Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T20:33:56.299Z Has data issue: false hasContentIssue false

Chapter 19 - Sciadopitys

Sciadopityales: Sciadopityaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Tall and often narrow evergreen trees of typically acutely tapering outline, densely furnished throughout with clumped masses of profuse linear, soft-textured foliage held in conspicuously radiating whorls, like the spokes of an umbrella.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 374 - 394
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramova, L.N. 1984. Novyie melovvyie khvoynyie severa Sredney Sibri. Yezhegodnik vsesoyuznogo paleontol. Obschestva Leningrad 27: 201218 (in Russian).Google Scholar
Bertoldi, R. 1988. Una sequenza palinologica di esta Rusciniana nei sedimenti lacustri basaali del bacino di Aulla-Olivola (Val di Magra).Google Scholar
Bertoldi, R. 1997. Lineamenti palinostratigrafici de depositi continentali del Pliocene–Pleistocene inferior inizialae dell’italia nord-occidentale. Bollettino Societa Paleontologica Italiana 36: 6373.Google Scholar
Bohlmann, J., Meyer-Gauen, G. & Cotteau, R. 1998. Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proceedings of the National Academy of Sciences of the USA 95: 41264133.CrossRefGoogle ScholarPubMed
Bose, M.N. 1955. Sciadopityes variabilis n.sp. from the Arctic of Canada. Norske Geologiske Tidskrift 35: 5367.Google Scholar
Bose, M.N. & Manum, S.B. 1990. Mesozoic conifer leaves with ‘Sciadopitys-like’ stomatal distribution: a re-evaluation based on fossils from Spitzbergen, Greenland and Baffin Island. Norsk Polarinstitutt Skrifter 192: 181.Google Scholar
Bose, M.N. & Manum, S.B. 1991. Additions to the family Miroviaceae (Coniferae) from the Lower Cretaceous of West Greenland and Germany: Mirovia groenlandica n.sp., Tritaenia crassa (Seward) comb. Nov., and Tritaenia linkii Magdefrau et Rudolph emend. Polar Research 9: 921.Google Scholar
Brunsfield, S.J., Soltis, P.S., Soltis, D.E. et al. 1994. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Budantsev, L.Y. 1997. Late Eocene flora of Western Kamchatka. Proceedings of the Botanical Institute Russian Academy of Sciences 19:3115.Google Scholar
Chaw, S.M., Zharkikh, A., Sung, H.M., Law, T.C., & Li, W.H. 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. Molecular Biology and Evolution 14: 5668.CrossRefGoogle ScholarPubMed
Christophel, D.C. 1973. Sciadophyllum canadense gen. et sp. nov.: a new conifer from western Alberta. American Journal of Botany 60: 6166.CrossRefGoogle Scholar
Chuang, T.I. & Hu, W.W.L. 1965. Study of Amentotaxus argotaenia (Hance) Pilger. Botanical Bulletin of Academia Sinica II 4: 1014.Google Scholar
Combourieu-Nebout, N. 1995. Response de la vegetation de l’Italie meridionaale au seuil climatique de la fin du Pliocene d’apres l’analyse pollinique haute ressolution de la section de Semafro (2.46 a 2.1 Ma). Comptes Rendus, Academie des Sciences, Ser II, Sciences de la Terre et des Planetes 321: 659665.Google Scholar
Croteau, R., Kutchan, T.M. & Lewis, N.G. 2000. Natural products (secondary metabolites). Pp 12501318 in Buchanan, B., Gruissern, W. & Jones, R. (eds.), Biochemistry and Molecular Biology of Plants. Rockville, MD: American Society of Plant Physiologists.Google Scholar
Czeczott, H. 1961. The flora of the Baltic amber and its age. Prace Museum Ziemi 4: 119145.Google Scholar
Dark, S.O.S. 1932. Chromosomes of Taxus, Sequoia, Cryptomeria and Thuya. Annals of Botany 46: 965977.CrossRefGoogle Scholar
Debreczy, Z., Rácz, I. & Musial, K. 2011. Conifers Around the World. Budapest: DendroPress.Google Scholar
Dick, J., Longman, K.A. & Page, C.N. 1982. Cone induction with gibberellin for taxonomic studies in Cupressaceae and Taxodicaeae. Biologia Plantarum 24: 195201.Google Scholar
Dolezych, M. & Schneider, W. 2007. Taxonomy and taphonomy of coniferous woods and cuticulae dispersae in the Second Lusitanian coal seam (Miocene) of the Senftenberg area. Palaeontographica Abteilung B 276: 195.CrossRefGoogle Scholar
Doludenko, M.P. 1963. A new species of Sciadopitys from the Jurassic of western Ukraine. Paleontol. Zh. 1: 123126 (in Russian).Google Scholar
Doludenko, M.P. & Sveshnikova, I.N. 1959. On a find of the remains of the genus Sciadopitys S. et Z. in Upper Cretaceous deposits of the Urals. Dolk. Akad. Nauk. S.S.S.R. 128: 12761278 (in Russian).Google Scholar
Doyle, J.T. 1931. The suspensor of Sciadopitys. Botanical Gazette 92: 243262.Google Scholar
Eckenwalder, J.E. 1976. Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madrono 23: 237256.Google Scholar
Eckenwalder, J.F. 2009. Conifers of the World: The Complete Reference. Portland, OR: Timber Press.Google Scholar
Enright, N.J. & Hill, R.S. (eds.). 1995. Ecology of the Southern Conifers. Washington, DC: Smithsonian Institution Press.Google Scholar
Farjon, A. 1998. World Checklist and Bibliography of Conifers. Kew: Royal Botanic Gardens.Google Scholar
Farjon, A. & Page, C.N. (eds.). 1999. Conifers. Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: International Union for the Conservation of Nature.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology and Palaeoecology 3: 73110.CrossRefGoogle Scholar
Florin, R. 1922a. On the geological history of the Sciadopitineae. Svensk Botanisk Tidskrift 16: 260270.Google Scholar
Florin, R. 1922b. Uber das Vorkommen von Sciadopitys im deutschen Tertiar. Senckenbergiana 4.Google Scholar
Florin, R. 1922c. On the geological history of the Sciadopitineae. Svensk Botaniske Tidskrifte 16: 260270.Google Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Gadek, G.A. & Quinn, C.J. 1989. Biflavones of Taxodiaceae. Biochemical Systematics and Ecology 17: 365372.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Gothan, W. & Weyland, H. 1973. Lehrbuch der Palöobotanik. Berlin: Akademie Verlag.Google Scholar
Grimaldi, D.A. 1996. Amber: Window to the Past. New York: American Museum of Natural History.Google Scholar
Grimson, F. & Zetter, R. 2011. Combined LM and SEM study of the Middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria. Part II. Pinophyta (Cupressaceae, Pinaceae and Sciadopityaceae). Grana 50: 262310.CrossRefGoogle Scholar
Halle, T.G. 1915. Some xerophytic leaf-structures in Mesozoic plants. Geol. Foren. Forhandl. 37: 493520.CrossRefGoogle Scholar
Hansen, B.C.S., Grimm, E.C. & Watts, W.A. 2001. Palynology of the Peace Creek site, Polk county, Florida. Bulletin of the Geological Society of America 113: 682692.2.0.CO;2>CrossRefGoogle Scholar
Harris, T.M. 1976. The Mesozoic gymnosperms. Review of Palaeobotany and Palynology 21: 119134.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hase, Y. & Hatanaka, K.K. 1984. Pollen stratigraphical study of the late Cenozoic sediments in southern Kyushu, Japan. Quaternary Research, Tokyo 23: 120.CrossRefGoogle Scholar
Hayashi, Y. 1960. Taxonomical and Phytogeographical Study of Japanese Conifers. Tokyo: Norin-Shuppan.Google Scholar
Hayata, B. 1931. The Sciadopityaceae represented by Sciadopitys verticillata Sieb. Et Zucc., and endemic species of Japan. Botanical Magazine (Tokyo) 45: 567569.Google Scholar
Heer, O. 1868. Die fossils Flora der Polarländer enthaltend die in Nordgrönland, auf den Melville-Insel, im Banksland, am Mackenzie Island und in Spitzbergen entdekten fossilen Pflanzen. Zürich: Friedrich Schulthess.Google Scholar
Heusser, L.E. 1990. Northeast Asian pollen records for the last 150,000 years from deep-sea cores V28–304 and RC14–99 taken off the Pacific coast of Japan. Review of Palaeobotany and Palynology 65: 18.CrossRefGoogle Scholar
Hizumae, M., Kondo, T., Shibata, F. & Ishizuka, R. 2001. Flow cytometric determinations of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia 66: 307311.CrossRefGoogle Scholar
Hsu, C.Y., Wu, C.S. & Chaw, S.M. 2016. Birth of four chimeric plastid gene clusters in Japanese umbrella pine. Genome Biology and Evolution 8: 17761784.CrossRefGoogle Scholar
Hvaij, A.V. 1997. On the systematics of Mesozoic and Cenozoic representatives of the family Sciadopityaceae (Pinopsida). Bot. Zhurnal 82: 97114 (in Russian).Google Scholar
Igarazshi, Y. & Oba, T. 2006. Fluctuations in the East Asian monsoon over the last 144 ka in the northwest Pacific based on a high-resolution pollen analysis on IMAGES core MD01–2421. Quaternary Science Reviews 25: 14471459.CrossRefGoogle Scholar
Jiang, Z.-K., Yang, Y.-D., Zheng, S.-L., Zhang, W. & Tian, N. 2012. Occurrence of Sciadopitys-like fossil wood (Coniferales) in the Jurassic of western Liaoning, and its evolutionary implications. Chinese Science Bulletin 6: 569572.CrossRefGoogle Scholar
Johansson, N. 1920. Neue Mesozoische Pflanzen aus Ando in Norwegen. Svensk Bot. Tidskr 14.Google Scholar
Kawase, D., Tsumara, Y., Tomaru, N., Seo, A. & Yumoto, T. 2010. Genetic structure of an endemic Japanese conifer Sciadopitys verticillata (Sciadopityaceae) by microsatellite markers. Journal of Heredity 101: 292297.CrossRefGoogle ScholarPubMed
Kettunen, E., Grabenhorst, H., Gröhn, C., et al. 2015. The enigmatic hyphomycete Torula sensu Caspary revisited. Review of Palaeobotany and Palynology 219: 183193.CrossRefGoogle Scholar
Koidzumi, G. 1942. The classification of the Coniferae. Acta Phytotaxonomica Geobotanica 11: 227229 (in Japanese, with Latin names).Google Scholar
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Krutzsch, W. 1971. Atlas der Mittel- und Jungtertiären dispersen Sporen und Pollen sowie der Mikroplanktonformen des Nördlichen Mitteleuropas. Jena: Gustav Fischer Verlag.Google Scholar
Kvaček, Z. 2010. Forest flora and vegetation of the European early Palaeogene: a review. Bulletin of Geosciences 85: 6376.CrossRefGoogle Scholar
Langenheim, J.H. 1969. Amber: a botanical enquiry. Science 163: 11571169.CrossRefGoogle Scholar
Langenheim, J.H. 1994. Higher plant turpenoids: phytocentric overview of their ecological roles. Journal of Chemical Ecology 20: 12231280.CrossRefGoogle ScholarPubMed
Langenheim, J.H. 2003. Plant Resins, Chemistry, Evolution, Ecology and Ethnobotany. Portland, OR: Timber Press.Google Scholar
Langenheim, J.H. & Beck, C.W. 1965. Infrared spectra as a means of determining botanical sources of amber. Science 149: 52–24.CrossRefGoogle ScholarPubMed
Larsson, L.M., Vajda, V. & Rasmussen, E.S. 2006. Early Miocene pollen and spores from western Jylland, Denmark: environmental and climatic implications. GFF 128: 261272.CrossRefGoogle Scholar
Lawson, A.A. 1910. The gametophytes and embryo of Sciadopitys verticillata. Annals of Botany 24: 403421.CrossRefGoogle Scholar
Lemoine-Sebastian, C. 1972. Etude comparative de la vascularisation et du complex seminal chez les Cupressacees. Phytomorphology 22: 246260.Google Scholar
Li, J., Gao, L., Chen, S.S., et al. 2016. Evolution of short invert repeat in cupressophytes, transfer of accD to nucleus in Sciadopitys verticillata and phylogenetic position of Sciadopityaceae. Scientific Reports (Chinese) 6: 20934.CrossRefGoogle Scholar
Li, L. 1989. Studies on the cytotaxonomy and systematic evolution of Taxodiaceae warming. Acta Botanica Yunnanica 11: 113131.Google Scholar
Lopatina, D.A. 2003. Comparative analysis of the Eocene–Miocene micro- and macro-floras of the Eastern Sikhote Alin’. Stratigraphy and Geological Correlation 11: 7490.Google Scholar
Magri, D., Di Rita, F., Aranbarri, J., et al. 2017. Quaternary disappearance of tree taxa from Southern Europe: timing and trends. Quaternary Science Reviews 163: 2355.CrossRefGoogle Scholar
Mai, D.H. 1999. The Lower Miocene floras of the Spremberger sequence and the second browncoal horizon in the Lusatica region. I. Waterferns, conifers and monocotyledons. Palaeontographica B 250: 176.CrossRefGoogle Scholar
Manum, S.B. 1962. Studies in the Tertiary flora of Spitzbergen, with notes on Tertiary floras of Ellesmere Island, Greenland and Iceland: a palynological investigation. Norske Polarinstitutt Skrifter 125: 1131.Google Scholar
Manum, S.B. 1987. Mesozoic Sciadopitys-like leaves with observations on four species from Andoya, Northern Norway, and emendation of Sciadopityoides Sveshnikova. Review of Palaeobotany and Palynology 51: 145168.CrossRefGoogle Scholar
Manum, S.B. & Bose, M.N. 1988. Sciadopityaceae: en gammel bartrefamilie belyst ved norske fossiler. Blyttia 46: 189194.Google Scholar
Manum, S.B., Van Konijnenberg-Van Cittert, J.H.A. & Wilde, V. 2000. Tritaenia Magdefrau et Rudolf, Mesozoic ‘Sciadopitys-like’ leaves in mass accumulations. Review of Palaeobotany and Palynology 109: 255269.CrossRefGoogle Scholar
Menzel, P. 1913. Beitrag zur Flora der niederrheiniscchen Braunkohlen-formation. Jahrbuch der Königlich Preussischen Geologischen Landesanstalt zu Berlin 34: 198.Google Scholar
Miki, S. 1955. Successions of Five Native Species in Kiso Based Upon on the Plant Remains. Nagano: Nagano Forest Bureau.Google Scholar
Miller, C.N. 1977. Mesozoic conifers. Botanical Review 43: 217280.CrossRefGoogle Scholar
Mitchell, A.F. 1972. Conifers in the British Isles: A Descriptive Handbook. London: HMSO.Google Scholar
Miyoshi, N., Fujiki, T. & Morita, Y. 1999. Palynology of a 250-m core from Lake Biwa: a 430,000-year record of glacial-interglacial vegetation change in Japan. Review of Palaeobotany and Palynology 104: 267283.CrossRefGoogle Scholar
Morzadec-Kerfourn, M.-T. 2008. La limite Pliocene–Pleistocene en Bretagne. Boreas 6: 275283.CrossRefGoogle Scholar
Mossbrugger, V., Gee, C.T., Belz, G. & Ashraf, A.R. 1994. Three-dimensional reconstruction of an in-situ Miocene peat forest from the Lower Rhine Embayment, northwest Germany: new methods in palaeovegetation analysis. Paleogeography, Palaeoclimatology, Palaeoecology 110: 295317.CrossRefGoogle Scholar
Nosova, N.V. 2013. The genus Mirovia Reymanówna (Pinopsida): systematics and characteristics of leaf structure. Palaeobotany 4: 3695 (in Russian).CrossRefGoogle Scholar
Nosova, N.V. & Kiritchkova, A. 2008. First records of the genus Mirovia Reymanówna (Miroviaceae, Coniferales) from the Lower Jurassic of western Kazakhstan (Mangyshlak). Paleontological Journal 42: 13831392.CrossRefGoogle Scholar
Nosova, N.V. & Kiritchkova, A. 2015. New data on the Mesozoic conifer genus Sciadopityoides Sveshnikova (Miroviaceae). Review of Palaeobotany and Palynology 321: 121.CrossRefGoogle Scholar
Nosova, N.V. & Wcislo-Luraniec, E. 2007. A reinterpretation of Mirovia Reymanówna (Coniferales) based on the reconsideration of the type species Mirovia szaferi Reymanówna from the Polish Jurassic. Acta Palaebot 47: 359371.Google Scholar
Ogura, Y. 1932. On the structure and affinities of some Cretaceous plants from Hokkaido, 2D contribution. Journal of the Faculty of Science, Imperial University of Tokyo, Section III, 2: 455483.Google Scholar
Ohsawa, T. 1994. Anatomy and relationships of petrified seed cones of the Cupressaceae, Taxodiaceae and Sciadopityaceae. Journal of Plant Research 107: 503512.CrossRefGoogle Scholar
Otto, A. & Simoneit, B.R. 2001. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochemica Cosmoschimica Acta 65: 35053527.CrossRefGoogle Scholar
Otto, A. & Wilde, V. 2001. Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers: a review. Botanical Reviews 67: 141248.CrossRefGoogle Scholar
Otto, A., White, J.D. & Simmoneit, B.R. 2002. Natural product terpenoids in Eocene and Miocene conifer fossils. Science 297: 15431545.CrossRefGoogle ScholarPubMed
Page, C.N. 1990a. Taxodiaceae. Pp 353361 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants: I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Page, C.N. 1990b. Key to families of Coniferophytina. P 283 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Page, C.N. 1990c. Ginkgoatae. Pp 283289 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Page, C.N. 1990d. Araucariaceae. Pp 294299 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Page, C.N. 1990e. Cephalotaxaceae. Pp 299302 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Page, C.N. 1990f. Cupressaceae. Pp 302316 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Page, C.N. 1990g. Phyllocladaceae. Pp 317319 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Page, C.N. 1990h. Pinaceae. Pp 319331 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Page, C.N. 1990i. Podocarpaceae. Pp 332346 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Page, C.N. 1990j. Sciadopityaceae. Pp 346348 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Philippe, M., Meon, H., Lambert, G., et al. 2002. A palm-tree and Sciadopitys swamp forest from the Neogene of Bresse (eastern France). Comptes Rendus Palevol 1: 221225.CrossRefGoogle Scholar
Pierce, A.S. 1936. Anatomical interrelationships of the Taxodiaceae. Tropical Woods 46: 115.Google Scholar
Pole, M. 1998. Paleocene gymnosperms from Mount Somers, New Zealand. Journal of the Royal Society of New Zealand 28: 375403.CrossRefGoogle Scholar
Popescu, S.-M. 2006. Late Miocene and Early Pliocene environments in the southwestern Black Sea region from high-resolution palynology of DSDP Site 380A (Leg 42B). Palaeogeography, Palaeoclimatology, Palaeoecology 238: 6477.CrossRefGoogle Scholar
Price, R.A. & Lowenstein, J.M. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Systematic Botany 14: 141149.CrossRefGoogle Scholar
Quinn, C.J., Price, R.A. & Gadek, P.A. 2002. Familial concepts and relationships in the conifers based on rbcL and matK sequence comparisons. Kew Bulletin 57: 513531.CrossRefGoogle Scholar
Reymanówna, M. 1985. Mirovia szaferi gen. et sp. nov. (Ginkgoales) from the Jurassic of the Krakow region, Poland. Acta Palaeobotanica 25: 312.Google Scholar
Roman-Jordan, E., Esteban, L.G. de Palacios, P. & Fernandez, F.G. 2017. Comparative wood anatomy of Cupressaceae and correspondence with phylogeny, with special reference to the monotypic taxa. Plant Systematics and Evolution 303: 203219.CrossRefGoogle Scholar
Rothwell, G.W., Mapes, G., Stockey, R.A. & Hilton, J. 2013. Diversity of ancient conifers: the Jurassic seed cone Bancroftiastrobus digitata gen et. Sp. nov. (Coniferaales). International Journal of Plant Sciences 174: 937946.CrossRefGoogle Scholar
Rydin, C., Kallersjo, M. & Friis, E.M. 2002. Seed plant relationships and the systematic position of Gnetales based on nuclear and chloroplast DNA: conflicting data rooting problems and the monophyly of conifers. International Journal of Plant Sciences 163: 1119711214.CrossRefGoogle Scholar
Sadowski, E.-M., Schmidt, A.R., Kunzmann, L. Gröhn, C. & Seyfullah, L.J. 2016. Sciadopitys cladodes from Eocene Baltic amber. Botanical Journal of the Linnean Society 189: 258268.CrossRefGoogle Scholar
Sadowski, E.-M., Schmidt, A.R., Seyfullah, L.J. & Kunzmann, L.. 2017. Conifers of the ‘Baltic amber forest’ and their palaeoecological significance. Stapfia 106: 173.Google Scholar
Sakai, K. 1992. A new Sciadopityaceous seed cone from the Upper Cretaceous of Hokkaido, Japan. American Journal of Botany 79: 989995.CrossRefGoogle Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schlarbaum, S.E. & Tsuchiya, T. 1985a. Cytotaxonomy and phylogeny in certain species of Taxodiaceae. Plant Systematics and Evolution 147: 264267.Google Scholar
Schlarbaum, S.E. & Tsuchiya, T. 1985b. Karyological derivation of Sciadopitys verticillata Sieb. & Zucc. from a proto-taxodiaceous ancestor. Botanical Gazette 146: 264276.CrossRefGoogle Scholar
Schmidt, A.H., Beimforde, C., Seyfullah, L.J., et al. 2014. Amber fossils of sooty moulds. Review of Palaeobotany and Palynology 2000: 5364.CrossRefGoogle Scholar
Schmidt, M. & Schneider-Poetsch, H.A.W. 2002. The evolution of gymnosperms redrawn by phytochrome genes: the Gnetatae appear at the base of the gymnosperms. Journal of Molecular Evolution 54: 715724.CrossRefGoogle ScholarPubMed
Schneider, W. 1992. Floral succession in Miocene swamps and bogs in central Europe. Zeitschrift für Geologische Wissenschaften 20: 555570.Google Scholar
Seward, A.C. 1919. Fossil Plants. Cambridge: Cambridge University Press.Google Scholar
Seward, A.C. 1926. The Cretaceous plant-bearing rocks of Western Greenland. Philosophical Transactions of the Royal Society of London Ser. B. 215: 57175.Google Scholar
Seward, A.C. 1931. Plant Life Through the Ages: A Geological and Botanical Retrospect. Cambridge: Cambridge University Press.Google Scholar
Srinivasan, V. & Friis, E.M. 1989. Taxodiaceous conifers from the Upper Cretaceous of Sweden. Biologiske Skrifter 35: 157.Google Scholar
Stefanovic, S., Jager, M., Deutsch, J. Broutin, J. & Masselot, M. 1998. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. American Journal of Botany 85: 688697.CrossRefGoogle Scholar
Sveshnikova, I.N. 1963. Atlas and key for the identification of the living and fossil Sciadopityaceae and Taxodiaceae based on the structure of the leaf epidermis. Komarov Botanical Institut, Academy of Science USSR Acta, ser. 8 Palaeobotany, Palaeobotanica 4: 207237 (in Russian with English abstract).Google Scholar
Sveshnikova, I.N. 1981. The new fossil genus Sciadopityoides (Pinopsida). Bot. Zh. S.S.S.R. 66: 17211729 (in Russian).Google Scholar
Tahara, M. 1937. Contributions to the morphology of Sciadopitys verticillata. Cytologia, Fujii Jubilee Volume: 14–19.Google Scholar
Tahara, M. 1940. The gametophytes, fertilisation and proembryo of Sciadopitys verticillata. Science Reports Thhoku University (Biology) 15: 1928.Google Scholar
Takaso, T. & Tomlinson, P.B. 1991. Cone and ovule development in Sciadopitys (Taxodiaceae – Coniferales). American Journal of Botany 78: 417428.CrossRefGoogle Scholar
Takaso, T. & Tomlinson, P.B. 1992. Seed cone and ovule ontogeny in Metasequoia, Sequoia and Sequoiadendron (Taxodiaceae – Coniferales). Botanical Journal of the Linnean Society 109: 1537.CrossRefGoogle Scholar
Takhtajan, A.L. 1953. Phylogenetic principles of the system of higher plants. Botanical Review 19: 145.CrossRefGoogle Scholar
Thiergart, F. 1949. Die Sciadopityszone und der Sciadopitys-Vorstoss in der niederrheinischen Braunkohle. Braunkohle, Wärme und Energie 1: 153156.Google Scholar
Trapp, S. & Croteau, R. 2001. Defensive resin biosynthesis in conifers. Annual Review of Plant Physiology and Plant Molecular Biology 52: 689724.CrossRefGoogle ScholarPubMed
Tsukada, M. 1963. Umbrella pine, Sciadopitys verticillata: past and present distribution in Japan. Science, New Series 142: 16801681.Google ScholarPubMed
Tsumura, Y.K., Yoshimura, N., Tomaru, N. & Ohba, K. 1995. Molecular phylogeny of conifers using RFLP analysis of PCR-amplified specific chloroplast genes. Theoretical and Applied Genetics 91: 12221236.CrossRefGoogle ScholarPubMed
Uemura, K. 1986. A note on Tertiary Sciadopitys (Coniferopsida) from Japan. Bulletin of the National Science Museum Tokyo, Series C, 12: 5359.Google Scholar
Ueno, J. 1951. Morphology of pollen of Metasequoia, Sciadopitys and Taiwania. Journal of the Institute of Polytechnology, Osaka City University, Ser D 2: 2226.Google Scholar
Ueno, J. 1959. Some palynological observations on Taxaceae, Cupressaceae and Araucariaceae. Journal of the Institute of Polytechnics, Osaka City University, Ser. D., 10: 7587.Google Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Vávra, N. 2009. The chemistry of amber: facts, findings and opinions. Annalen des Naturhistoriscchen Museums in Wien. Ser. A., Mineralogie, Petrographie, Geologie und Pälaontologie, Anthropologie und Prähistorie. 111: 445473.Google Scholar
Walther, H. & Kvaček, Z. 2007. Early Eocene flora of Seifhennersdorf (Saxony). Acta Musei Nationalis Pragae, ser. B. Historia Naturalis 63: 85174.Google Scholar
Weyland, H., Kilpper, K. & Berendt, W. 1967. Kritische untersuchungen zzur Kutikularanalyse tertarer Blatter V11. Palaeontogr. Abt. B, 120: 151168.Google Scholar
Wilson, E.H. 1916. The Conifers and Taxads of Japan. Cambridge, MA: Arnold Arboretum.Google Scholar
Wolfe, A.P., Tappert, R., Muehlenbachs, K., et al. 2009. A new proposal concerning the botanical origin of Baltic amber. Proceedings of the Royal Society, Biological Sciences 276: 34033412.CrossRefGoogle Scholar
Yamakawa, C., Momohara, A., Saito, T. & Nunotani, T. 2017. Composition of paleoenvironment of wetland forests dominated by Glyptostrobus and Metasequoia in the latest Pliocene (2.6 Ma) in central Japan. Palaeogeography, Palaeoclimatology and Palaeoecology 467: 191210.CrossRefGoogle Scholar
Zhang, W., Zheng, S.-L. & Ding, Q.-H. 1999. A new genus (Protosciadopityoxylon gen nov.) of Early Cretaceous fossil wood from Liaoning, China. Acta Botanica Sinica 41: 13121316.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Sciadopitys
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Sciadopitys
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Sciadopitys
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.023
Available formats
×