Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T09:45:38.907Z Has data issue: false hasContentIssue false

19 - Diversity and evolution of femoral variation in Ctenohystrica

Published online by Cambridge University Press:  05 August 2015

Laura A. B. Wilson
Affiliation:
University of New South Wales
Madeleine Geiger
Affiliation:
University of Zürich
Philip G. Cox
Affiliation:
University of York
Lionel Hautier
Affiliation:
Université de Montpellier II
Get access

Summary

Introduction

Despite possessing a rather generalised postcranial skeleton, rodents are on average capable of a wide variety of locomotory behaviours, such as swimming, digging and climbing (Nowak, 1999). Particularly, rodents belonging to Ctenohystrica (sensu Huchon et al., 2002, and Fabre et al., 2012: Ctenodactylidae, Diatomyidae and Hystricognathi) display a diversity of locomotory styles and encompass a large range in body mass from approximately 50 g for the naked mole-rat Heterocephalus glaber to around 60 kg for the largest living rodent, the capybara Hydrochoerus hydrochaeris, consequently filling many different ecological niches (e.g. MacDonald, 2009; Wilson and Sánchez-Villagra, 2009, 2010). Moreover, this diversity is greatly expanded by the inclusion of giant extinct members such as Phoberomys, Arazamys and Josephoartigasia that reached body masses at least seven or eight times that of the capybara (Sánchez-Villagra et al., 2003; Rinderknecht and Blanco, 2008; Rinderknecht and Bostelmann, 2011). The adaptive diversity that characterises the evolution of Ctenohystrica, and particularly the Caviomorpha, a group that dispersed from Africa to colonise South America (Poux et al., 2006; Rowe et al., 2010) and evolved on that continent during a period of splendid isolation in the Cenozoic, has been the subject of numerous morpho-functional and evolutionary studies (e.g. Verzi et al., 2010; Wilson et al., 2010; Álvarez et al., 2011a, b; Hautier et al., 2011, 2012; Cox et al., 2012; Geiger et al., 2013; Wilson, 2013).

The interplay between form and function has been studied in the postcranial skeleton of a number of mammals (e.g. Kappelman, 19; Anemone, 1990;White, 1993; Vizcaíno and Milne, 2002; Kley and Kearney, 2007; Meachen-Samuels, 2010), and studies of Ctenohystrica have, for example, examined individual bones (e.g. Seckel and Janis, 2008; Morgan, 2009; Steiner-Souza et al., 2010; Elissamburu and De Santis, 2011), long bones (Biknevicius, 1993; Elissamburu and Vizcaino, 2004; Samuels and Van Valkenburgh, 2008; Morgan and Álvarez, 2013) and the autopodial skeleton (e.g. Weisbecker and Schmid, 2007; Morgan and Verzi, 2011). These studies have used morphological traits, described as ratios or quantified using biomechanical indices or geometric morphometric descriptors of shape, to identify functional specialisations and instances of adaptive convergence underpinned by shared function and/or ecology.

Type
Chapter
Information
Evolution of the Rodents
Advances in Phylogeny, Functional Morphology and Development
, pp. 510 - 538
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abderhalden, E. (1938). Handbuch der biologischen Arbeitsmethoden, Abt. 7, Teil 2, Heft 3. Vienna: Verlag Urban und Schwarzenberg.Google Scholar
Álvarez, A., Perez, S. I. and Verzi, D. H. (2011a). Early evolutionary differentiation of morphological variation in the mandible of South American caviomorph rodents (Rodentia, Caviomorpha). Journal of Evolutionary Biology, 24, 2687–2695.CrossRefGoogle Scholar
Álvarez, A., Perez, S. I. and Verzi, D. H. (2011b). Ecological and phylogenetic influence on mandible shape variation of South American caviomorph rodents (Rodentia: Hystricomorpha). Biological Journal of the Linnean Society, 102, 828–837.CrossRefGoogle Scholar
Anemone, R. L. (1990). The VCL hypothesis revisited: patterns of femoral morphology among quadrupedal and saltatorial prosimian primates. American Journal of Physical Anthropology, 83, 373–393.CrossRefGoogle ScholarPubMed
Argot, C. (2001). Functional-adaptive anatomy of the forelimb in the Didelphidae, and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. Journal of Morphology, 247, 51–79.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Argot, C. (2004). Functional-adaptive features and palaeobiologic implications of the postcranial skeleton of the Late Miocene sabretooth borhyaenoid Thylacosmilus atrox (Metatheria). Alcheringa, 28, 229–266.CrossRefGoogle Scholar
Biewener, A. A. (1990). Biomechanics of mammalian terrestrial locomotion. Science, 250, 1097–1103.CrossRefGoogle ScholarPubMed
Biknevicius, A. R. (1993). Biomechanical scaling of limb bones and differential limb use in caviomorph rodents. Journal of Mammalogy, 74 (1), 95–107.CrossRefGoogle Scholar
Buikstra, J. E. and Ubelaker, D. H. (1994). Standards for Data Collection from Human Skeletal Remains. Fayetteville, AR: Arkansas Archeological Survey.Google Scholar
Contreras, L. C. (1986). Bioenergetics and distribution of fossorial Spalacopus cyanus (Rodentia): thermal stress, or cost of burrowing. Physiological Zoology, 59(1), 20–28.CrossRefGoogle Scholar
Cox, P. G., Rayfield, E. J., Fagan, M. J.et al. (2012). Functional evolution of the feeding system in rodents. PLoS ONE, 7(4), e36299.CrossRefGoogle ScholarPubMed
Creed, J. C. (2004). Capybara (Hydrochaeris hydrochaeris Rodentia: Hydrochaeridae): a mammalian seagrass herbivore. Coastal and Estuarine Research Federation, 27(2), 197–200.Google Scholar
Elissamburu, A. and De Santis, L. (2011). Forelimb proportions and fossorial adaptations in the scratch-digging rodent Ctenomys (Caviomorpha). Journal of Mammalogy, 92(3), 683–689.CrossRefGoogle Scholar
Elissamburu, A. and Vizcaíno, S. F. (2004). Limb proportions and adaptations in caviomorph rodents (Rodentia: Caviomorpha). Journal of Zoology, 262, 145–159.CrossRefGoogle Scholar
Fabre, P.-H., Hautier, L., Dimitrov, D. and Douzery, E. J. P. 2012. A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evolutionary Biology, 12, 88.CrossRefGoogle ScholarPubMed
Geiger, M., Wilson, L. A. B., Costeur, L., Sánchez, R. and Sánchez-Villagra, M. R. (2013). Diversity and body size in giant caviomorphs (Rodentia) from the northern neotropics – a study of femoral variation. Journal of Vertebrate Paleontology, 33, 1449–1456CrossRefGoogle Scholar
Harmon, E. H. (2006). Size and shape variation in Australopithecus afarensis proximal femora. Journal of Human Evolution, 51, 217–227.CrossRefGoogle ScholarPubMed
Hautier, L., Lebrun, R., Saksiri, S.et al. (2011). Hystricognathy vs. sciurognathy in the rodent jaw: a new morphometric assessment of hystricognathy applied to the living fossil Laonastes (Diatomyidae). PLoS ONE, 6(4), e18698.CrossRefGoogle Scholar
Hautier, L., Lebrun, R. and Cox, P. G. (2012). Patterns of covariation in the masticatory apparatus of hystricognathous rodents: implications for evolution and diversification. Journal of Morphology, 273(12), 1319–1337.CrossRefGoogle ScholarPubMed
Hermann, B., Grupe, G., Hummel, S., Piepenbrink, H. and Schutkowski, H. (1990). Prähistorische Anthropologie – Leitfaden der Feld-und Labormethoden. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Hildebrand, M. and Goslow, G. E. (2004). Vergleichende und funktionelle Anatomie der Wirbeltiere. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Horovitz, I., Sánchez-Villagra, M. R, Martin, T. and Aguilera, O. A. (2006). The fossil record of Phoberomys pattersoni Mones 1980 (Mammalia, Rodentia) from Urumaco (Late Miocene, Venezuela), with an analysis of its phylogenetic relationships. Journal of Systematic Palaeontology, 4(3), 293–306.CrossRefGoogle Scholar
Horovitz, I., Sánchez-Villagra, M. R., Vucetich, M. G. and Aguilera, O. A. (2010). Fossil rodents from the Late Miocene Urumaco and Middle Miocene Cumaca formations, Venezuela. In Urumaco and Venezuelan Paleontology – The Fossil Record of the Northern Neotropics, eds. Sánchez-Villagra, M. R., Aguilera, O. and Cardini, A. A., pp. 214–232. Bloomington: Indiana University Press.Google Scholar
Huchon, D., Madsen, O., Sibbald, M. J. J. B.et al. (2002). Rodent phylogeny and a timescale for the evolution of Glires: evidence from an extensive taxon sampling using three nuclear genes. Molecular Biology and Evolution, 19(7), 1053–1065.CrossRefGoogle Scholar
IUCN 2011. IUCN Red List of Threatened Species. Version 2011.1. http://www.iucnredlist.org. downloaded on 1st of June 2011.
Jackson, D. A. (1993). Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology, 74(8), 2204–2214.CrossRefGoogle Scholar
Jones, K. E., Bielby, J., Cardillo, M.et al. (2009). PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology, 90 (9), 2648–2648.CrossRefGoogle Scholar
Kapandji, I. A. (1985). Funktionelle Anatomie der Gelenke, Band 2: Untere Extremität. Stuttgart: Ferdinand Enke Verlag.Google Scholar
Kappelman, J. (1988). Morphology and locomotor adaptations of the bovid femur in relation to habitat. Journal of Morphology, 198, 119–130.CrossRefGoogle ScholarPubMed
Kley, N. J. and Kearney, M. (2007). Adaptations for digging and burrowing. In Fins into Limbs: Evolution, Development, and Transformation, ed. Hall, B. K.. Chicago: University of Chicago Press, pp. 384–309.Google Scholar
Knussmann, R. (1980). Anthropologie: Handbuch der vergleichenden Biologie des Menschen, Band 1, Teil 1. Stuttgart: Gustav Fischer Verlag.Google Scholar
Kugler, H. K. (2001). Treatise on the Geology of Trinidad. Part 4: the Paleocene to Holocene Formations. Basel: Museum of Natural History.Google Scholar
Lessa, E. P., Vassallo, A. I., Verzi, D. H. and Mora, M. S. (2008). Evolution of morphological adaptations for digging in living and extinct ctenomyid and octodontid rodents. Biological Journal of the Linnean Society, 95, 267–283.CrossRefGoogle Scholar
MacDonald, D. W. (2009). The Encyclopaedia of Mammals. Oxford: Oxford University Press.Google Scholar
McHenry, H. M. and Corruccini, R. S. (1978). The femur in early human evolution. American Journal of Physical Anthropology, 49, 473–488.CrossRefGoogle ScholarPubMed
Meachen-Samuels, J. (2010). Comparative scaling of humeral cross-sections of felids and canids using radiographic images. Journal of Mammalian Evolution, 17, 193–209.CrossRefGoogle Scholar
Morgan, C. C. (2009). Geometric mophometrics of the scapula of South American caviomorph rodents (Rodentia: Hystricognathi): form, function and phylogeny. Mammalian Biology, 74, 497–506.CrossRefGoogle Scholar
Morgan, C. C. and Álvarez, A. (2013). The humerus of South American caviomorph rodents: shape, function and size in a phylogenetic context. Journal of Zoology, 290(2), 107–116.CrossRefGoogle Scholar
Morgan, C. C. and Verzi, D. H. (2011). Carpal–metacarpal specializations for burrowing in South American octodontid rodents. Journal of Anatomy, 219(2), 167–175.CrossRefGoogle Scholar
Nowak, R. M. (1999). Walker's Mammals of the World, Baltimore: John Hopkins University Press.Google Scholar
Polly, D. P. (2007). Limbs in mammalian evolution. In Fins into Limbs: Evolution, Development, and Transformation, ed. Hall, B. K.. Chicago: University Chicago Press, pp. 245–268.Google Scholar
Poux, C., Chevret, P., Huchon, D., de Jong, W. W. and Douzery, E. J. P. (2006). Arrival and diversification of caviomorph rodents and platyrrhine primates in South America. Systematic Biology, 55, 228–244.CrossRefGoogle ScholarPubMed
Rinderknecht, A. and Blanco, R. E. (2008). The largest fossil rodent. Proceedings of the Royal Society B, 275, 923–928.CrossRefGoogle ScholarPubMed
Rinderknecht, A. and Bostelmann, E. E. (2011). New genus of giant Dinomyidae (Rodentia: Hystricognathi: Caviomorpha) from the late Miocene of Uruguay. Journal of Mammalogy, 92(1), 169–178.CrossRefGoogle Scholar
Rowe, D. L., Dunn, K. A., Adkins, R. M. and Honeycutt, R. L. (2010). Molecular clocks keep dispersal hypotheses afloat: evidence for trans-Atlantic rafting by rodents. Journal of Biogeography, 37, 305–324.CrossRefGoogle Scholar
Samuels, J. X. and Van Valkenburgh, B. (2008). Skeletal indicators of locomotor adaptations in living and extinct rodents. Journal of Morphology, 269, 1387–1411.CrossRefGoogle ScholarPubMed
Samuels, J. X., Meachen, J. A. and Sakai, S. A. (2013). Postcranial morphology and the locomotor habits of living and extinct carnivorans. Journal of Morphology, 274(2), 121–146.CrossRefGoogle ScholarPubMed
Sánchez-Villagra, M. R., Aguilera, O. A. and Horovitz, I. (2003). The anatomy of the world's largest extinct rodent. Science, 301, 1708–1710.CrossRefGoogle ScholarPubMed
Schaller, O. (2007). Illustrated Veterinary Anatomical Nomenclature. Stuttgart: Enke Verlag in MSV Medizinverlage Stuttgart Gm.Google Scholar
Schaub, S. (1935). Säugetierfunde aus Venezuela und Trinidad, Band 55. Basel: Kommissionsverlag von E. Birkhäuser & Cie.Google Scholar
Scheuer, L. and Black, S. (2000). Developmental Juvenile Osteology. Amsterdam: Elsevier Academic Press.Google Scholar
Schünke, M., (2000). Funktionelle Anatomie – Topographie und Funktion des Bewegungssystems. Stuttgart: Georg Thieme Verlag.Google Scholar
Sears, K. E. (2004). Constraints on the morphological evolution of marsupial shoulder girdles. Evolution, 58(10), 2353–2370.Google ScholarPubMed
Seckel, L. and Janis, C. (2008). Convergences in scapula morphology among small cursorial mammals: an osteological correlate for locomotory specialization. Journal of Mammalian Evolution, 15, 261–279.CrossRefGoogle Scholar
Serrat, M. A., Reno, P. L., McCollum, M. A., Meindl, R. S. and Lovejoy, C. O. (2007). Variation in mammalian proximal femoral development: comparative analysis of two distinct ossification patterns. Journal of Anatomy, 210, 249–258.CrossRefGoogle ScholarPubMed
Starck, D., 1979. Vergleichende Anatomie der Wirbeltiere auf evolutionsbiologischer Grundlage. Buch 2: Das Skelettsystem. Berlin: Springer Verlag.CrossRefGoogle Scholar
Steiner-Souza, F., De Freitas, T. R. O. and Cordeiro-Estrela, P. (2010). Inferring adaptation within shape diversity of the humerus of subterranean rodent Ctenomys. Biological Journal of the Linnean Society, 100(2), 353–367.CrossRefGoogle Scholar
Turvey, S. T., Grady, F. V. and Rye, P. (2006). A new genus and species of ‘giant hutia’ (Tainotherium valei) from the Quaternary of Puerto Rico: an extinct arboreal quadruped?Journal of Zoology, 270, 585–594.CrossRefGoogle Scholar
Van Valkenburgh, B. (1987). Skeletal indicators of locomotor behavior in living and extinct carnivores. Journal of Vertebrate Paleontology, 7, 162–182.CrossRefGoogle Scholar
Verzi, D. H., Álvarez, A., Olivares, A. I., Morgan, C. C. and Vassallo, A. I. (2010). Ontogenetic trajectories of key morphofunctional cranial traits in South American subterranean ctenomyid rodents. Journal of Mammalogy, 91(6), 1508–1516.CrossRefGoogle Scholar
Vizcaíno, S. F. and Milne, N. (2002). Structure and function in armadillo limbs (Mammalia: Xenarthra: Dasypodidae). Journal of Zoology, 257, 117–172.CrossRefGoogle Scholar
Voss, H., and Herrlinger, R. (1975). Taschenbuch der Anatomie-Band 1: Einführung in die Anatomie/Bewegungsapparat. Stuttgart: Gustav Fischer Verlag.Google Scholar
Walker, D. N. (1987). Sequence of epiphyseal fusion in the Rocky Mountain bighorn sheep. Great Basin Naturalist, 47 (1), 7–12.Google Scholar
Weisbecker, V. and Schmid, S. (2007). Autopodial skeletal diversity in hystricognath rodents: functional and phylogenetic aspects. Mammalian Biology, 72 (1), 27–44.CrossRefGoogle Scholar
White, J. L. (1993). Indicators of locomotor habits in xenarthrans: evidence for locomotor heterogeneity among fossil sloths. Journal of Vertebrate Paleontology, 13 (2), 230–242.CrossRefGoogle Scholar
Wilson, D. E. and Reeder, D. M. (2005). Mammal Species of the World: a Taxonomic and Geographic Reference. Washington, DC: Smithsonian Institution PressGoogle Scholar
Wilson, L. A. B. (2013). Allometric disparity in rodent evolution. Ecology and Evolution, 3(4), 971–984.CrossRefGoogle ScholarPubMed
Wilson, L. A. B. and Sánchez-Villagra, M. R. (2009). Heterochrony and patterns of cranial suture closure in hystricognath rodents. Journal of Anatomy, 214, 339–354.CrossRefGoogle ScholarPubMed
Wilson, L. A. B. and Sánchez-Villagra, M. R.(2010). Diversity trends and their ontogenetic basis: an exploration of allometric disparity in rodents. Proceedings of the Royal Society B, 277, 1227–1234.
Wilson, L. A. B., Schradin, C., Mitgutsch, C.et al. (2010). Skeletogenesis and sequence heterochrony in rodent evolution, with particular emphasis on the African striped mouse, Rhabdomys pumilio (Mammalia). Organisms, Diversity & Evolution, 10(3), 243–258.CrossRefGoogle Scholar
Young, N. M., Wagner, G. P. and Hallgrímsson, B. (2010). Development and the evolvability of human limbs. Proceedings of the National Academy of Sciences, USA, 107(8), 3400–3405.CrossRefGoogle ScholarPubMed
Zelditch, M. L., Swiderski, D. L. and Sheets, D. H. (2004). Morphometrics for Biologists: a Primer. New York: Academic Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×