Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-19T00:24:58.876Z Has data issue: false hasContentIssue false

Chapter 61 - Acmopyle

Podocarpales: Dacrydiaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Dioecious, thin, slender and small evergreen trees, usually under 20 m, and 40 cm dbh. Bark is brown. Major branch and branchlet axes have indefinite and scarcely rhythmic growth; ultimate minor axes have definite and strongly rhythmic seasonal growth. Major branches are slender, flexible, spreading horizontally.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 449 - 461
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brodribb, T. & Hill, R.S. 1998. The photosynthetic drought physiology of a diverse group of Southern Hemisphere conifer species is correlated with minimum seasonal rainfall. Functional Ecology 12: 465471.CrossRefGoogle Scholar
Brodribb, T. & Hill, R.S. 2004. The rise and fall of the Podocarpaceae in Australia: a physiological explanation. Pp 381399 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. London: Academic Press.CrossRefGoogle Scholar
Carter, G.A. & Smith, W.K. 1985. Influence of shoot structure on light interception and photosynthesis in conifers. Plant Physiology 79: 10381043.CrossRefGoogle Scholar
Compton, R.H. 1922. A systematic account of the plants collected in New Caledonia and Isle of Pines. Part II. Botanical Journal of the Linnean Society 45: 421434.CrossRefGoogle Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Cookson, I.C. & Pike, K.M. 1954. The fossil occurrence of Phyllocladus and two other podocarpaceous types in Australia. Australian Journal of Botany 2: 6067.CrossRefGoogle Scholar
Couper, R.A. 1960. Southern Hemisphere Mesozoic and Tertiary Podocarpaceae and Fagaceae and their palaeogeographic significance. Proceedings of the Royal Society of London B 152: 491500.Google Scholar
De Ferré, M.Y., Rouane, M.I. & Wolz, M.P. 1977. Systematique et anatomie compares des feulles de Taxaceae, Podocarpaceae et Cupressaceae de Nouvele-Caledonie. Cahier du Pacific 20: 241266.Google Scholar
Florin, R. 1940. The Tertiary conifers of southern Chile and their phytogeographical significance. Kungliga Svenska Vetenskapsakademiens Handlingar 19(2): 1107.Google Scholar
Hair, J.B. 1966. Biosystematics of the New Zealand flora, 1945–1964. New Zealand Journal of Botany 4: 559595.CrossRefGoogle Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Hill, R.S. 1991. Tertiary Nothofagus (Fagaceae) macrofossils from Tasmania and Antarctica and their bearing on the evolution of the genus. Botanical Journal of the Linnean Society 105: 73112.CrossRefGoogle Scholar
Hill, R.S. 1994. The history of selected Australian taxa. Pp 390419 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Hill, R.S. & Brodribb, T.J. 2003. The evolution of Australia’s living biota. Pp 1333 in Attiwill, P. & Wilson, B. (eds.), Ecology: An Australian Perspective. Melbourne: Oxford University Press.Google Scholar
Hill, R.S. & Carpenter, R. 1991a. Evolution of Acmopyle and Dacrycarpus (Podocarpaceae) foliage as inferred from macrofossils in south-eastern Australia. Australian Systematic Botany 4: 481–479.CrossRefGoogle Scholar
Hill, R.S. & Carpenter, R. 1991b Extensive past distributions for major Gondwanic floral elements: macrofossil evidence. Papers and Proceedings of the Royal Society of Tasmania 125: 239247.CrossRefGoogle Scholar
Hill, R.S. & Pole, M. 1992. Leaf and shoot morphology of extant Afrocarpus, Nageia and Retrophyllum (Podocarpaceae) species and species with similar leaf arrangement from Tertiary sediments in Australasia. Australian Systematic Botany 5: 337358.CrossRefGoogle Scholar
Hill, R.S. & Scriven, L.J. 1995. The angiosperm-dominated woody vegetation of Antarctica: a review. Review of Palaeobotany and Palynology 86: 175198.CrossRefGoogle Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of Podocarpaceae: a comparison of evidence from morphology and 18S rDNA. American Journal of Botany 85: 986996.CrossRefGoogle ScholarPubMed
Kemp, E.M. & Harris, W.K. 1975. The vegetation of tertiary islands on the Ninetyeast Ridge. Nature 258: 303307.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, T. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle ScholarPubMed
Kröenke, L. 1996. Plate tectonic development of the western and southwestern Pacific: Mesozoic to the present. Pp 1934 in Keast, A. & Miller, S.E. (eds.), The Origin and Evolution of Pacific Island Biotas, New Guinea to Eastern Polynesia: Patterns and Processes. Amsterdam: SPB Academic Publishing.Google Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle ScholarPubMed
Luyendyk, R.P. 1995. Hypothesis for continuous rifting of east Gondwanaland caused by subducted slab capture. Geology 23: 373376.2.3.CO;2>CrossRefGoogle Scholar
Macphail, M.K., Alley, N. Truswell, E.M. & Sluiter, I.R.K. 1994. Early Tertiary vegetation: evidence from spores and pollen. Pp 189261 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Mill, R.R. 2003. Towards a biogeography of the Podocarpaceae. Pp 137147 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Mortimer, N., Campbell, H.J., Tulloch, A.J., et al. 2017. Zealandia: Earth’s hidden continent. GSA Today 27: 2735.CrossRefGoogle Scholar
Parham, J.W. 1972. Plants of the Fiji Islands, revised edn. Suva: Government Printer.Google Scholar
Pole, M. 1992. Early Miocene flora of the Manuherikia Group, New Zealand. 2. Conifers. Journal of the Royal Society of New Zealand 22: 287302.CrossRefGoogle Scholar
Pole, M. 1997. Miocene conifers from the Manuherikia Group, New Zealand. Journal of the Royal Society of New Zealand 27: 355370.CrossRefGoogle Scholar
Pole, M. 2007. Early Eocene dispersed cuticles and mangrove to rainforest vegetation at Strahan-Regatte Point, Tasmania. Palaeontologica Electronica 10(3).Google Scholar
Quilty, P.G. 1994, The background: 144 million years of Australian palaeoclimate and palaeogeography. Pp 1443 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Quiroga, M.P., Mathiasen, P., Iglesias, A., Mill, R.R. & Premoli, A.C. 2016. Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography. Journal of Biogeography 43(2): 372383.CrossRefGoogle Scholar
Sanhi, B. 1921. On the structure and affinities of Acmopyle pancheri Pilger. Transactions of the Royal Society of London B 210: 253310.Google Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Sivak, J. 1975. Les characters de diagnose des grains de pollen a ballonets. Pollen et Spores 17: 349421.Google Scholar
Smith, A.C. 1979. Flora Vitiensis Nova: A New Flora of Fiji. Kauai, HI: Lawaii, Pacific Tropical Botanical Garden.Google Scholar
Sternberg, P. 1996. Simulation of the effects of shoot structure and orientation on vertical gradients in intercepted light by conifer canopies. Tree Physiology 16: 99108.CrossRefGoogle Scholar
Taylor, G., Truswell, E.M., McQueen, K.G. & Brown, M.C. 1990. Early Tertiary palaeogeography, landform evolution and palaeoclimates of the Southern Monaro, NSW, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 78: 109134.CrossRefGoogle Scholar
Wells, P.M. & Hill, R.S. 1989. Leaf morphology of the imbricate-leaved Podocarpaceae. Australian Systematic Botany 2: 369386.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Acmopyle
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.025
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Acmopyle
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.025
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Acmopyle
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.025
Available formats
×