Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T10:02:00.700Z Has data issue: false hasContentIssue false

2 - The Disposable Soma Theory

Origins and Evolution

from Part I - Theory of Senescence

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
Affiliation:
University of Tokyo
Owen R. Jones
Affiliation:
University of Southern Denmark
Roberto Salguero-Gómez
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bateson, P., Barker, D., Clutton-Brock, T., et al. (2004). Developmental plasticity and human health. Nature, 430, 419–21.CrossRefGoogle ScholarPubMed
Bell, G. (1984). Evolutionary and nonevolutionary theories of senescence. American Naturalist, 124, 600–3.CrossRefGoogle Scholar
Buss, L. W. (1988). The Evolution of Individuality (Princeton, NJ: Princeton University Press).CrossRefGoogle Scholar
Caswell, H. (2007). Extrinsic mortality and the evolution of senescence. Trends in Ecology and Evolution, 22, 173–4.CrossRefGoogle ScholarPubMed
Charlesworth, B. (2001). Patterns of age-specific means and genetic variances of mortality rates predicted by the mutation-accumulation theory of ageing. Journal of Theoretical Biology, 210, 4765.CrossRefGoogle ScholarPubMed
Douglas, P. M. & Dillin, A. (2014). The disposable soma theory of aging in reverse. Cell Research, 24, 78.CrossRefGoogle ScholarPubMed
Drenos, F. & Kirkwood, T. B. L. (2005). Modelling the disposable soma theory of ageing. Mechanisms of Ageing and Development, 126, 99103.CrossRefGoogle ScholarPubMed
Ermolaeva, M. A., Segref, A., Dakhovnik, A., et al. (2013). DNA damage in germ cells induces an innate immune response that triggers systemic stress resistance. Nature, 501, 416–20.CrossRefGoogle ScholarPubMed
Finch, C. E. (1990). Longevity, Senescence and the Genome (University of Chicago Press).Google Scholar
Flatt, T., Amdam, G. V., Kirkwood, T. B. L. & Omholt, S. W. (2013). Life-history evolution and the polyphenic regulation of somatic maintenance and survival. Quarterly Review of Biology, 88, 185218.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1966). The moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Harrison, D. E. & Archer, J. R. (1989). Natural selection for extended longevity from food restriction. Growth Development and Aging, 53, 3.Google ScholarPubMed
Holliday, R. (1989). Food, reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation? BioEssays, 10, 125–7.CrossRefGoogle ScholarPubMed
Hopfield, J. J. (1974). Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proceedings of the National Academy of Sciences USA, 71, 4135–9.CrossRefGoogle ScholarPubMed
Jones, O. R., Scheuerlein, A., Salguero-Gómez, R., et al. (2014). Diversity of ageing across the tree of life. Nature, 505, 169–73.CrossRefGoogle ScholarPubMed
Kapahi, P., Boulton, M. E. & Kirkwood, T. B. L. (1999). Positive correlation between mammalian life span and cellular resistance to stress. Free Radicals in Biology and Medicine, 26, 495500.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (1977). Evolution of aging. Nature, 270, 301–4.CrossRefGoogle Scholar
Kirkwood, T. B. L. (1980). Error propagation in intracellular information transfer. Journal of Theoretical Biology, 82, 363–82.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (1981). Repair and its evolution: survival vs reproduction. In Physiological Ecology: An Evolutionary Approach to Resource Use, ed. Townsend, C. R. & Calow, P., pp. 165–89 (Oxford, UK: Blackwell Scientific).Google Scholar
Kirkwood, T. B. L. (2005). Asymmetry and the origins of ageing. Mechanisms of Ageing and Development, 126, 533–4.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (2011). Systems biology of ageing and longevity. Philosophical Transactions of the Royal Society of London Series B, 366, 6470.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. & Cremer, T. (1982). Cytogerontology since 1881: a reappraisal of August Weismann and a review of modern progress. Human Genetics, 60, 101–21.CrossRefGoogle Scholar
Kirkwood, T. B. L. & Holliday, R. (1975). The stability of the translation apparatus. Journal of Molecular Biology, 97, 257–65.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. & Holliday, R. (1979). The evolution of aging and longevity. Proceedings of the Royal Society of London Series B, 205, 531–46.Google Scholar
Kirkwood, T. B. L. & Rose, M. R. (1991). Evolution of senescence: late survival sacrificed for reproduction. Philosophical Transactions of the Royal Society London, B332, 1524.Google Scholar
Kirkwood, T. B. L., Rosenberger, R. F. & Galas, D. J. (1986). Accuracy in Molecular Processes: Its Control and Relevance to Living Systems (London: Chapman & Hall).CrossRefGoogle Scholar
Kowald, A. & Kirkwood, T. B. L. (1996). A network theory of ageing: the interactions of defective mitochondria, aberrant proteins, free radicals and scavengers in the ageing process. Mutation Research, 316, 209–36.Google ScholarPubMed
Lai, C. Y., Jaruga, E., Borghouts, C. & Jazwinski, S. M. (2002). A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics, 162, 7387.CrossRefGoogle ScholarPubMed
Luckinbill, L. S., Arking, R., Clare, M. J., et al. (1984). Selection of delayed senescence in Drosophila melanogaster. Evolution, 38, 9961003.CrossRefGoogle ScholarPubMed
Martínez, D. E. (1998). Mortality patterns suggest lack of senescence in Hydra. Experimental Gerontology, 33, 217–25.CrossRefGoogle ScholarPubMed
Medawar, P. B. (1952). An Unsolved Problem of Biology (London: H.K. Lewis)(reprinted in Medawar, P. B. (1957). The Uniqueness of the Individual. (London: Methuen)).Google Scholar
Ninio, J. (1975). Kinetic amplification of enzyme discrimination. Biochimie, 57, 587–95.CrossRefGoogle ScholarPubMed
Orgel, L. E. (1963). The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proceedings of the National Academy of Sciences USA, 49, 517–21.CrossRefGoogle ScholarPubMed
Orgel, L. E. (1970). The maintenance of the accuracy of protein synthesis and its relevance to ageing: a correction. Proceedings of the National Academy of Sciences USA, 67, 1476.CrossRefGoogle ScholarPubMed
Orgel, L. E. (1973). Ageing of clones of mammalian cells. Nature, 243, 441–5.CrossRefGoogle ScholarPubMed
Roper, C., Pignatelli, P. & Partridge, L. (1993). Evolutionary effects of selection on age at reproduction in larval and adult Drosophila melanogaster. Evolution, 47, 445–55.Google ScholarPubMed
Rose, M. R. (1984). Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution, 38, 1004–10.CrossRefGoogle ScholarPubMed
Rosenberger, R. F. (1991). Senescence and the accumulation of abnormal proteins. Mutation Research, 256, 255–62.Google ScholarPubMed
Saretzki, G., Armstrong, L., Leake, A., et al. (2004). Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cells. Stem Cells, 22, 962–71.CrossRefGoogle ScholarPubMed
Saretzki, G., Walter, T., Atkinson, S., et al. (2008). Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells. Stem Cells, 26, 455–64.CrossRefGoogle ScholarPubMed
Savageau, M. A. & Freter, R. R. (1979). On the evolution of accuracy and cost of proofreading tRNA aminoacylation. Proceedings of the National Academy of Sciences USA, 76, 4507–10.CrossRefGoogle ScholarPubMed
Shanley, D. P. & Kirkwood, T. B. (2000). Calorie restriction and aging: a life-history analysis. Evolution 54, 740–50.Google ScholarPubMed
Sozou, P. D. & Kirkwood, T. B. L. (2001). A stochastic network model of cell replicative senescence based on telomere shortening, oxidative stress and somatic mutations in nuclear and mitochondrial DNA. Journal of Theoretical Biology, 213, 573–86.CrossRefGoogle ScholarPubMed
Stearns, S. C. (1992). The Evolution of Life Histories (Oxford University Press).Google Scholar
Stewart, E. J., Madden, R., Paul, G. & Taddei, F. (2005). Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biology, 3, e45.CrossRefGoogle Scholar
Townsend, C. R. & Calow, P. (1981). Physiological Ecology: An Evolutionary Approach to Resource Use (Oxford, UK: Blackwell Scientific).Google Scholar
Vilchez, D., Simic, M. S. & Dillin, A. (2014a). Proteostasis and aging of stem cells. Trends in Cell Biology, 24, 161–70.CrossRefGoogle ScholarPubMed
Vilchez, D., Saez, I. & Dillin, A. (2014b). The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nature Communications, 5, 5659.CrossRefGoogle ScholarPubMed
Wachter, K. W, Evans, S. N. & Steinsaltz, D. (2013). The age-specific force of natural selection and biodemographic walls of death. Proceedings of the National Academy of Sciences USA, 110, 10141–8.CrossRefGoogle ScholarPubMed
Wachter, K. W, Steinsaltz, D. & Evans, S. N. (2014). Evolutionary shaping of demographic schedules. Proceedings of the National Academy of Sciences USA, 111, 10846–53.CrossRefGoogle ScholarPubMed
Weismann, A. (1891). Essays upon Heredity and Kindred Biological Problems, Vol. 1 (2nd edn.) (Oxford, UK: Clarendon Press).Google Scholar
Westendorp, R. G. J. & Kirkwood, T. B. L. (1998). Human longevity at the cost of reproductive success. Nature, 396, 743–6.CrossRefGoogle ScholarPubMed
Williams, G. C. (1957). Pleiotropy, natural selection and the evolution of senescence. Evolution, 11, 398411.CrossRefGoogle Scholar
Zwaan, B. J., Bijlsma, R., & Hoekstra, R. F. (1995). Direct selection of lifespan in Drosophila melanogaster. Evolution, 49, 649–59.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×