Book contents
- Frontmatter
- Contents
- List of contributors
- Foreword
- 1 Rodentia: a model order?
- 2 A synopsis of rodent molecular phylogenetics, systematics and biogeography
- 3 Emerging perspectives on some Paleogene sciurognath rodents in Laurasia: the fossil record and its interpretation
- 4 Phylogeny and evolutionary history of hystricognathous rodents from the Old World during the Tertiary: new insights into the emergence of modern “phiomorph” families
- 5 The history of South American octodontoid rodents and its contribution to evolutionary generalisations
- 6 History, taxonomy and palaeobiology of giant fossil rodents (Hystricognathi, Dinomyidae)
- 7 Advances in integrative taxonomy and evolution of African murid rodents: how morphological trees hide the molecular forest
- 8 Themes and variation in sciurid evolution
- 9 Marmot evolution and global change in the past 10 million years
- 10 Grades and clades among rodents: the promise of geometric morphometrics
- 11 Biogeographic variations in wood mice: testing for the role of morphological variation as a line of least resistance to evolution
- 12 The oral apparatus of rodents: variations on the theme of a gnawing machine
- 13 The muscles of mastication in rodents and the function of the medial pterygoid
- 14 Functional morphology of rodent middle ears
- 15 Variations and anomalies in rodent teeth and their importance for testing computational models of development
- 16 The great variety of dental structures and dynamics in rodents: new insights into their ecological diversity
- 17 Convergent evolution of molar topography in Muroidea (Rodentia, Mammalia): connections between chewing movements and crown morphology
- 18 Developmental mechanisms in the evolution of phenotypic traits in rodent teeth
- 19 Diversity and evolution of femoral variation in Ctenohystrica
- 20 Morphological disparity of the postcranial skeleton in rodents and its implications for palaeobiological inferences: the case of the extinct Theridomyidae (Rodentia, Mammalia)
- Index
- References
14 - Functional morphology of rodent middle ears
Published online by Cambridge University Press: 05 August 2015
- Frontmatter
- Contents
- List of contributors
- Foreword
- 1 Rodentia: a model order?
- 2 A synopsis of rodent molecular phylogenetics, systematics and biogeography
- 3 Emerging perspectives on some Paleogene sciurognath rodents in Laurasia: the fossil record and its interpretation
- 4 Phylogeny and evolutionary history of hystricognathous rodents from the Old World during the Tertiary: new insights into the emergence of modern “phiomorph” families
- 5 The history of South American octodontoid rodents and its contribution to evolutionary generalisations
- 6 History, taxonomy and palaeobiology of giant fossil rodents (Hystricognathi, Dinomyidae)
- 7 Advances in integrative taxonomy and evolution of African murid rodents: how morphological trees hide the molecular forest
- 8 Themes and variation in sciurid evolution
- 9 Marmot evolution and global change in the past 10 million years
- 10 Grades and clades among rodents: the promise of geometric morphometrics
- 11 Biogeographic variations in wood mice: testing for the role of morphological variation as a line of least resistance to evolution
- 12 The oral apparatus of rodents: variations on the theme of a gnawing machine
- 13 The muscles of mastication in rodents and the function of the medial pterygoid
- 14 Functional morphology of rodent middle ears
- 15 Variations and anomalies in rodent teeth and their importance for testing computational models of development
- 16 The great variety of dental structures and dynamics in rodents: new insights into their ecological diversity
- 17 Convergent evolution of molar topography in Muroidea (Rodentia, Mammalia): connections between chewing movements and crown morphology
- 18 Developmental mechanisms in the evolution of phenotypic traits in rodent teeth
- 19 Diversity and evolution of femoral variation in Ctenohystrica
- 20 Morphological disparity of the postcranial skeleton in rodents and its implications for palaeobiological inferences: the case of the extinct Theridomyidae (Rodentia, Mammalia)
- Index
- References
Summary
Introduction
Because of its functional and phylogenetic significance, the middle ear has occupied far more of the attention of zoologists than this tiny region of the body would, at first glance, appear to merit. Although all mammals have three middle ear ossicles, a defining characteristic of the class, middle ear morphology otherwise differs substantially both between and within mammalian orders.
Middle ear structures are particularly variable among the Rodentia and have long been used in rodent taxonomy. Features compared between groups include malleus morphology (Tullberg, 1899; Carleton and Musser, 1984), number of middle ear septa (Moore, 1959), stapedial arterial supply (Bugge, 1985) and the relationships between the bony components of the middle ear cavity (Lavocat and Parent, 1985). Although morphological phylogenies of living rodents have largely been supplanted by the molecular, the bony structures of the middle ear retain taxonomic value because of their preservation as fossils.
Rodents are central to current experimental studies of ear function, the mouse (Mus musculus), guinea pig (Cavia porcellus), chinchilla (Chinchilla lanigera) and gerbil (Meriones unguiculatus) representing model species of particular importance. The choice of these rodents is, of course, largely based on convenience: apart from ease of maintaining captive colonies, the relatively large middle ear cavities of the guinea pig, chinchilla and gerbil greatly facilitate surgery to expose the cochlea and other structures. To what extent their ears are representative of rodents as a whole, or mammals in general, often remains unaddressed.
Following a brief functional overview, this chapter will introduce the anatomy of the middle ear and then review details of its morphology in each of the major rodent clades. This is followed by a consideration of rodent ear evolution, including a discussion of the likely adaptive purposes of some of the features which distinguish the various groups. It is hoped that zoologists will gain some functional insight to help in the evolutionary interpretation of middle ear morphology, while the anatomical data provided may prove useful in the comparison of experimental results from different species, and in the consideration of what may safely be extrapolated to other mammals.
- Type
- Chapter
- Information
- Evolution of the RodentsAdvances in Phylogeny, Functional Morphology and Development, pp. 373 - 404Publisher: Cambridge University PressPrint publication year: 2015
References
- 14
- Cited by