Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T15:20:40.173Z Has data issue: false hasContentIssue false

Chapter 43 - Glyptostrobus

Cupressales: Taxodiaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Medium to moderately tall, monoecious, semi-deciduous trees of imposing mature appearance in the wild, with a typically conical, tapering crown when young, becoming billowing, multi-domed and relatively open but remaining well furnished with age. The foliage is soft, blue–green and mostly winter-deciduous. The trunk bases are flared and surrounded by low but vertically ascending round-topped ascending aerophore root groupings.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 53 - 73
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aulenback, K.R. & LePage, B.A. 1998. Taxodium wallissii sp. nov.: first occurrence of Taxodium from the Upper Cretaceous. International Journal of Plant Sciences 159(2): 367390.CrossRefGoogle Scholar
Averyanov, L.V., Loc, P.K., Hiep, N.T. & Harder, D.K. 2003. Phytogeographic review of Vietnam and adjacent areas of Eastern Indochina. Komarovia 3: 183.Google Scholar
Averyanov, L.V., Loc, P.K., Hiep, N.T., et al. 2009. Preliminary observation of native Glyptostrobus pensilis (Taxodiaceae) stands in Vietnam. Taiwania 54: 191212.Google Scholar
Axelrod, D.I. 1986. Cenozoic history of some western American pines. Annals of the Missouri Botanical Garden 73: 565641.CrossRefGoogle Scholar
Axelrod, D.I. 1987 The Late Oligocene Creede Flora, Colorado. Berkeley, CA: University of California Press.Google Scholar
Axelrod, D.I. 1988. An interpretation of high montane conifers in western Tertiary floras. Paleobiology 14(3): 301306.CrossRefGoogle Scholar
Baikovskaya, T.N. 1956. Upper Cretaceous floras of northern Asia. Palaeobotanica 2: 49181.Google Scholar
Baikovskaya, T.N. 1974. Upper Miocene Flora of Southern Primorye. Leningrad: Izdatel’stvo" Nauka", Leningradskoe otdelenie.Google Scholar
Bell, W.A. 1949. Uppermost Cretaceous and Paleocene floras of western Alberta. Canada Department of Mines Research Geology Survey Bulletin 13.Google Scholar
Bo, S., Siegert, M.J., Mud, S. et al. 2009. The Gamburtsev Mountains and the origins and early evolution of the Antarctic Ice Sheet. Nature 459: 690693.CrossRefGoogle ScholarPubMed
Botany Research and Development Group of Vietnam 2010. Preliminary observations on native Glyptostrobus pensilis (Taxodiaceae) stands in Vietnam. www.botanyvn.com.Google Scholar
Boyd, A. 2009. Relict conifers from the mid-Pleistocene of Rhodes, Greece. Historical Biology 21(1–2): 115.CrossRefGoogle Scholar
Brown, R.W. 1936. Paleobotany of the genus Glyptostrobus in North America. Journal of the Washington Academy of Sciences 26: 353357.Google Scholar
Brown, R.W. 1962. Paleocene flora of the Rocky Mountains and Great Plains. US Geological Survey Professional Paper 375.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodiaceae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Budantsev, L.Y. 1997. Late Eocene flora of Western Kamchatka. Proceedings of the Botanical Institute Russian Academy of Sciences 19: 3115.Google Scholar
Buzek, C. 1971. Tertiary Flora from the Northern Part of the Petipsy Area (Northern Bohemian Basin). Prague: Nakladatelstvi Ceskoslovenske Akademie.Google Scholar
Chelebayeva, A.I. 1978. Miotsenovyye flory Vostochnoy Kamchatki (flory stratotipa korfskoy serii) [Miocene Floras in East Kamchatka: the Floras of the Korf Series Stratotype]. Moscow: Nauka Press.Google Scholar
Chochieva, K.I. 1980. The family of Taxodiaceae in the fossil flora of Georgia. Izvestiya Akademii Nauk Gruzinsloi SSR Seriya Biologicheskaya (Bulletin of the Academy of Sciences of the Georgian Soviet Socialist Republic, ser. Biological) 6(1): 6166 (in Russian, with English summary).Google Scholar
Creber, G.T. & Chaloner, W.G. 1985. Tree growth in the Mesozoic and early Tertiary and the reconstruction of palaeoclimates. Palaeogeography, Palaeoclimatology and Palaeoecology 52: 3560.CrossRefGoogle Scholar
Dorofeev, P.I. 1962. Megaspory, semena I plody iz tretichnykh otlozheny [Megaspores, seeds and fruits from the Tertiary sediments]. Trudy Sibirsk Nauchno-Issled Inst Geol Geofiz Miner Syr 22: 369415.Google Scholar
Dorofeev, P.I. 1974. On the history of the genus Glyptostrobus Endl. Botanical Zhurnal 59: 313 (in Russian).Google Scholar
Endlicher, I.L. 1847. Synopsis Coniferarum. Sangalli: Scheitlin & Zollikofer.Google Scholar
Endo, S. 1964. Some older Tertiary plants from northern Thailand: contributions to the geology and palaeontology of southwestern Asia, VI. Pp 113117 in Kobayashi, T. (ed.), Geology and Palaeontology of Southeast Asia.Tokyo: University of Tokyo Press.Google Scholar
Endo, S. 1968. The flora from Eocene Woodwardia Formation, Ishikari coal field, Hokkaido, Japan. Bulletin of the National Science Museum Tokyo 11: 411449.Google Scholar
Erdei, B., Dolezych, M. & Hably, L. 2009. The buried Miocene forest at Bükkábrány, Hungary. Review of Palaeobotany and Palynology 155(1–2): 6979.CrossRefGoogle Scholar
FIVI (Forest Inventory and Planning Institute, Vietnam). 1996. Vietnam Forest Trees. Hanoi: Agricultural Publishing House.Google Scholar
Florin, R. 1952. On Metasequoia, living and fossil. Bot Notiser 105: 129.Google Scholar
Florin, R. 1955. The systematics of the Gymnosperms. Pp. 323403 in A Century of Progress in the Natural Sciences. San Francisco, CA: California Academy of Sciences.Google Scholar
Fu, L.K., Yu, Y.F. & Farjon, A. 1999. Cupressaceae. Pp 6277 in Wu, Z.Y. & Raven, P.H. (eds.), Flora of China 4. Beijing: Science Press.Google Scholar
Fyles, J.G., Hills, L.V., Matthews, J.V. Jr, et al. 1994. Ballast Brook and Beaufort Formations (Late Tertiary) on northern Banks Island, Arctic Canada. Quaternary International 22: 141171.CrossRefGoogle Scholar
Greenwood, D.R. & Basinger, J.F. 1994. The paleoecology of high-latitude Eocene swamp forests from Axel Heiberg Island. Canadian High Arctic Review of Palaeobotany and Palynology 81(1): 8397.CrossRefGoogle Scholar
Greguss, P. 1955. Identification of Living Gymnosperms on the Basis of Xylotomy. Budapest: Akademia Kiado.Google Scholar
Grime, J.P. 2001. Plant Strategies, Vegetation Processes, and Ecosystem Processes, 2nd edn. Chichester: Wiley.Google Scholar
Grímsson, F. & Zetter, R. 2011. Combined LM and SEM study of the Middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria: Part II. Pinophyta (Cupressaceae, Pinaceae and Sciadopityaceae). Grana 50: 262310.CrossRefGoogle Scholar
Grímsson, F., Denk, T. & Símonarson, L.A. 2007. Middle Miocene floras of Iceland: the early colonization of an island?. Review of Palaeobotany and Palynology 144(3–4): 181219.CrossRefGoogle Scholar
Guo, S.X. 1985. Preliminary interpretation of Tertiary climate by using megafossils in China. Palaeontologia Cathayana 2: 169175.Google Scholar
Guo, S.X. & Li, H.M. 1979. Late Cretaceous flora from Hunchun of Jilin. Acta Palaeontol Sin 18: 547−560.Google Scholar
Han, L.-J., Hu, Y.-X., Lin, J.-X. & Wang, X.P. 1997. The biology and conservation of Glyptostrobus pensilis (a review). Subtropical Plant Research Communication 26: 4347 (in Chinese with English abstract).Google Scholar
Harland, M., Francis, J.E., Brentnall, S.J. & Beerling, D.J. 2007. Cretaceous (Albian–Aptian) conifer wood from Northern Hemisphere high latitudes: forest composition and palaeoclimate. Review of Palaeobotany and Palynology 143(3–4): 167196.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Heer, O. 1871. Flora fossilis arctica: Die fossile Flora der Polarländer. J Wurster & Co.Google Scholar
Heer, O. 1874. Nachträge zur Miocene Flora Grönlands. Flora Fossilis Arctica. Band III: Heft 2 & 3. Kgl. Svenska Vetenskapsakad. Handlingar 12: 111.Google Scholar
Henry, A. & McIntyre, M. 1926. The swamp cypresses, Glyptostrobus of China and Taxodium of America, with notes on allied genera. Proceedings of the Royal Irish Academy 37: 90116.Google Scholar
Hofmann, C.C. & Zetter, R. 2005. Reconstruction of different wetland plant habitats of the Pannonian Basin System (Neogene, Eastern Austria). Palaios 20(3): 266279.CrossRefGoogle Scholar
Hurník, S. & Kvaček, Z. 1999. Satellite basin of Skyrice near Most and its fossil flora (Miocene). Acta Universitatis Carolinae Geologica 4: 643656.Google Scholar
Jahren, A.H. 2007. The Arctic forest of the Middle Eocene. Annual Reviews of Earth Planetary Science 35: 509540.CrossRefGoogle Scholar
Kalaitzidis, S., Bouzinos, A., Papazisimou, S. & Christanis, K. 2004. A short-term establishment of forest fen habitat during Pliocene lignite formation in the Ptolemais Basin, NW Macedonia, Greece. International Journal of Coal Geology 57(3–4): 243263.CrossRefGoogle Scholar
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Kong, W.S. 2000. Vegetational history of the Korean Peninsula. Global Ecology and Biogeography 9(5): 391402.CrossRefGoogle Scholar
Kovar-Eder, J. & Meller, B. 2003. The plant assemblages from the main seam parting of the western sub-basin of Oberdorf, N Voitsberg, Styria, Austria (Early Miocene). Courier-Forschungsinstitut Senckenberg 241: 281312.Google Scholar
Kovar-Eder, J., Kvaček, Z. & Meller, B. 2001. Comparing Early to Middle Miocene floras and probable vegetation types of Oberdorf N Voitsberg (Austria), Bohemia (Czech Republic) and Wackersdorf (Germany). Review of Palaeobotany and Palynology 114: 83125.CrossRefGoogle ScholarPubMed
Kovar-Eder, J., Kvaček, Z. & Ströbitzer-Hermann, M. 2004. The Miocene flora of Parschlug (Styria, Austria): revision and synthesis. Annalen des Naturhistorischen Museums in Wien 105A: 45159.Google Scholar
Krystofovich, A. N. 1935. A final link between the Tertiary floras of Asia and Europe. New Phytologist 34: 339344.CrossRefGoogle Scholar
Krystofovich, A. N. 1946. Miocene plants from the Suifunskoi Formation, Ussuriskogo Krai. Botanical Journal 31: 734.Google Scholar
Kuan, C.-T. (1981). Fundamental features of the distribution of Coniferae in Sichuan. Acta Phytotaxica Sinica 14: 407420 (in Chinese).Google Scholar
Kusumi, J., Tsumura, Y., Yoshimaru, H. & Tacida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chiL gene, trnL–trnF IGS region, and trnL intron sequence. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
Kvaček, Z. & Rember, W.C. 2000. Shared Miocene conifers of the Clarkia flora and Europe. Acta Universitatis Carolinae, Geologica 44: 7585.Google Scholar
Lebedev, E.L. 1982. Recurrent development of floras of the Okhotsk-Chukotka volcanogenic belt at the boundary between the Early and Late Cretaceous. Paleontological Journal 2: 111.Google Scholar
LePage, B.A. 2007. The taxonomy and biogeographic history of Glyptostrobus. Bulletin of the Peabody Museum of Natural History 48: 359426.CrossRefGoogle Scholar
Li, C.X. & Yang, Q. 2003. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae from 28S rDNA sequences. Yi Chuan= Hereditas 25(2): 177180.Google Scholar
Li, F.-G. & Xia, N.-H. 2005. Population structure and genetic diversity of an endangered species, Glyptostrobus pensilis (Cupressaceae). Botanical Bulletin Academica Sinica 46: 155162.Google Scholar
Li, H.-M. & Yang, G.-Y. 1984. Miocene Qiuligou flora in Dunhua county, Jilin Province. Acta Palaeontologica Sinica 23: 204214.Google Scholar
Li, L.-C. 1987. Cytological studies on Glyptostrobus pensilis Koch (Taxodiaceae). Guihaia 7: 101106.Google Scholar
Li, L. 1989. Studies on the cytotaxonomy and systematic evolution of Taxodiaceae Warming. Acta Botanica Yunnanica 11: 113131.Google Scholar
Liu, T.S. & Su, H.J. 1983. Biosystematic Studies on Taiwania and Numerical Evaluations on the Systematics of Taxodiaceae. Taipei: Taiwan Museum.Google Scholar
López-Pujol, J., Zhang, F.M., Sun, H.Q., Ying, T.S. & Ge, S. 2011. Mountains of southern China as ‘plant museums’ and ‘plant cradles’: evolutionary and conservation insights. Mountain Research and Development 31(3): 261269.CrossRefGoogle Scholar
Ma, Q.-W., Li, C.-S., Li, F.-L. & Vickulin, S.V. 2004. Epidermal structures and stomatal parameters of Chinese endemic Glyptostrobus pensilis (Taxodiaceae). Botanical Journal of the Linnean Society 146: 153162.CrossRefGoogle Scholar
Maekawa, F. 1974. Origin and characteristics of Japan’s flora. Pp 3386 in Numa-Ta, N. (ed.), The Flora and Vegetation of Japan. Tokyo: Kodansha.Google Scholar
Magri, D., Di Rita, F., Aranbarri, J., et al. 2017. Quaternary disappearance of tree taxa from Southern Europe: timing and trends. Quaternary Science Reviews 163: 2355.CrossRefGoogle Scholar
Mai, D.H. 1989. Development and regional differentiation of the European vegetation during the Tertiary. Plant Systematics and Evolution 162: 7991.CrossRefGoogle Scholar
Mai, D.H. & Walther, H. 1988. Die pliozänen Floren von Thüringen Deutsche Demokratische Republik. Quartärpaläont 7: 55297.Google Scholar
Martinetto, E., Uhl, D. & Tarabra, E. 2007. Leaf physiognomic indications for a moist warm-temperate climate in NW Italy during the Messinian (Late Miocene). Palaeogeography, Palaeoclimatology, Palaeoecology 253(1–2): 4155.CrossRefGoogle Scholar
Matsumoto, M., Ohsawa, T.A., Nishida, M. & Nishida, H. 1997. Glyptostrobus rubenosawensis sp. nov., a new permineralised conifer species from the Middle Miocene, Central Hokkaido. Japanese Paleontological Research 1: 8199.Google Scholar
McIntyre, D.J. 1991. Pollen and spore flora of an Eocene forest, eastern Axel Heiberg Island, N.W.T. Bulletin of the Geological Survey of Canada 403: 8398.Google Scholar
McIver, E.E. & Basinger, J.F. 1993. Flora of the Ravenscrag Formation (Paleocene), southwestern Saskatchewan, Canada. Palaeontographica Canadiana 10: 1167.Google Scholar
Momohara, A. 1994. Floral and paleoenvironmental history from the late Pliocene to middle Pleistocene in and around central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 108(3–4): 281293.CrossRefGoogle Scholar
Mustoe, G., Dillhoff, R., & Dillhoff, T. 2007. Geology and paleontology of the early Tertiary Chuckanut Formation. Pp 121135 in Stelling, P. & Tucker, D.S. (eds.), Floods, Faults, and Fire: Geological Field Trips in Washington State and British Columbia. Boulder, CO: Geological Society of America.CrossRefGoogle Scholar
Otto, A. & Simoneit, B.R. 2001. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochemica Cosmoschimica Acta 65: 35053527.CrossRefGoogle Scholar
Otto, A., Simoneit, B.R. & Rember, W.C. 2003. Resin compounds from the seed cones of three fossil conifer species from the Miocene Clarkia flora, Emerald Creek, Idaho, USA, and from related extant species. Review of Palaeobotany and Palynology 126(3–4): 225241.CrossRefGoogle Scholar
Page, C.N. 1973. Ferns, polyploids, and their bearing on the evolution of the Canarian flora. Monographia Biologicae Canariensis 4: 8388.Google Scholar
Page, C.N. 1977. An ecological survey of the ferns of the Canary Islands. Fern Gazette 11: 297312.Google Scholar
Parrish, J.T., Daniel, I.L., Kennedy, E.M. & Spicer, R.A. 1998. Palaeoclimatic significance of mid-Cretaceous floras from the Middle Clarence Valley, New Zealand. Palaios 13: 149159.CrossRefGoogle Scholar
Phuong, V.T. 2007. Forest environment of Vietnam: features of forest vegetation and soils. Pp 189200 in Forest Environments in the Mekong River Basin. Tokyo: Springer.CrossRefGoogle Scholar
Price, R.A. & Lowenstein, J.M. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Systematic Botany 14: 141149.CrossRefGoogle Scholar
Ramanujam, C.G.K. & Stewart, W.N. 1969. Fossil woods of Taxodiaceae from the Edmonton Formation (upper Cretaceous) of Alberta. Canadian Journal of Botany 47(1): 115124.CrossRefGoogle Scholar
Sato, S. 1960. Palynological study on the Haboro coal seam of the Haboro coal-bearing formation. Journal of the Faculty of Science, Hokkaido University 4.Google Scholar
Schweitzer, H.J. 1974 Die ‘Tertifiren’ koniferen spitzberg. Paleontographica 149B: 189.Google Scholar
Shimada, M. 1953 . The pollen analyses of sonie lignite beds in the north-eastern provinces of Japan. BZCLL Society of Plant Ecology 3.Google Scholar
Smith, H.V. 1938. Notes on fossil plants from Hog Creek in southwestern Idaho. Michigan Academy of Sciences 23: 223231.Google Scholar
Srinivasan, V. 1995. Conifers from the Puddledock locality (Potomac Group, Early Cretaceous) in eastern North America. Review of Palaeobotany and Palynology 89(3–4): 257286.CrossRefGoogle Scholar
Stebbins, G.L. 1948. The chromosomes and relationships of Metasequoia and Sequoia. Science 108: 9598.CrossRefGoogle ScholarPubMed
Stockey, R.A., Rothwell, G.W. & Falder, A.B. 2001. Diversity among taxodioid conifers: Metasequoia foxii sp. Nov from the Paleocene of Central Alberta, Canada. International Journal of Plant Science 162: 221234.CrossRefGoogle Scholar
Sveshnikova, I.N. 1963. Atlas and a key for the identification of the living and fossil Sciadopityaceae and Taxodiaceae based on the structure of the leaf epidermis. Paleobotany 4: 207.Google Scholar
Sveshnikova, I.N. 1967. Late Cretaceous conifers in the USSR; 1. Fossil conifers of the Vilyui Syneclise. Tr. Bot Inst Akad Nauk SSSR Ser 8 Paleobot 4: 177204.Google Scholar
Takaso, T. & Tomlinson, P.B. 1989. Cone and ovule development in Callitris (Cupressaceae–Callitroideae). Botanical Gazette 150: 387390.CrossRefGoogle Scholar
Takaso, T. & Tomlinson, P.B. 1990. Cone and ovule ontogeny in Taxodium and Glyptostrobus (Taxodiaceae – Coniferales). American Journal of Botany 77: 12091221.CrossRefGoogle Scholar
Tanai, T. 1961. Neogene floral change in Japan. Journal of the Faculty of Science, Hokkaido University ser. 4(9): 1112.Google Scholar
Tanai, T. & Suzuki, N. 1972. Additions to the Miocene floras of southwestern Hokkaido, Japan. Journal of the Faculty of Science, Hokkaido University. Series 4. Geology and Mineralogy 15(1–2): 281359.Google Scholar
Tanai, T. & Uemura, K. 1991. The Oligocene Noda Flora from the Yuyawan area of the western end of Honshu, Japan. Part 2. Bulletin of the National Science Museum Ser C 17: 8190.Google Scholar
Teodoridis, V. & Sakala, J. 2008. Early Miocene conifer macrofossils from the Most Basin (Czech Republic). Neues Jahrbuch fur Geologie und Palaontologie-Abhandlungen 250(3): 287.CrossRefGoogle Scholar
Thomas, P., Yang, Y., Farjon, A., Nguyễn, D. & Liao, W. 2011. Glyptostrobus pensilis. In IUCN 2011: IUCN Red List of Threatened Species. Version 2011.2. www.iucnredlist.org.Google Scholar
Ticleanu, N. & Diaconita, D., 1997. The main coal facies and lithotypes of the Pliocene coal basin, Oltenia, Romania. European Coal Geology and Technology 125: 131139.Google Scholar
Tsukada, M. 1963. Umbrella pine, Sciadopitys verticillata: past and present distribution in Japan. Science 142: 16801681.CrossRefGoogle ScholarPubMed
Uemura, K. 1988. Late Miocene floras in Northeast Honshu, Japan. National Science Museum Tokyo 197.Google Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Vassio, E., Martinetto, E. & Dolezyeh, M. 2008. Wood anatomy of Glyptostrobus europaeus ‘whole plant’ from a Pliocene fossil forest in Italy. Review of Palaeobotany and Palynology 151: 8189.CrossRefGoogle Scholar
Vickulin, S.V., Ma, Q.-W., Zhilim, S.G. & Li, C.-S. 2003. On cuticular compressions of Glyptostrobus europaeus (Taxodiaceae) from Kaydaguui formation (Lower Miocene) of the central Kazakhstan. Acta Botanica Sinica 45: 673680.Google Scholar
Visscher, G.E. & Jagels, R. 2003. Separation of Metasequoia and Glyptostrobus (Cupressaceae) based on wood anatomy. IAWA Journal 24(4): 439450.CrossRefGoogle Scholar
Wang, C.-W. 1961. The forests of China, with a survey of grassland and desert vegetation. Maria Moors Cabot Foundation Publication 5: 1313.Google Scholar
Williams, C.J., Mendell, E., Murphy, J., et al. 2008. Paleoenvironmental reconstruction of a Middle Miocene forest from the western Canadian Arctic. Palaeogeography, Palaeoclimatology, Palaeoecology 261: 160176.CrossRefGoogle Scholar
Wittlake, E.B. 1975. The androstrobilus of Glyptostrobus nordenskioldi (Heer) Brown. American Midland Naturalist 94: 215223.CrossRefGoogle Scholar
Wolfe, J.A. 1979. Temperature parameters of humid to mesic forests of eastern Asia and relation of forests to other regions of the Northern Hemisphere and Australasia. US Geological Survey Professional Paper 1106.CrossRefGoogle Scholar
Wolfe, J.A. & Upchurch, G.R. Jr 1987. Leaf assemblages across the Cretaceous–Tertiary boundary in the Raton Basin, New Mexico and Colorado. Proceedings of the National Academy of Sciences 84(15): 50965100.CrossRefGoogle ScholarPubMed
Wolfe, J.A., Hopkins, D.M. & Leopold, E.B. 1966. Tertiary stratigraphy and paleobotany of the Cook Inlet region, Alaska. US Geological Survey Professional Paper 398A.CrossRefGoogle Scholar
Worobiec, E. 2011. Middle Miocene aquatic and wetland vegetation of the paleosinkhole at Tarnów Opolski, SW Poland. Journal of Paleolimnology 45: 311322.CrossRefGoogle Scholar
Worobiec, E. & Szulc, J. 2010. A Middle Miocene palynoflora from sinkhole deposits from Upper Silesia, Poland and its palaeoenvironmental context. Review of Palaeobotany and Palynology 163(1–2): 110.CrossRefGoogle Scholar
Yamakawa, C., Momohara, A., Nunotani, T., Matsumoto, M. & Watano, Y. 2008. Paleovegetation reconstruction of fossil forests dominated by Metasequoia and Glyptostrobus from the late Pliocene Kobiwako Group, central Japan. Paleontological Research 12: 167180.CrossRefGoogle Scholar
Ying, T.-S., Zhang, Y.-L. & Boufford, D.E. 1993. The Endemic Genera of Seed Plants of China. Beijing: Science Press.Google Scholar
Zhilin, S.G. 1989. History of the development of the temperate forest flora in Kazakhstan (USSR) from the Oligocene to the Early Miocene. Botanical Review 55: 205.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Glyptostrobus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Glyptostrobus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Glyptostrobus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.007
Available formats
×