Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T08:36:46.282Z Has data issue: false hasContentIssue false

11 - Fishing for sleep

Published online by Cambridge University Press:  10 March 2010

Patrick McNamara
Affiliation:
Boston University
Robert A. Barton
Affiliation:
University of Durham
Charles L. Nunn
Affiliation:
Max Planck Institute for Evolutionary Anthropology
Get access

Summary

Fish comprise about half of the known vertebrate species. The vast majority of the extant 30,000 currently known species of fish are bony fishes. They occupy diverse habitats in fresh and salty waters of rivers, lakes, seas, and oceans. The dynamic adaptations of fish to these distinctly different environments – including complex reproductive, migratory, and life-cycle adaptations – are truly remarkable. Their adaptive strategies include periods of rest that, in different fish species, can be spent lying quietly on the sea floor, floating, or swimming.

With fishes as with other phylogenetically earlier animals discussed in this book, the decision as to whether they actually sleep or just rest quietly must be based on a combination of behavioral features, electrophysiological patterns of brain activity, and molecular processes that we associate with sleep in mammals. Sleep is thought to be present when the animal is in a species-specific posture of behavioral quiescence and exhibits elevated arousal thresholds as well as rapid reversibility of behavioral quiescence after appropriate stimulation (Campbell & Tobler, 1984). The majority of fish species thus far studied display these behavioral features of sleep accompanied by physiological quietness, including reduced heart rate and respiration (Karmanova, 1975; Karmanova, Churnosov, & Popova, 1976; Karmanova, Titkov, & Popova, 1976; Peyrethon & Dusan-Peyrethon, 1967; Shapiro & Hepburn, 1976; Tobler & Borbély, 1985).

Type
Chapter
Information
Evolution of Sleep
Phylogenetic and Functional Perspectives
, pp. 238 - 266
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aparicio, S., Garau, C., Nicolau, M. C., Rial, R. V., & Esteban, S. (2006). Opposite effects of tryptophan intake on motor activity in ring doves (diurnal) and rats (nocturnal). Comparative Biochemistry and Physiology, Part A: Molecular and Integrative Physiology, 144(2), 173–179.CrossRefGoogle Scholar
Aranda, A., Madrid, J. A., & Sanchez-Vazquez, F. J. (2001). Influence of light on feeding anticipatory activity in goldfish. Journal of Biological Rhythms, 16(1), 50–57.CrossRefGoogle ScholarPubMed
Arenzana, F. J., Clemente, D., Sanchez-Gonzalez, R., Porteros, A., Aijon, J., & Arevalo, R. (2005). Development of the cholinergic system in the brain and retina of the zebrafish. Brain Research Bulletin, 66(4–6), 421–425.CrossRefGoogle ScholarPubMed
Bobbo, D., Galvani, F., Mascetti, G. G., & Vallortigara, G. (2002). Light exposure of the chick embryo influences monocular sleep. Behavioural Brain Research, 134(1–2), 447–466.CrossRefGoogle ScholarPubMed
Cahill, G. M., Hurd, M. W., & Batchelor, M. M. (1998). Circadian rhythmicity in the locomotor activity of larval zebrafish. NeuroReport, 9(15), 3445–3449.CrossRefGoogle ScholarPubMed
Campbell, S. S., & Tobler, I. (1984). Animal sleep: A review of sleep duration across phylogeny. Neuroscience and Biobehavioral Reviews, 8(3), 269–300.CrossRefGoogle ScholarPubMed
Carr, A. J., & Whitmore, D. (2005). Imaging of single light-responsive clock cells reveals fluctuating free-running periods. Natural Cell Biology, 7(3), 319–321.CrossRefGoogle ScholarPubMed
Cermakian, N., Whitmore, D., Foulkes, N. S., & Sassone-Corsi, P. (2000). Asynchronous oscillations of two zebrafish CLOCK partners reveal differential clock control and function. Proceedings of the National Academy of Sciences of the United States of America, 97(8), 4339–4344.CrossRefGoogle ScholarPubMed
Chen, W. M., Naruse, M., & Tabata, M. (2002). The effect of social interactions on circadian self-feeding rhythms in rainbow trout Oncorhynchus mykiss Walbaum. Physiology and Behavior, 76(2), 281–287.CrossRefGoogle ScholarPubMed
Clemente, D., Arenzana, F. J., Sanchez-Gonzalez, R., Porteros, A., Aijon, J., & Arevalo, R. (2005). Comparative analysis of the distribution of choline acetyltransferase in the central nervous system of cyprinids. Brain Research Bulletin, 66(4–6), 546–549.CrossRefGoogle ScholarPubMed
Clemente, D., Porteros, A., Weruaga, E., Alonso, J. R., Arenzana, F. J., Aijon, J., et al. (2004). Cholinergic elements in the zebrafish central nervous system: Histochemical and immunohistochemical analysis. The Journal of Comparative Neurology, 474(1), 75–107.CrossRefGoogle ScholarPubMed
Danilova, N., Krupnik, V. E., Sugden, D., & Zhdanova, I. V. (2004). Melatonin stimulates cell proliferation in zebrafish embryo and accelerates its development. The FASEB Journal, 18(6), 751–753.CrossRefGoogle ScholarPubMed
Doldan, M. J., Prego, B., Holmqvist, B. I., & Miguel, E. (1999). Distribution of GABA-immunolabeling in the early zebrafish (Danio rerio) brain. The European Journal of Morphology, 37(2–3), 126–129.CrossRefGoogle ScholarPubMed
Eriksson, K. S., Peitsaro, N., Karlstedt, K., Kaslin, J., & Panula, P. (1998). Development of the histaminergic neurons and expression of histidine decarboxylase mRNA in the zebrafish brain in the absence of all peripheral histaminergic systems. The European Journal of Neuroscience, 10(12), 3799–3812.CrossRefGoogle ScholarPubMed
Faraco, J. H., Appelbaum, L., Marin, W., Gaus, S. E., Mourrain, P., & Mignot, E. (2006). Regulation of hypocretin (orexin) expression in embryonic zebrafish. The Journal of Biological Chemistry, 281(40), 29753–29761.CrossRefGoogle ScholarPubMed
Fetcho, J. R., & O'Malley, D. M. (1995). Visualization of active neural circuitry in the spinal cord of intact zebrafish. Journal of Neurophysiology, 73(1), 399–406.CrossRefGoogle ScholarPubMed
Fraser, N., Heggenes, J., Metcalfe, N. B., & Thorpe, J. E. (1995). Low summer temperatures cause juvenile Atlantic salmon to become nocturnal. Canadian Journal of Zoology, 73, 446–451.CrossRefGoogle Scholar
Gee, P., Stephenson, D., & Wright, D. E. (1994). Temporal discrimination learning of operant feeding in goldfish (Carassius auratus). Journal of the Experimental Analysis of Behavior, 62(1), 1–13.CrossRefGoogle Scholar
Gerhard, G. S. (2003). Comparative aspects of zebrafish (Danio rerio) as a model for aging research. Experimental Gerontology, 38(11–12), 1333–1341.CrossRefGoogle ScholarPubMed
Herrera, M., & Jagadeeswaran, P. (2004). Annual fish as a genetic model for aging. The Journals of Gerontology, Series A, Biological Sciences and Medical Sciences, 59(2), 101–107.CrossRefGoogle ScholarPubMed
Higashijima, S., Mandel, G., & Fetcho, J. R. (2004). Distribution of prospective glutamatergic, glycinergic, and GABAergic neurons in embryonic and larval zebrafish. The Journal of Comparative Neurology, 480(1), 1–18.CrossRefGoogle ScholarPubMed
Higashijima, S., Masino, M. A., Mandel, G., & Fetcho, J. R. (2003). Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. Journal of Neurophysiology, 90(6), 3986–3997.CrossRefGoogle ScholarPubMed
Kaneko, M., Hernandez-Borsetti, N., & Cahill, G. M. (2006) Diversity of zebrafish peripheral oscillators revealed by luciferase reporting. Proceedings of the National Academy of Sciences of the United States of America, 103(39), 14614–14619.CrossRefGoogle ScholarPubMed
Karmanova, I. G. (1975). New data on the circadian biorhythm of wakefulness and sleep in vertebrates. Doklady Akademii Nauk SSSR, 225(6), 1457–1460.Google ScholarPubMed
Karmanova, I. G., Churnosov, E. V., & Popova, D. I. (1976). Daily form of rest in the catfish Ictalurus nebulosus and the frog Rana temporaria. Zhurnal Evoliutsionnoĭ Biokhimii i Fiziologii, 12(6), 572–578.Google ScholarPubMed
Karmanova, I. G., & Lazarev, S. G. (1979). Stages of sleep evolution (facts and hypotheses). Waking and Sleeping, 3(2), 137–147.Google Scholar
Karmanova, I. G., Titkov, E. S., & Popova, D. I. (1976). Species characteristics of the diurnal periodicity of rest and activity in Black Sea fish. Zhurnal Evoliutsionnoĭ Biokhimii i Fiziologii, 12(5), 486–488.Google ScholarPubMed
Kaslin, J., Nystedt, J. M., Ostergard, M., Peitsaro, N., & Panula, P. (2004). The orexin/hypocretin system in zebrafish is connected to the aminergic and cholinergic systems. The Journal of Neuroscience, 24(11), 2678–2689.CrossRefGoogle ScholarPubMed
Kaslin, J., & Panula, P. (2001). Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio). The Journal of Comparative Neurology, 440(4), 342–377.CrossRefGoogle Scholar
Kavanau, J. L. (1998). Vertebrates that never sleep: Implications for sleep's basic function. Brain Research Bulletin, 46(4), 269–279.CrossRefGoogle ScholarPubMed
Kishi, S. (2004). Functional aging and gradual senescence in zebrafish. Annals of the New York Academy of Sciences, 1019, 521–526.CrossRefGoogle ScholarPubMed
Lague, M., & Reebs, S. G. (2000). Phase-shifting the light-dark cycle influences food-anticipatory activity in golden shiners. Physiology and Behavior, 70(1–2), 55–59.CrossRefGoogle ScholarPubMed
Mascetti, G. G., & Vallortigara, G. (2001). Why do birds sleep with one eye open? Light exposure of the chick embryo as a determinant of monocular sleep. Current Biology, 11(12), 971–974.CrossRefGoogle ScholarPubMed
Mintz, E. M., Phillips, N. H., & Berger, R. J. (1998). Daytime melatonin infusions induce sleep in pigeons without altering subsequent amounts of nocturnal sleep. Neuroscience Letters, 258(2), 61–64.CrossRefGoogle ScholarPubMed
Montoro, J., Sastre, J., Bartra, J., del Cuvillo, A., Davila, I., Jauregui, I., et al. (2006). Effect of H1 antihistamines upon the central nervous system. Journal of Investigational Allergology and Clinical Immunology, 16(Suppl. 1), 24–28.Google ScholarPubMed
Mukhametov, L. M. (1987). Unihemispheric slow-wave sleep in the Amazonian dolphin, Inia geoffrensis. Neuroscience Letters, 79(1–2), 128–132.CrossRefGoogle ScholarPubMed
Nakamachi, T., Matsuda, K., Maruyama, K., Miura, T., Uchiyama, M., Funahashi, H., et al. (2006). Regulation by orexin of feeding behaviour and locomotor activity in the goldfish. Journal of Neuroendocrinology, 18(4), 290–297.CrossRefGoogle ScholarPubMed
Olla, B. L., & Studholme, A. L. (1978). Comparative aspects of the activity rhythms of tautog, Tautoga onitis, bluefish, Pomatomus saltatrix, and Atlantic mackerel, Scomber scombrus, as related to their life habits. In Thorpe, J. E. (Ed.), Rhythmic activity of fishes (pp. 131–151). London: Academic Press.Google Scholar
O'Malley, D. M., Zhou, Q., & Gahtan, E. (2003). Probing neural circuits in the zebrafish: A suite of optical techniques. Methods, 30(1), 49–63.CrossRefGoogle ScholarPubMed
Pando, M. P., Pinchak, A. B., Cermakian, N., & Sassone-Corsi, P. (2001). A cell-based system that recapitulates the dynamic light-dependent regulation of the vertebrate clock. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10178–10183.CrossRefGoogle ScholarPubMed
Pando, M. P., & Sassone-Corsi, P. (2002). Unraveling the mechanisms of the vertebrate circadian clock: Zebrafish may light the way. Bioessays, 24(5), 419–426.CrossRefGoogle Scholar
Panula, P., Karlstedt, K., Sallmen, T., Peitsaro, N., Kaslin, J., Michelsen, K. A., et al. (2000). The histaminergic system in the brain: Structural characteristics and changes in hibernation. Journal of Chemical Neuroanatomy, 18(1–2), 65–74.CrossRefGoogle ScholarPubMed
Paredes, S. D., Terron, M. P., Valero, V., Barriga, C., Reiter, R. J., & Rodriquez, A. B. (2007). Orally administered melatonin improves nocturnal rest in young and old ringdoves (Streptopelia risoria). Basic and Clinical Pharmacology and Toxicology, 100(4), 258–268.CrossRefGoogle Scholar
Peyrethon, J., & Dusan-Peyrethon, D. (1967). Polygraphic study of the wakefulness-sleep cycle of a teleostean (Tinca tinca). Comptes Rendus des Séances de la Société de Biologie et de ses Filiales, 161(12), 2533–2537.Google Scholar
Prober, D. A., Rihel, J., Onah, A. A., Sung, R. J., & Schier, A. F. (2006). Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. The Journal of Neuroscience, 26(51), 13400–13410.CrossRefGoogle ScholarPubMed
Renier, C., Faraco, J. H., Bourgin, P., Motley, T., Bonaventure, P., Rosa, F., et al. (2007). Genomic and functional conservation of sedative-hypnotic targets in the zebrafish. Pharmacogenetics and Genomics, 17(4), 237–253.CrossRefGoogle ScholarPubMed
Reppert, S. M., & Weaver, D. R. (2002). Coordination of circadian timing in mammals. Nature, 418(6901), 935–941.CrossRefGoogle ScholarPubMed
Reppert, S. M., Weaver, D. R., Cassone, V. M., Godson, C., & Kolakowski, L. F. (1995). Melatonin receptors are for the birds: Molecular analysis of two receptor subtypes differentially expressed in chick brain. Neuron, 15(5), 1003–1015.CrossRefGoogle ScholarPubMed
Ruuskanen, J. O., Peitsaro, N., Kaslin, J. V., Panula, P., & Scheinin, M. (2005). Expression and function of alpha-adrenoceptors in zebrafish: Drug effects, mRNA and receptor distributions. Journal of Neurochemistry, 94(6), 1559–1569.CrossRefGoogle ScholarPubMed
Sanchez-Vazquez, F. J., Aranda, A., & Madrid, J. A. (2001). Differential effects of meal size and food energy density on feeding entrainment in goldfish. Journal of Biological Rhythms, 16(1), 58–65.CrossRefGoogle ScholarPubMed
Shang, E. H., & Zhdanova, I. V. (2007). The circadian system is a target and modulator of prenatal cocaine effects. PLoS ONE, 2(7), e587.CrossRefGoogle ScholarPubMed
Shapiro, C. M., & Hepburn, H. R. (1976). Sleep in a schooling fish, Tilapia mossambica. Physiology and Behavior, 16(5), 613–615.CrossRefGoogle Scholar
Siegel, J. M. (2005). Clues to the functions of mammalian sleep. Nature, 437, 1264–1271.CrossRefGoogle ScholarPubMed
Spieler, R. E., Meier, A. H., & Noeske, T. A. (1978a). Timing of a single daily meal affects daily serum prolactin rhythm in gulf killifish, Fundulus grandis. Life Sciences, 22(3), 255–258.CrossRefGoogle ScholarPubMed
Spieler, R. E., Meier, A. H., & Noeske, T. A. (1978b). Temperature-induced phase shift of daily rhythm of serum prolactin in gulf killifish. Nature, 271(5644), 469–470.CrossRefGoogle ScholarPubMed
Spieler, R. E., & Noeske, T. A. (1981). Timing of a single daily meal and diel variations of serum thyroxine, triiodothyronine, and cortisol in goldfish Carassius auratus. Life Sciences, 28(26), 2939–2944.CrossRefGoogle ScholarPubMed
Stickgold, R. (2005). Sleep-dependent memory consolidation. Nature, 437(7063), 1272–1278.CrossRefGoogle ScholarPubMed
Tauber, E. S. (1974). The phylogeny of sleep. In Weitzman, E. D. (Ed.), Advances in sleep research (pp. 133–172). New York: Spectrum Publications.Google Scholar
Tobler, I., & Borbély, A. A. (1985). Effect of rest deprivation on motor activity of fish. Journal of Comparative Physiology, Part A, 157(6), 817–822.CrossRefGoogle ScholarPubMed
Tsai, S. B., Tucci, V., Uchiyama, J., Fabian, N. J., Lin, M. C., Bayliss, P. E., et al. (2007). Differential effects of genotoxic stress on both concurrent body growth and gradual senescence in the adult zebrafish. Aging Cell, 6(2), 209–224.CrossRefGoogle ScholarPubMed
Vansteensel, M. J., Michel, S., & Meijer, J. H. (2008). Organization of cell and tissue circadian pacemakers: A comparison among species. Brain Research Reviews, 58(1), 18–47.CrossRefGoogle ScholarPubMed
White, R. M., Sessa, A., Burke, C., Bowman, T., LeBlanc, J., Ceol, C., et al. (2008). Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell, 2(2), 183–189.CrossRefGoogle ScholarPubMed
Whitmore, D., Foulkes, N. S., & Sassone-Corsi, P. (2000). Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature, 404(6773), 87–91.CrossRefGoogle ScholarPubMed
Whitmore, D., Foulkes, N. S., Strahle, U., & Sassone-Corsi, P. (1998). Zebrafish clock rhythmic expression reveals independent peripheral circadian oscillators. Nature Neuroscience, 1(8), 701–707.CrossRefGoogle ScholarPubMed
Yokogawa, T., Marin, W., Faraco, J., Pezeron, G., Appelbaum, L., Zhang, J., et al. (2007). Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biology, 5(10), 2379–2397.CrossRefGoogle ScholarPubMed
Yu, L., Tucci, V., Kishi, S., & Zhdanova, I. V. (2006). Cognitive aging in zebrafish. PLoS 1(1), E14.CrossRefGoogle ScholarPubMed
Zeitzer, J. M., Nishino, S., & Mignot, E. (2006). The neurobiology of hypocretins (orexins), narcolepsy, and related therapeutic interventions. Trends in Pharmacological Sciences, 27(7), 368–374.CrossRefGoogle Scholar
Zhdanova, I. V. (2005). Melatonin as a hypnotic: Pro. Sleep Medicine Reviews, 9(1), 51–65.CrossRefGoogle ScholarPubMed
Zhdanova, I. V. (2006). Sleep in zebrafish. Zebrafish, 3(2), 215–226.CrossRefGoogle ScholarPubMed
Zhdanova, I. V., Cantor, M. L., Leclair, O. U., Kartashov, A. I., & Wurtman, R. J. (1998). Behavioral effects of melatonin treatment in nonhuman primates. Sleep Research Online, 1(3), 114–118.Google Scholar
Zhdanova, I. V., Geiger, D. A., Schwagerl, A. L., Leclair, O. U., Killiany, R., Taylor, J. A., et al. (2002). Melatonin promotes sleep in three species of diurnal nonhuman primates. Physiology and Behavior, 75(4), 523–529.CrossRefGoogle ScholarPubMed
Zhdanova, I. V., & Reebs, S. G. (2006). Circadian rhythms in fish. In Sloman, K., Wilson, R., Balshine, S. (Eds.), Behavior and physiology of fish (pp. 197–238). San Diego: Elsevier.Google Scholar
Zhdanova, I. V., Wang, S. Y., Leclair, O. U., & Danilova, N. P. (2001). Melatonin promotes sleep-like state in zebrafish. Brain Research, 903(1–2), 263–268.CrossRefGoogle Scholar
Zhdanova, I. V., Yu, L., Lopez-Patino, M., Shang, E., Kishi, S., & Guelin, E. (2008). Aging of the circadian system in zebrafish and the effects of melatonin on sleep and cognitive performance. Brain Research Bulletin, 75(2–4), 433–441.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×