Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T09:40:32.773Z Has data issue: false hasContentIssue false

12 - The oral apparatus of rodents: variations on the theme of a gnawing machine

Published online by Cambridge University Press:  05 August 2015

Robert E. Druzinsky
Affiliation:
University of Illinois at Chicago
Philip G. Cox
Affiliation:
University of York
Lionel Hautier
Affiliation:
Université de Montpellier II
Get access

Summary

Introduction

To understand the general features of the functional morphology of the jaw apparatus of rodents one must understand one thing: rodents gnaw. Although rodents are the most speciose order of mammals and remarkably diverse, including aquatic, arboreal, arid, and subterranean forms, all rodents have retained a suite of features that are a mechanical complex for gnawing. To put this another way, there is at once tremendous diversification and extreme conservation of characters in the jaw apparatus of rodents.

On the one hand, there is wonderful diversification of form in the structures that compose the jaw apparatus. Almost all of the over 2200 species of extant rodents (Carleton and Musser, 2005) and the hundreds of extinct species known from fossils can be identified on the basis of the morphology of the cheek teeth alone. And, traditionally, the rodents have been grouped into three sub-orders distinguished largely on the basis of characteristics of the jaw adductor muscles and other features of the masticatory apparatus.

The three classic sub-orders [Sciuromorpha (squirrels), Myomorpha (rats and mice), and Hystricomorpha (porcupines and the South American caviomorph rodents) (see Wood, 1955, and Landry, 1999, for excellent reviews of the literature)] were defined by characteristics of the jaw apparatus, including differences in the position and architecture of the masseter and zygomaticomandibularis muscles. An additional, fourth, suborder of rodents, the Protrogomorpha, was defined by Wood (1937). Protrogomorph rodents are supposed to represent the primitive condition of rodent masticatory muscles in that they lack the sciuromorph and hystricomorph expansions of the masseter and zygomaticomandibularis, respectively. Although it has been many years since the Sciuromorpha, Hystricomorpha, and Myomorpha sensu stricto were considered to be monophyletic groups (Wood, 1965) and it is clear that each of these major grades of the rodent masticatory apparatus has evolved more than one time, the variety of forms of the jaw apparatus within the Rodentia is striking.

On the other hand, in spite of all of this morphological diversity, all rodents have a suite of morphological features that form a mechanical complex for gnawing.

Type
Chapter
Information
Evolution of the Rodents
Advances in Phylogeny, Functional Morphology and Development
, pp. 323 - 349
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, M. M. and Dozier, H. L. (1949). An extreme case of malocclusion in the muskrat. American Midland Naturalist, 42, 252–254.CrossRefGoogle Scholar
Ang, K. Y., Lucas, P. W. and Tan, H. T. W. (2006). Incisal orientation and biting efficiency. Journal of Human Evolution, 50, 663–672.CrossRefGoogle ScholarPubMed
Archer, M., Hand, S. and Godthelp, H. (1988). A new order of Tertiary zalambdodont marsupials. Science, 239, 1528–1531.CrossRefGoogle ScholarPubMed
Ardran, G. M., Kemp, F. H. and Ride, W. D. L. (1958). A radiographic analysis of mastication and swallowing in the domestic rabbit: Oryctolagus cuniculus (L). Proceedings of the Zoological Society of London 130, 257–274.Google Scholar
Becht, G. (1953). Comparative biologic-anatomical researches on mastication in some mammals. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series C, 56, 508–527.Google Scholar
Beertsen, W. (1975). Migration of fibroblasts in the periodontal ligament of the mouse incisor as revealed by autoradiography. Archives of Oral Biology, 20, 659–666, IN17–IN19.CrossRefGoogle ScholarPubMed
Brian, J. (2000). Craniodental functional morphology and taxonomy of dermopterans. Journal of Mammalogy, 81, 360–385.Google Scholar
Capello, V. (2008). Diagnosis and treatment of dental disease in pet rodents. Journal of Exotic Pet Medicine, 17, 114–123.CrossRefGoogle Scholar
Carleton, M. D. and Musser, G. G. (2005). Order Rodentia. In Mammal Species of the World. A Taxonomic and Geographic Reference, eds. Wilson, D. E. and Reeder, D.-A. M.. Baltimore, MD: Johns Hopkins University Press, pp. 745–752.Google Scholar
Cave, A. J. E. (1984). Dentitional anomalies in the beaver and some other mammals. In Investigations on Beavers II, ed. Pilleri, G.. Berne: University of Berne, Institute of Brain Anatomy, pp. 145–151.Google Scholar
Cope, E. D. (1888). The mechanical causes of the origin of the dentition of the Rodentia. The American Naturalist, 22, 3–13.CrossRefGoogle Scholar
Cox, P. G. and Jeffery, N. (2011). Reviewing the morphology of the jaw-closing musculature in squirrels, rats, and guinea pigs with contrast-enhanced MicroCt. The Anatomical Record, 294, 915–928.CrossRefGoogle ScholarPubMed
Crossley, D. A. and Aiken, S. (2004). Small mammal dentistry. In Clinical Medicine and Surgery: Ferrets, Rabbits and Rodents, eds. Quesenberry, K. E. and Carpenter, J. W.. St Louis (MO): Saunders, pp. 370–382.Google Scholar
Dontas, I. A., Tsolakis, A. I., Khaldi, L., Patra, E. and Lyritis, G. P. (2010). Malocclusion in aging Wistar rats. Journal of the American Association for Laboratory Animal Science, 49, 22–26.Google ScholarPubMed
Douzery, E. J. and Huchon, D. (2004). Rabbits, if anything, are likely Glires. Molecular Phylogenetics and Evolution, 33, 922–935.CrossRefGoogle ScholarPubMed
Downs, W. Jr. (1931). The effects of basic diet on rate of incisor tooth growth. Proceedings of the Society for Experimental Biology and Medicine, 28, 813–814.Google Scholar
Druzinsky, R. E. (1995). Incisal biting in the mountain beaver (Aplodontia rufa) and woodchuck (Marmota monax). Journal of Morphology, 226, 79–101.CrossRefGoogle Scholar
Druzinsky, R. E. (2010a). The functional anatomy of incisal biting in Aplodontia rufa and sciuromorph rodents: I. Masticatory muscles, skull shape, and digging. Cells, Tissues, Organs, 191, 510–522.CrossRefGoogle ScholarPubMed
Druzinsky, R. E. (2010b). The functional anatomy of incisal biting in Aplodontia rufa and sciuromorph rodents: II. Sciuromorphy is efficacious for production of force at the incisors. Cells, Tissues, Organs, 192, 50–63.CrossRefGoogle Scholar
Druzinsky, R. E., Naveh, G., Weiner, S., et al. (2012). Mechanical properties of incisors in rodents. Annual Meeting of the American Association of Anatomists (Experimental Biology 2012), Abstract B261.
Dubost, G. (1968). Les mammiferess Sousterrains. Revue. D'Ecologie et de Biologie du sol, 5, 99–197.Google Scholar
DuBrul, E. L. (1977). Early hominid feeding mechanisms. American Journal of Physical Anthropology, 47, 305–320.Google Scholar
DuBrul, E. L. (1992). Origin and adaptations of the hominid jaw joint. In The Temporomandibular Joint: a Biological Basis for Clinical Practice, eds. Sarnat, B. G. and Laskin, D. M.. Philadelphia: W. B. Saunders Company, pp. 3–21.Google Scholar
Ferreira, J. M., Phakey, P. P., Rachinger, W. A., Palamara, J. and Orams, H. J. (1985). A microscopic investigation of enamel in wombat (Vombatus ursinus). Cell and Tissue Research, 242, 349–355.CrossRefGoogle Scholar
Fish, D. R. (1983). Aspects of masticatory form and function in common tree shrews, Tupaia glis. Journal of Morphology, 176, 15–29.CrossRefGoogle ScholarPubMed
Freeman, P. W. and Weins, W. N. (1997). Puncturing ability of bat canine teeth: the tip. Mammalogy Papers: University of Nebraska State Museum. Paper 9. http://digitalcommons.unl.edu/museummammalogy/9Google Scholar
Gidley, J. W. (1912). The lagomorphs an independent order. Science, 36, 285–286.CrossRefGoogle ScholarPubMed
Goodwin, H. T. and Ryckman, E. M. (2006). Lower incisors of prairie dogs (Cynomys) as biorecorders of hibernation and season of death. Journal of Mammalogy, 87, 1002–1012.CrossRefGoogle Scholar
Goodwin, H. T., Michener, G. R., Gonzalez, D. and Rinaldi, C. E. (2005). Hibernation is recorded in lower incisors of recent and fossil ground squirrels (Spermophilus). Journal of Mammalogy, 86, 323–332.CrossRefGoogle Scholar
Gowgiel, J. M. (1967). Observations on the phenomena of tooth eruption. Journal of Dental Research, 46, 1325–1330.CrossRefGoogle ScholarPubMed
Greaves, W. S. (1978). The jaw lever system in ungulates: a new model. Journal of Zoology, 184, 271–285.Google Scholar
Greaves, W. S. (1998). The relative positions of the jaw joint and the tooth row in mammals. CanadianJournal of Zoology, 76, 1203–1208.Google Scholar
Greaves, W. S. (2008). Mammals with a long diastema typically also have dominant masseter and pterygoid muscles. Zoological Journal of the Linnean Society, 153, 625–629.CrossRefGoogle Scholar
Greaves, W. S. (2012). The Mammalian Jaw: A Mechanical Analysis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Harkness, J. E. (1994). Small rodents. Veterinary Clinics of North America, Small Animal Practice, 24, 89–102.CrossRefGoogle ScholarPubMed
Hartenberger, J.-L. (1985). The Order Rodentia: major questions on their evolutionary origin, relationships and suprafamilial systematics. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L.. NATO ASI Series, Series A: Life Sciences, vol. 92. New York: Plenum Press, pp. 1–33.Google Scholar
Hautier, L. (2010). Masticatory muscle architecture in the gundi, Ctenodactylus vali (Mammalia: Rodentia). Mammalia, 74, 153–162.CrossRefGoogle Scholar
Hiiemae, K. (1971). The structure and function of the jaw muscles in the rat (Rattus norvegicus L.) III. The mechanics of the muscles. Zoological Journal of the Linnean Society, 50, 111–132.Google Scholar
Hiiemae, K. and Ardran, G.M. (1968). A cinefluorographic study of mandibular movement during feeding in the rat (Rattus norvegicus). Journal of Zoology, 154, 139–154.Google Scholar
Hiiemae, K. and Houston, W.J.B. (1971). The structure and function of the jaw muscles in the rat (Rattus norvegicus L.) I. Their anatomy and internal architecture. Zoological Journal of the Linnean Society, 50, 111–132.Google Scholar
Hildebrand, M. (1982). Analysis of Vertebrate Structure. New York: John Wiley and Sons.Google Scholar
Hildebrand, M. (1985). Digging of quadrupeds. In Functional Vertebrate Morphology, eds. Hildebrand, M., Bramble, D. M., Liem, K. F. and Wake, D. B.. Cambridge, MA: Harvard University Press, pp. 89–109.CrossRefGoogle Scholar
Hogg, R. T., Ravosa, M. J., Ryan, T. M. and Vinyard, C. J. (2011). The functional morphology of the anterior masticatory apparatus in tree-gauging marmosets (Cebidae, Primates). Journal of Morphology, 272(7), 833–849.CrossRefGoogle Scholar
Honey, J. G., Harrison, J. A., Prothero, D. R. and Stevens, M. S. (1998). Chapter 30: Camelidae. In Evolution of Tertiary Mammals of North America: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals. Volume 1 Evolution of Tertiary Mammals of North America, eds. Janis, C. M., Scott, K. M. and Jacobs, L. L.. Cambridge: Cambridge University Press, pp. 439–462.Google Scholar
Hylander, W. L. (2006). Chapter 1: Functional anatomy and biomechanics of the masticatory apparatus. In Temporomandibular Disorders: an Evidenced Approach to Diagnosis and Treatment, eds. Laskin, D. M., Greene, C. S. and Hylander, W. L.. New York: Quintessence Pub Co, pp. 3–34.Google Scholar
Jones, F. W. (1924). The bandicoots and the herbivorous marsupials. In The Mammals of South Australia, Pt 2. Adelaide: Govt Print, pp. 262.Google Scholar
Kiliaridis, S. (1986). The relationship between masticatory function and craniofacial morphology. III. The eruption pattern of the incisors in the growing rat fed a soft diet. Journal of Orthodontics, 8, 71–79.Google ScholarPubMed
Kiliaridis, S., Thilander, B., Kjellberg, H., Topouzelis, N. and Zafiriadis, A. (1999). Effect of low masticatory function on condylar growth: a morphometric study in the rat. American Journal of Orthodontics and Dentofacial Orthopaedics, 116, 121–125.CrossRefGoogle ScholarPubMed
Killian, C. E., Metzler, R. A., Gong, Y.et al. (2011). Self-sharpening mechanism of the sea urchin tooth. Advanced Functional Materials, 21, 682–690.Google Scholar
Klevezal, G. A. (2010). Dynamics of incisor growth and daily increments on the incisor surface in three species of small rodents. Biology Bulletin, 37, 836–845.CrossRefGoogle Scholar
Krumbach, T. (1904). Die unteren Schneidezahne der Nagetiere, nach Gestalt und Funktion betrachtet. Zoologischer Anzeiger, 27, 273–290.Google Scholar
Kuijpers, M. H., van de Kooij, A. J. and Slootweg, P. J. (1996). Review article. The rat incisor in toxicologic pathology. Toxicologic Pathology, 24, 346–360.CrossRefGoogle ScholarPubMed
Landry, S. O. (1957). Factors affecting the procumbency of rodent upper incisors. Journal of Mammalogy, 38, 223–234.CrossRefGoogle Scholar
Landry, S. O. Jr (1970). The Rodentia as omnivores. Quarterly Review of Biology, 45, 351–372.CrossRefGoogle ScholarPubMed
Landry, S. O. (1999). A proposal for a new classification and nomenclature for the Glires (Lagomorpha and Rodentia). Zoosystematics and Evolution, 75, 283–316.Google Scholar
Lee, M. S. Y. and Camens, A. B. (2009). Strong morphological support for the molecular evolutionary tree of placental mammals. Journal of Evolutionary Biology, 22, 2243–2257.CrossRefGoogle ScholarPubMed
Lessa, E. P. (1990). Morphological evolution of subterranean mammals: integrating structural, functional, and ecological perspectives. Progress in Clinical and Biological Research, 335, 211–230.Google ScholarPubMed
Lessa, E. P. and Thaeler, C. S. Jr. (1989). A reassessment of morphological specializations for digging in pocket gophers. Journal of Mammalogy, 70, 689–700.CrossRefGoogle Scholar
Lev-Tov Chattah, N., Kupczik, K., Shahar, R., Hublin, J. J. and Weiner, S. (2011). Structure–function relations of primate lower incisors: a study of the deformation of Macaca mulatta dentition using electronic speckle pattern interferometry (ESPI). Journal of Anatomy, 218, 87–95.Google Scholar
Linnaeus, C. (1758). Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, Vol. 1. Stockholm: Laurentii Salvii.Google Scholar
Long, C. V. (2011). Common dental disorders of the degu (Octodon degus). Journal of Veterinary Dentistry, 29, 158–165.Google Scholar
Luckett, W. P. (1985). Superordinal and intraordinal affinities of rodents: developmental evidence from the dentition and placentation. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L.. NATO ASI Series, Series A: Life Sciences, vol. 92, New York: Plenum Press, pp. 227–276.CrossRefGoogle Scholar
Luo, Z. (1994). Sister-group relationships of mammals and transformations of diagnostic mammalian characters. In In the Shadow of the Dinosaurs: Early Mesozoic Tetrapods, eds. Fraser, N. C. and Sues, H. D.. New York: Cambridge University Press, pp. 98–128.Google Scholar
Meng, J. (2004). Phylogeny and divergence of basal Glires. Bulletin of the American Museum of Natural History, 285, 93–109.2.0.CO;2>CrossRefGoogle Scholar
Meng, J., Hu, Y. and Li, C. (2003). The osteology of Rhombomylus (Mammalia, Glires): implications for phylogeny and evolution of Glires. Bulletin of the American Museum of Natural History, 275, 1–247.2.0.CO;2>CrossRefGoogle Scholar
Merrilees, D. (1967). Cranial and mandibular characters of modern mainland wombats. Records of the South Australian Museum, Adelaide 15, 399–418.Google Scholar
Meyers, M. A., Lin, A. Y. M., Lin, Y. S., Olevsky, E. A. and Georgalis, S. (2008). The cutting edge: Sharp biological materials. Journal of Mechanics, 60, 19–24.Google Scholar
Misawa, K. and Janke, A. (2003). Revisiting the Glires concept – phylogenetic analysis of nuclear sequences. Molecular Phylogenetics and Evolution, 28, 320–327.CrossRefGoogle ScholarPubMed
Moffett, B. C., Johnson, L. C., McCabe, J. B. and Askew, H. C. (1964). Articular remodeling in the adult human temporomandibular joint. American Journal of Anatomy, 115, 119–141.CrossRefGoogle ScholarPubMed
Morris, D. (1962). The behaviour of the Green acouchi (Myoproctor pratti) with special reference to scatter hoarding. Proceedings of the Zoological Society of London, 139, 701–702.Google Scholar
Murphy, W. J., Eizirik, E., O'Brien, S. J., et al. (2001). Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science, 294, 2348–2351.CrossRefGoogle ScholarPubMed
Naveh, G. R. S., Shahar, R., Brumfeld, V. and Weiner, S. (2012). Tooth movements are guided by specific contact areas between the tooth root and the jaw bone: a dynamic 3D microCT study of the rat molar. Journal of Structural Biology, 177, 477–483.CrossRefGoogle ScholarPubMed
Ness, A. R. (1956). The response of the rabbit mandibular incisor to experimental shortening and to the prevention of its eruption. Proceedings of the Royal Society of London, Series B–Biological Sciences, 146, 129–154.CrossRefGoogle ScholarPubMed
Ness, A. R. (1965). Eruption rates of impeded and unimpeded mandibular incisors of the adult laboratory mouse. Archives of Oral Biology, 10, 439–451.CrossRefGoogle ScholarPubMed
Neveu, P. and Gasc, J. P. (1999). A cinefluorographical study of incisor sharpening in Spalax giganteus Nehring, 1898 (Rodentia, Mammalia). Mammalia, 63, 505–518.CrossRefGoogle Scholar
Novacek, M. J. (1985). Cranial evidence for rodent affinities. In: Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L.. Plenum Press, New York, pp. 59–81.Google Scholar
Osborn, J. W. (1969). Dentine hardness and incisor wear in the beaver (Castor fiber). Acta Anatomische, 72, 123–132.Google Scholar
Osborn, J. W., Baragar, F. A. and Grey, P. E. (1986). The functional advantage of proclined incisors in man. In Teeth Revisited: Proceedings of VII International Symposium on Dental Morphology, eds. D. E. Russell, J. P. Santoro and D. Sigognean-Russell. Memoirs du Museum d'Histoire Naturelle C, 53, pp. 445–458.
Owen, R. (1866). On the aye-aye (Chiromys). Transactions of the Zoological Society of London, 5, 33–101.Google Scholar
Oxford English Dictionary Online. September, 2013. “gnaw, v.”. Oxford University Press. http://www.oed.com/view/Entry/79487?rskey=HSHXAf&result=2 (accessed October 10, 2013).
Papadimitriou, S., Thomas, S. and Kouki, M. (2008). Dental problems in rabbits and rodents. Journal of the Hellenic Veterinary Medical Society, 59, 225–238.Google Scholar
Popowics, T. E. and Fortelius, M. (1997). On the cutting edge: tooth blade sharpness in herbivorous and faunivorous mammals. Annales Zoologici Fennici, 34, 73–88. Helsinki: Suomen Biologian Seura Vanamo.Google Scholar
Reig, O. A. and Quintana, C. A. (1992). Fossil Ctenomyine rodents of the genus Eucelophorus (Caviomorpha: Octodontidae) from the Pliocene and Early Pleistocene of Argentina. Ameghiniana, 29, 363–380.Google Scholar
Rinaldi, C. and Cole, T. M. (2004). Environmental seasonality and incremental growth rates of beaver (Castor canadensis) incisors: implications for paleobiology. Palaeogeography, Palaeoclimatology, Palaeoecology, 206, 289–301.CrossRefGoogle Scholar
Riviere, H. L., Gentz, E. J. and Timm, K. I. (1997). Presence of enamel on the incisors of the llama (Lama glama) and alpaca (Lama pacos). Anatomical Record, 249, 441–448.3.0.CO;2-U>CrossRefGoogle Scholar
Rosell, F. and Kile, N. B. (1998). Abnormal incisor growth in Eurasian beaver. Acta theriologica, 43, 329–332.CrossRefGoogle Scholar
Rosenberger, A. L. (1978). Loss of incisor enamel in marmosets. Journal of Mammalogy, 59, 207–208.CrossRefGoogle Scholar
Scapino, R. P. (1965). The third joint of the canine jaw. Journal of Morphology, 116, 23–50.CrossRefGoogle ScholarPubMed
Scapino, R.P. (1981) Morphological investigation into functions of the jaw symphysis in Carnivorans. Journal of Morphology, 167, 339–375.CrossRefGoogle ScholarPubMed
Scapino, R. P. (1997). Chapter 2: Morphology and mechanism of the jaw joint. In Science and Practice of Occlusion, ed. McNeill, C.. Chicago: Ouintessence Publishing Co., Inc., pp 23–39.Google Scholar
Schour, I. and Massler, M. (1949). Chapter 6: The teeth. In The Rat in Laboratory Investigation, eds. Farris, E. J. and Griffith, J. G.. London: Lippincott Co, pp. 104–165.Google Scholar
Schour, I. and Medak, H. (1951). Experimental increase in rate of eruption and growth of incisor by eliminating attrition. Journal of Dental Research, 30: 52.1. Abstract.Google Scholar
Shadle, A. R. (1936). The attrition and extrusive growth of the four major incisor teeth of the domestic rabbit. Journal of Mammalogy, 17, 15–21.CrossRefGoogle Scholar
Shadle, A. R. (1950). Feeding, care and handling of captive porcupines. Journal of Mammalogy, 31, 411–416.CrossRefGoogle Scholar
Shadle, A. R., Valvo, N. I. and Eckhert, K. M. (1938). The extrusive growth and attrition of the incisor teeth of Cavia cobaya. Anatomical Record, 71, 497–502.CrossRefGoogle Scholar
Shellis, R. P. and Hiiemae, K. M. (1986). Distribution of enamel on the incisors of Old World monkeys. American Journal of Physical Anthropology, 71, 103–113.CrossRefGoogle ScholarPubMed
Sicher, H. and DuBrul, E. L. (1975). Oral Anatomy, . St. Louis, The CV Mosby Co.Google Scholar
Stafford, B. J. and Szalay, F. S. (2000). Craniodental functional morphology and taxonomy of dermopterans. Journal of Mammalogy, 81, 360–385.2.0.CO;2>CrossRefGoogle Scholar
Steigman, S., Michaeli, Y. and Zajicek, G. (1981). The influence of calibrated loads upon the rate of eruption of mandibular rat incisors. Archives of Oral Biology, 26, 327–331.CrossRefGoogle ScholarPubMed
Stein, B. R. (2000). Morphology of subterranean rodents. In Life Underground: The Biology of Subterranean Rodents, eds. Lacey, E. A., Patton, J.L. and Cameron, G. N.. Chicago: University of Chicago Press, pp. 19–61.Google Scholar
Taylor, A. B. (2005). A comparative analysis of temporomandibular joint morphology in African apes. Journal of Human Evolution, 48, 555–574.CrossRefGoogle ScholarPubMed
Taylor, A. C. and Butcher, E. C. (1951). The regulation of eruption rate in the incisor teeth of the white rat. Journal of Experimental Zoology, 117, 165–188.CrossRefGoogle Scholar
Terhune, C. E. (2011). Modeling the biomechanics of articular eminence function in anthropoid primates. Journal of Anatomy, 219, 551–564.CrossRefGoogle ScholarPubMed
Terril, L. A., Clemons, D. J. and Wagner, J. E. (1992). Guinea pigs, noninfectious diseases. Produced and distributed by the Health Sciences Center for Educational Resources, University of Washington. http://ehs.uc.edu/lams/data/pdfs/9026.pdf
Thomas, F. C., Adeleye, O. E., Adenubi, O. T., et al. (2009). Acquired incisor malocclusion in an adult rabbit buck. A case report. Science World Journal, 4, 29–30.Google Scholar
Tucker, M. J. (1997). Diseases of the Wistar Rat. London (UK): Taylor and Francis.Google Scholar
Turnbull, W. D. (1970). Mammalian masticatory apparatus. Fieldiana: Geology, 18, 147–356.Google Scholar
Vianey-Liaud, M. (1985). Possible evolutionary relationships among Eocene and Lower Oligocene rodents of Asia, Europe, and North America. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. andHartenberger, J.-L.. NATO ASI Series, Series A: Life Sciences, vol. 92. New York: Plenum Press, pp. 277–310.Google Scholar
Vinogradov, B. (1926). Materials for the systematics and the morphology of the rodents. IV. On the mechanism of gnawing and mastication in some fossorial rodents. Annals of the Zoological Museum of the Academy of Sciences of the USSR, 27, 275–281.Google Scholar
Vinyard, C. J., Wall, C. E., Williams, S. H. and Hylander, W. L. (2003). Comparative functional analysis of skull morphology of tree-gouging primates. American Journal of Physical Anthropology, 120, 153–170.CrossRefGoogle ScholarPubMed
Wall, C. E. (1995). Form and function of the temporomandibular joint in anthropoid primates. Unpublished Ph.D. dissertation, State University of New York at Stony Brook.
Wall, C. E. (1999). A model of temporomandibular joint function in anthropoid primates based on condylar movements during mastication. American Journal of Physical Anthropology, 109, 67–88.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Weijs, W. A. (1973). Morphology of the muscles of mastication in the albino rat, Rattus norvegicus (Berkerhout, 1769). Acta Morphologica Neerlando-Scardiravica, 11, 321–340.Google Scholar
Weijs, W. A. and Dantuma, R. (1981). Functional anatomy of the masticatory apparatus of the rabbit (Oryctolagus cuniculus L.). Netherlands Journal of Morphology, 31, 99–147.Google Scholar
Wetzel, G. (1927). Die Regulationen der Nagetierschneidezähne. Wilhelm Roux’ Archiv für Entwicklungsmechanik der Organismen, 112, 455–479.Google Scholar
White, S. N., Paine, M. L., Ngan, A. Y.et al. (2007). Ectopic expression of dentin sialoprotein during amelogenesis hardens bulk enamel. Journal of Biological Chemistry, 282, 5340–5345.CrossRefGoogle ScholarPubMed
Wood, A. E. (1937). The mammalian fauna of the White River Oligocene. 2. Rodentia. Transactions of the American Philosophical Society, New Series 28, 155–269.Google Scholar
Wood, A. E. (1955). A revised classification of the rodents. Journal of Mammalogy, 36, 165–187.Google Scholar
Wood, A. E. (1957). What, if anything, is a rabbit?Evolution, 11, 417–425.CrossRefGoogle Scholar
Wood, A. E. (1965). Grades and clades among rodents. Evolution, 19, 115–130.CrossRefGoogle Scholar
Zeman, W. V. and Fielder, F. G. (1969). Dental malocclusion and overgrowth in rabbits. Journal of the American Veterinary Medical Association, 155, 1115–1119.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×