google Scholar
Vandenberghe, N., Hilgen, F. J. and Speijer, R. P. (2012). Chapter 28: The Paleogene period. In The Geological Time Scale 2012, eds. Gradstein, F. M., Ogg, J. G., Schmitz, M. and Ogg, G.. Oxford: Elsevier Science Ltd, pp. 855–921.Google Scholar
Vasishat, R. N., Kaul, S. and Chopra, S. R. K. (1979). Additional fossil suid material from the lower Siwalik of Ramnagar, J&K State, India. Proceedings of Colloqium on Paleontological Studies in Southern Region, Miscellaneous Publications of the Geological Survey of India, 45, 219–225.Google Scholar
Watrous, L. E. and Wheeler, Q. D. (1981). The outgroup comparison method of character analysis. Systematic Zoology, 30, 1–11.CrossRefGoogle Scholar
Wirkler, A. J., Denys, C. and Avery, D. M. (2010). Chapter 17: Fossil rodents of Africa. In Cenozoic Mammals of Africa, eds. Sanders, W. J. and Werdelin, L.. Berkeley: University of California Press, pp. 263–304.Google Scholar
Wood, A. E. (1955). A revised classification of the rodents. Journal of Mammalogy, 36, 165–187.Google Scholar
Wood, A. E. (1962). The Early Tertiary rodents of the family Paramyidae. Transactions of the American Philosophical Society, 52, 1–261.CrossRefGoogle Scholar
Wood, A. E. (1968). Part II: The African Oligocene Rodentia. In Early Cenozoic Mammalian Faunas Fayum Province, Egypt, ed. Remington, J. E.. New Haven: Peabody Museum of Natural History Yale University, pp. 23–105.Google Scholar
Wood, A. E. (1972). An Eocene Hystricognathous rodent from Texas: its significance in interpretation of continental drift. Science, 175, 1250–1251.CrossRefGoogle Scholar
Wood, A. E. (1973). Eocene rodents, Pruett Formation, Southwest Texas; their pertinence to the origin of the South American Caviomorpha. The Pearce-Sellards Series, 20, 1–41.Google Scholar
Wood, A. E. (1974). The evolution of the Old World and New World hystricomorphs. In Symposium of the Zoological Society on “the Biology of Hystricomorph Rodents”, eds. Rowlands, I. W. and Weir, B. J.. London: Zoological Society of London, pp. 21–54.Google Scholar
Wood, A. E. (1985). The relationships, origin and dispersal of the hystricognathous rodents. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L.. New York: Plenum Press, pp. 475–513.Google Scholar
Wood, A. E. and Patterson, B. (1959). The rodents of the Deseadan Oligocene of Patagonia and the beginnings of South American rodent evolution. Bulletin of the Museum of Comparative Zoology, 120, 281–428.Google Scholar
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E. and Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science, 292, 686–693.CrossRefGoogle ScholarPubMed
Zachos, J. C., Dickens, G. R. and Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451, 279–283.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×