Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-20T17:14:46.641Z Has data issue: false hasContentIssue false

Chapter 20 - Cupressus

Cupressales: Cupressaceae S.S.

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Tall, medium-sized to sometimes massive, monoecious evergreen trees, with a crown which is tapering at first, becoming more billowing with age. Their branch systems are numerous, slender, spreading, compressed and flattened, to form ultimate branchlets within a single plane, pendulous in some species (e.g. C. torulosa, C. funebris, C. cashmeriana) forming long whip-like tips, giving the trees a cascading appearance.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 395 - 407
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aboudun, F. & Beddiaf, M. 2002. Cupressus dupreziana A. Camus: distribution, decline and regeneration on the Tassili n’Ajjer, central Sahara. Comptes Rendus Biologicae 325: 617627.CrossRefGoogle Scholar
Adams, R.P., Bartel, J.A. & Price, R.A. 2009. A new genus, Hesperocyparis, for the cypresses of the Western Hemisphere (Cupressaceae). Phytologia 91: 160185.Google Scholar
An, Z., Kutzbach, J.E., Prell, W.L. & Porter, S.C. 2001. Evolution of Asian monsoons and phased uplift of the Himalayan–Tibetan plateau since Late Miocene times. Nature 411: 6266.Google Scholar
Barry, J.P. 1970. Essai de monographie du Cupressus dupreziana A. Camus, cypress endemique du Tassili des Alger (Sahara Central). Bulletin Société Histoire Naturelle Afrique du Nord 61: 95178.Google Scholar
Boulter, M.C. & Kvaček, Z. 1989. The Palaeocene flora of the Isle of Mull: incorporating unpublished observations by A.C. Seward and W.N. Edwards. Special Papers in Palaeontology 42: 1149.Google Scholar
Brunsfield, S.J., Soltis, P.S., Soltis, D.E. et al. 1994. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
De Tarade, R. 1980. Cupressus dupreziana from Lebanon (cultivated). International Dendrology Society Yearbook 1979: 97.Google Scholar
Dobry, J. 1998. Cupressus dupreziana. Threatened Plants Newsletter 20: 12.Google Scholar
Dogra, P.D. 1986. Conifers of India and their natural gene resources in relation to forestry and the Himalayan environment. Glimpses in Plant Research 7: 129194.Google Scholar
Eckenwalder, J.F. 2009. Conifers of the World: The Complete Reference. Portland, OR: Timber Press.Google Scholar
El Maataoui, M. & Pichot, C. 1999. Nuclei and cell fusion cause polyploidy in the megagametophyte of common cypress, Cupressus sempervirens L. Planta 208: 345351.Google Scholar
El Maataoui, M. & Pichot, C. 2001. Microsporogenesis in the endangered Cupressus dupreziana A. Camus: evidence for meiotic defects yielding unreduced and abortive pollen. Planta 213: 543549.Google ScholarPubMed
El Maataoui, M., Pichot, C., Alzubi, H. & Grimauld, N. 1998. Cytological basis for a tetraspory in Cupressus sempervirens L. megagametogenesis and its implications in genetic studies. Theoretical and Applied Genetics 96: 776779.CrossRefGoogle Scholar
Farjon, A. 2005. A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Gadek, P.A & Quinn, C.J. 1985. Biflavenoids of the subfamily Cupressoideae, Cupressaceae. Phytochemistry 24: 267272.CrossRefGoogle Scholar
Gadek, P.A & Quinn, C.J. 1987. Biflavones and the affinities of Cupressus funebris Endl. Phytochemistry 26: 25512552.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Guo, K., Liu, C. & Dong, M. 2011. Ecological adaptation of plants and control of rocky-desertification on karst region of South-west China. Chinese Journal of Plant Ecology 35(10): 991999.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hrib, J. & Dobry, J. 1984. An explant culture of Tassilian cypress, Cupressus dupreziana. Forest Ecology and Management 8: 235–224.CrossRefGoogle Scholar
Kvaček, Z., Velitzelos, D. & Velitzelos, D. 2002. Late Miocene Flora of Vegora, Macedonia, N. Greece. Athens: University of Athens.Google Scholar
Little, D.P. 2006. Evolution and circumscription of the true cypresses (Cupressaceae: Cupressus). Systematic Botany 31: 461480.CrossRefGoogle Scholar
Little, D.P., Schwarzbach, A.E., Adams, A.E. & Hsieh, C.-F. 2004. The circumscription and phylogenetic relationships of Callitropsis and the newly described genus Xanthocyparis (Cupressaceae). American Journal of Botany 91: 18721881.CrossRefGoogle ScholarPubMed
Little, D.P., Thomas, P., Nguyen, H.T. & Phan, L.K. 2011. Before it had a name: diagnostic characteristics, geographic distribution, and the conservation of Cupressus tonkinensis (Cupressaceae). Brittonia 63: 171196.CrossRefGoogle Scholar
Liu, C.-G. & Xue, J.-H. 2011. Basic soil properties and comprehensive evaluation in different plantations in rocky desertification sites of the karst region of Guizhou Province, China. Chinese Journal of Plant Ecology 35: 10501060.Google Scholar
McIver, E.E. 1994. An early Chamaecyparis (Cupressaceae) from the Late Cretaceous of Vancouver Island, British Columbia, Canada. Canadian Journal of Botany 72(12): 17871796.CrossRefGoogle Scholar
Mehra, P.N. & Malhotra, R.K. 1947. Stages in the embryology of Cupressus sempervirens Linn. with particular reference to the occurrence of multiple male cells in the male gametophyte. Proceedings of the National Academy of Sciences, India 17: 129153.Google Scholar
Nguyen Duc To Luu, & Thomas, P. 2004. Cay La Kim Viet Nam (Conifers of Vietnam: An Illustrated Field Guide). Hanoi: World Publishing House.Google Scholar
Page, C.N. & Rushforth, K.D. 1980. Picea farreri, a new temperate conifer from Upper Burma. Notes from the Royal Botanic Garden Edinburgh 38(1): 129136.Google Scholar
Papageorgiou, A.C. 1998. Diploid sporophytic tissue in the seed of Cupressus sempervirens L. Heredity 81: 586590.CrossRefGoogle Scholar
Pichot, C. & El Maataoui, M. 1997. Flow cytometric evidence for multiple ploidy levels in the endosperm of some gymnosperm species. Theoretical and Applied Genetics 94: 865870.CrossRefGoogle Scholar
Pichot, C. & El Maataoui, M. 2000. Unreduced diploid nuclei in Cupressus dupreziana A. Camus pollen. Theoretical and Applied Genetics 101: 574579.CrossRefGoogle Scholar
Rushforth, K.D., Adams, R.P., Zhong, M., Quiang, X.M. & Pandey, R.M. 2003. Variation among Cupressus species from the eastern hemisphere based on random amplified polymorphic DNAs (RAPDs). Biochemical Systematic Ecology 31: 1724.CrossRefGoogle Scholar
Shi, G., Zhou, Z. & Xie, Z. 2011. Cupressus foliage shoots and associated seed cones from the Oligocene Ningming Formation of Guangxi, South China. Review of Palaeobotany and Palynology 166(3–4): 325334.CrossRefGoogle Scholar
Silba, J. 1994. The trans-Pacific relationship of Cupressus in India and North America. Journal of the International Conifer Preservation Society 1: 128.Google Scholar
Stewart, P.J. 1970. Cupressus dupreziana, threatened conifer of the Sahara. Biological Conservation 2: 1012.CrossRefGoogle Scholar
Stockey, R.A., Kvaček, J., Hill, R.S., Rothwell, G.W. & Kvaček, Z. 2005. The Fossil Record of Cupressaceae s. lat. Kew: n.p.Google Scholar
Xiang, Q.P. & Li, J.H. 2005. Derivation of Xanthocyparis and Juniperus from within Cupressus: evidence from sequences of nrDNA internal transcribed spacer region. Harvard Papers in Botany 9(2): 375382.Google Scholar
Xiang, Q. & Farjon, A. 2003. Cuticle morphology of a newly discovered conifer, Xanthocyparis vietnamensis (Cupressaceae), and a comparison with some of its nearest relatives. Botanical Journal of the Linnean Society 143(3): 315322.CrossRefGoogle Scholar
Xu, T.-T., Abbott, R.J., Milne, R.I., et al. 2010. Phylogeography and allopatric divergence of cypress species (Cupressus L.) in the Qinghai-Tibetan Plateau and adjacent regions. BMC Evolutionary Biology 10: 194204.CrossRefGoogle ScholarPubMed
Yanni, A.S. & Mohharam, A.M. 1990. Synthesis and biological activity of some 5‐substituted aminomethyl‐8‐hydroxyquinoline‐7‐sulphonic acids. Journal of Chemical Technology & Biotechnology 49(3): 243247.CrossRefGoogle Scholar
Zobel, D.B. 1986. Port-Orford-cedar: a forgotten species. Journal of Forest History 30(1): 2936.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Cupressus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Cupressus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Cupressus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.024
Available formats
×