Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T19:32:16.515Z Has data issue: false hasContentIssue false

5 - Taxonomic Diversity, Complexity and the Evolution of Senescence

from Part I - Theory of Senescence

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
Affiliation:
University of Tokyo
Owen R. Jones
Affiliation:
University of Southern Denmark
Roberto Salguero-Gómez
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baudisch, A. (2008). Inevitable Aging? Contributions to Evolutionary-Demographic Theory (Berlin: Springer).Google Scholar
Baudisch, A., Salguero-Gómez, R., Jones, O. R., et al. (2013). The pace and shape of senescence in angiosperms. Journal of Ecology, 101(3), 596606.CrossRefGoogle Scholar
Baudisch, A. & Vaupel, J. W. (2012). Getting to the root of aging. Science, 338(6107), 618–19.CrossRefGoogle Scholar
Bochdanovits, Z. & de Jong, G. (2004). Antagonistic pleiotropy for life-history traits at the gene expression level. Proceedings of the Royal Society Series B: Biological Sciences, 271(Supp. 3), S75–8.CrossRefGoogle ScholarPubMed
Cohen, A. A. (2004). Female post-reproductive life span: a general mammalian trait. Biological Reviews, 79(4), 733–50.CrossRefGoogle Scholar
Cohen, A. A., Martin, L. B., Wingfield, J. C., et al. (2012). Physiological regulatory networks: ecological roles and evolutionary constraints. Trends in Ecology and Evolution, 27(8), 428–35.CrossRefGoogle ScholarPubMed
Cohen, A. A., Milot, E., Yong, J., et al. (2013). A novel statistical approach shows evidence for multi-system physiological dysregulation during aging. Mechanisms of Ageing and Development, 134(3–4), 110–17.CrossRefGoogle ScholarPubMed
Cohen, A. A., Milot, E., Li, Q., et al. (2014). Cross-population validation of statistical distance as a measure of physiological dysregulation during aging. Experimental Gerontology, 57, 203210.CrossRefGoogle ScholarPubMed
Cohen, A. A., Poirier, R., Dusseault-Bélanger, F., et al. (2015). Detection of a novel, integrative aging process suggests complex physiological integration. PloS one, 10(3), p.e0116489.CrossRefGoogle ScholarPubMed
Cohen, A. A. (2016). Complex systems dynamics in aging: new evidence, continuing questions. Biogerontology, 17(1), 205220.CrossRefGoogle ScholarPubMed
Comfort, A. (1979). The Biology of Senescence (Edinburgh: Churchill Livingstone).Google Scholar
Csermely, P. & Sőti, C. (2006). Cellular networks and the aging process. Archives of Physiology and Biochemistry, 112(2), 60–4.CrossRefGoogle ScholarPubMed
de Magalhães, J. P., Curado, J. & Church, G. M. (2009). Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics, 25(7), 875–81.CrossRefGoogle ScholarPubMed
de Magalhães, J. P. & Toussaint, O. (2004). How bioinformatics can help reverse engineer human aging. Ageing Research Reviews, 3(2), 125–41.Google ScholarPubMed
Ferrucci, L. (2005). An exciting thought. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 60(1), 56.CrossRefGoogle Scholar
Finch, C. E. (1990). Longevity, Senescence, and the Genome (University of Chicago Press).Google Scholar
Flatt, T., Amdam, G. V., Kirkwood, T. B. L. & Omholt, S. W. (2013). Life-history evolution and the polyphenic regulation of somatic maintenance and survival. Quarterly Review of Biology, 88(3), 185218.CrossRefGoogle ScholarPubMed
Fried, L. P., Hadley, E. C., Walston, J. D., et al. (2005). From bedside to bench: research agenda for frailty. Science of Aging Knowledge Environment, 2005(31): 24.CrossRefGoogle ScholarPubMed
Fried, L. P., Xue, Q.-L., Cappola, A. R., et al. (2009). Nonlinear multisystem physiological dysregulation associated with frailty in older women: implications for etiology and treatment. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 64(10), 1049–57.Google ScholarPubMed
Froy, H., Phillips, R. A., Wood, A. G., et al. (2013). Age-related variation in reproductive traits in the wandering albatross: evidence for terminal improvement following senescence. Ecology Letters, 16(5), 642–9.CrossRefGoogle ScholarPubMed
Ganz, T. (2003). Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood, 102(3), 783–8.CrossRefGoogle ScholarPubMed
Gems, D. & McElwee, J. J. (2005). Broad spectrum detoxification: the major longevity assurance process regulated by insulin/IGF-1 signaling? Mechanisms of Ageing and Development, 126(3), 381–7.CrossRefGoogle ScholarPubMed
Guarente, L. & Kenyon, C. (2000). Genetic pathways that regulate ageing in model organisms. Nature, 408(6809), 255–62.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1966). The moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Hoffman, J. M., Soltow, Q. A. Li, S., et al. (2014). Effects of age, sex, and genotype on high-sensitivity metabolomic profiles in the fruit fly, Drosophila melanogaster. Aging Cell.CrossRefGoogle Scholar
Holland, J. H. (1992). Complex adaptive systems. Daedalus, 1730.Google Scholar
Holzenberger, M., Dupont, J., Ducos, B., et al. (2003). IGF-1 receptor regulates life span and resistance to oxidative stress in mice. Nature, 421, 182–7.CrossRefGoogle ScholarPubMed
Horvitz, C. C. & Tuljapurkar, S. (2008). Stage dynamics, period survival, and mortality plateaus. American Naturalist, 172(2), 203–15.CrossRefGoogle ScholarPubMed
Hughes, K. A., Alipaz, J. A., Drnevich, J. M. & Reynolds, R. M. (2002). A test of evolutionary theories of aging. Proceedings of the National Academy of Sciences of the United States of America, 99(22), 14286–91.Google ScholarPubMed
Hughes, K. A. & Reynolds, R. M. (2005). Evolutionary and mechanistic theories of aging. Annual Review of Entomology, 50(1), 421–45.CrossRefGoogle ScholarPubMed
Jones, O. R., Scheuerlein, A., Salguero-Gómez, R., et al. (2014). Diversity of ageing across the tree of life. Nature, 505(7482): 169–73.CrossRefGoogle ScholarPubMed
Kier, L. & Witten, T. (2005). Cellular automata models of complex biochemical systems. In Complexity in Chemistry, Biology, and Ecology, ed. Bonchev, D. & Rouvray, D. (pp. 237301) (New York: Springer).CrossRefGoogle Scholar
Kirkwood, T. B. L. (1977). Evolution of ageing. Nature, 270, 301–4.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (1981). Repair and its evolution: survival versus reproduction. In Physiological Ecology: An Evolutionary Approach to Resource Use, ed. Townsend, C. R. & Calow, P. (pp. 165–89) (Oxford, Blackwell Scientific).Google Scholar
Kirkwood, T. B. L. (1985). Comparative and evolutionary aspects of longevity. In Handbook of the Biology of Aging, ed. Finch, C. E. & Schneider, E. L. (pp. 2744) (New York, Van Nostrand Rheinhold).Google Scholar
Kirkwood, T. B. L. (1992). Comparative life spans of species: why do species have the life spans they do? American Journal of Clinical Nutrition, 55, 1191S–5S.CrossRefGoogle Scholar
Kirkwood, T. B. L. (2002). Evolution of ageing. Mechanisms of Ageing and Development, 123(7), 737–45.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (2005). Understanding the Odd Science of Aging. Cell, 120(4), 437–47.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (2008). A systematic look at an old problem. Nature, 451, 644–7.CrossRefGoogle Scholar
Kirkwood, T. B. L. (2011). Systems biology of ageing and longevity. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1561), 6470.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L., Boys, R. J., Gillespie, C. S., et al. (2003). Towards an e-biology of ageing: integrating theory and data. Nature Reviews Molecular Cell Biology, 4(3), 243–9.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. & Holliday, R. (1979). The evolution of ageing and longevity. Proceedings of the Royal Society of London, B205, 531–46.Google Scholar
Kirkwood, T. B. L. & Rose, M. R. (1991). Evolution of senescence: late survival sacrificed for reproduction. Philosophical Transactions of the Royal Society of London Series B, 332, 1524.Google ScholarPubMed
Kitano, H. (2002). Systems biology: a brief overview. Science, 295(5560), 1662–4.CrossRefGoogle ScholarPubMed
Kowald, A. & Kirkwood, T. B. L. (1996). A network theory of ageing: the interactions of defective mitochondria, aberrant proteins, free radicals and scavengers in the ageing process. Mutation Research/DNAging, 316(5–6), 209–36.CrossRefGoogle ScholarPubMed
Lambeth, J. D. (2007). Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radical Biology and Medicine, 43(3), 332–47.CrossRefGoogle ScholarPubMed
Lipsitz, L. A. (2004). Physiological complexity, aging, and the path to frailty. Science of Aging Knowledge Environment, 2004(16), 16.CrossRefGoogle ScholarPubMed
Martı́nez, D. E. (1998). Mortality patterns suggest lack of senescence in Hydra. Experimental Gerontology, 33(3), 217–25.CrossRefGoogle ScholarPubMed
McEwen, B. S. & Wingfield, J. C. (2003). The concept of allostasis in biology and biomedicine. Hormones and Behavior, 43(1), 215.CrossRefGoogle ScholarPubMed
Medawar, P. B. (1952). An Unsolved Problem of Biology (London, Lewis).Google Scholar
Medvedev, Z. A. (1990). An attempt at a rational classification of theories of ageing. Biological Reviews, 65(3), 375–98.CrossRefGoogle Scholar
Milot, E., Cohen, A. A., Vézina, F., et al. (2014). A novel integrative method for measuring body condition in ecological studies based on physiological dysregulation. Methods in Ecology and Evolution, 5(2), 146–55.CrossRefGoogle Scholar
Moorad, J. A. & Promislow, D. E. (2009). What can genetic variation tell us about the evolution of senescence? Proceedings of the Royal Society of London Series B: Biological Sciences, 276(1665), 2271–8.Google ScholarPubMed
Moorad, J. A. & Promislow, D. E. L. (2008). A theory of age-dependent mutation and senescence. Genetics, 179(4), 2061–73.CrossRefGoogle ScholarPubMed
Partridge, L. & Gems, D. (2002). Mechanisms of aging: public or private? Nature Reviews Genetics, 3(3), 165–75.CrossRefGoogle ScholarPubMed
Peñuelas, J. (2005). Plant physiology: a big issue for trees. Nature, 437(7061), 965–6.CrossRefGoogle ScholarPubMed
Pigliucci, M. & Muller, G. (2010). Evolution – the extended synthesis.CrossRefGoogle Scholar
Promislow, D. E. L. (2004). Protein networks, pleiotropy and the evolution of senescence. Proceedings of the Royal Society of London Series B: Biological Sciences, 271(1545), 1225–34.CrossRefGoogle ScholarPubMed
Promislow, D. E. L. & Harvey, P. H. (1990). Living fast and dying young: a comparative analysis of life-history variation among mammals. Journal of Zoology, 220(3), 417–37.CrossRefGoogle Scholar
Reed, W. L., Clark, M. E., Parker, P. G., et al. (2006). Physiological effects on demography: a long-term experimental study of testosterones effects on fitness. American Naturalist, 167(5), 667–83.CrossRefGoogle ScholarPubMed
Ricklefs, R. E. (1998). Evolutionary theories of aging: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. American Naturalist, 152(1), 2444.CrossRefGoogle ScholarPubMed
Salguero-Gómez, R., Jones, O. R., Archer, C. R., et al. (2015). The COMPADRE Plant Matrix Database: an open online repository for plant demography. Journal of Ecology 103(1), 202218.CrossRefGoogle Scholar
Salguero-Gómez, R., Jones, O. R., Archer, C. A., et al. 2016. COMADRE: a global database of animal demography. Journal of Animal Ecology 85, 371384.CrossRefGoogle ScholarPubMed
Salguero-Gómez, R., Shefferson, R. P. & Hutchings, M. J. (2013). Plants do not count … or do they? New perspectives on the universality of senescence. Journal of Ecology, 101(3), 545–54.CrossRefGoogle ScholarPubMed
Sapolsky, R. M., Krey, L. C. & McEwen, B. S. (2002). The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Science of Aging Knowledge Environment, 2002(38), 21.CrossRefGoogle Scholar
Seplaki, C. L., Goldman, N., Weinstein, M. & Lin, Y.-H. (2006). Measurement of cumulative physiological dysregulation in an older population. Demography, 43(1), 165–83.CrossRefGoogle Scholar
Simons, M. J., Koch, W. & Verhulst, S. (2013). Dietary restriction of rodents decreases aging rate without affecting initial mortality rate – a meta-analysis. Aging Cell, 12(3), 410–14.CrossRefGoogle ScholarPubMed
Soltow, Q. A., Jones, D. P. & Promislow, D. E. L. (2010). A network perspective on metabolism and aging. Integrative and Comparative Biology, 50(5), 844–54.CrossRefGoogle ScholarPubMed
Taffett, G. E. (2003). Physiology of aging. In Geriatric Medicine, ed. Cassel, C. K., Leipzig, R. M., Cohen, H. J. et al. (pp. 2735) (New York: Springer).CrossRefGoogle Scholar
Turbill, C. & Ruf, T. (2010). Senescence is more important in the natural lives of long-than short-lived mammals. PLoS ONE, 5(8), e12019.CrossRefGoogle Scholar
Vaupel, J. W., Baudisch, A., Dölling, M., et al. (2004). The case for negative senescence. Theoretical Population Biology, 65(4), 339–51.CrossRefGoogle ScholarPubMed
Velando, A., Drummond, H. & Torres, R. (2006). Senescent birds redouble reproductive effort when ill: confirmation of the terminal investment hypothesis. Proceedings of the Royal Society of London Series B: Biological Sciences, 273(1593), 1443–8.Google ScholarPubMed
Warner, D. A., Miller, D. A., Bronikowski, A. M., & Janzen, F. J. (2016). Decades of field data reveal that turtles senesce in the wild. Proceedings of the National Academy of Sciences, 201600035.CrossRefGoogle Scholar
Weindruch, R. & Sohal, R. S. (1997). Caloric intake and aging. New England Journal of Medicine, 337(14), 986–94.CrossRefGoogle ScholarPubMed
Wensink, M. (2013). Age-specificity and the evolution of senescence: a discussion. Biogerontology, 14(1), 99105.CrossRefGoogle ScholarPubMed
Wensink, M. J., Wrycza, T. F. & Baudisch, A. (2014). No senescence despite declining selection pressure: Hamilton’s result in broader perspective. Journal of Theoretical Biology, 347, 176–81.CrossRefGoogle ScholarPubMed
West, D. B. (2001). Introduction to Graph Theory (Upper Saddle River, NJ: Prentice-Hall).Google Scholar
West, G. B. & Bergman, A. (2009). Toward a systems biology framework for understanding aging and health span. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 64A(2), 205–8.CrossRefGoogle Scholar
Williams, G. C. (1957). Pleiotropy, natural selection and the evolution of senescence. Evolution, 11, 398411.CrossRefGoogle Scholar
Xue, H., Xian, B., Dong, D., et al. (2007). A modular network model of aging. Molecular Systems Biology, 3(1).CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×