Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T22:42:17.821Z Has data issue: false hasContentIssue false

12 - Evolution of Vertebrate Reproduction

Published online by Cambridge University Press:  31 December 2018

Zerina Johanson
Affiliation:
Natural History Museum, London
Charlie Underwood
Affiliation:
Birkbeck, University of London
Martha Richter
Affiliation:
Natural History Museum, London
Get access

Summary

The discovery of reproductive structures and embryos in basal jawed vertebrates, in addition to nursery sites, has resulted in a greater understanding of the diversity of reproductive strategies present in early gnathostomes. The presence of both dermal and perichondral components to the pelvic girdle in placoderms, in addition to complex musculature, absent in extant gnathostomes, indicates that the pectoral and pelvic girdles are not as morphologically distinct as previously thought. This suggests that arguments against homology, based on dissimilar skeletal and muscular morphology need to be revised. Evidence that oviparity preceded viviparity is present in the fossil record of placoderms (antiarchs versus ptyctodonts and arthrodires), coelacanths and teleosts. The identification of intromittent structures in placoderms, separate from the pelvic skeleton, suggests that the intromittent organs of placoderms and sharks are not homologous, nor are the gonopodia, modifications of the male anal fin in actinopterygians. These diverse reproductive structures reveal that internal fertilisation and live birth evolved independently and multiple times within the jawed vertebrates.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlberg, PE, Trewin, NH. 1995. The postcranial skeleton of the Middle Devonian lungfish Dipterus valenciennesi. Trans R Soc Edinb 85:159175.Google Scholar
Ahlberg, PE, Trinajstic, K, Johanson, Z, Long, JA. 2009. Pelvic claspers confirm chondrichthyan-like internal fertilization in arthrodires. Nature 460:888889.CrossRefGoogle ScholarPubMed
Anderson, PS. 2008. Cranial muscle homology across modern gnathostomes. Biol J Linn Soc Lond 94:195216.CrossRefGoogle Scholar
Andreev, P, Coates, MI, Karatajūtė–Talimaa, V, Shelton, RM, Cooper, PR, Wang, NZ, Sansom, IJ. 2016. The systematics of the Mongolepidida (Chondrichthyes) and the Ordovician origins of the clade. Peer J 4: e1850.Google Scholar
Arsenault, M, Desbiens, S, Janvier, P, Kerr, J. 2004. New data on the soft tissues and external morphology of the antiarch Bothriolepis canadensis (Whiteaves, 1880), from the Upper Devonian of Miguasha, Quebec. In: Arratia, G, Wilson, MVH, Cloutier, R, editors. Recent Advances in the Origin and Early Radiation of Vertebrates: München: Verlag Dr. Friedrich Pfeil. pp.439454.Google Scholar
Balon, EK, Bruton, MN, Fricke, H. 1988. A fiftieth anniversary reflection on the living coelacanth, Latimeria chalumnae: Some new interpretations of its natural history and conservation status. Environ Biol Fish 23: 241 doi:10.1007/BF00005238.Google Scholar
Béchard, I, Arsenault, F, Cloutier, R, Kerr, J. 2014. The Devonian placoderm fish Bothriolepis canadensis revisited with three-dimensional digital imagery. Palaeont Electron 17:119.Google Scholar
Blackburn, DG. 2005. Evolutionary origins of viviparity in fishes. In: Grier, HJ, Uribe, MC. Editors. Viviparous Fishes. New Life Publications, Homestead. pp. 287301.Google Scholar
Blackburn, DG. 2015. Evolution of vertebrate viviparity and specializations for fetal nutrition: A quantitative and qualitative analysis. J Morph 276:961990.CrossRefGoogle ScholarPubMed
Brazeau, MD. 2009. The braincase and jaws of a Devonian ‘acanthodian’ and modern gnathostome origins. Nature. 457:305308.Google Scholar
Brazeau, MD, Friedman, M. 2014. The characters of Palaeozoic jawed vertebrates. Zool J Linn Soc London 170:779821.Google Scholar
Bürdin, T. 1990. Reproduction in Middle Triassic actinopterygians; complex fin structures and evidence of viviparity in fossil fishes. Zool J. Linn. Soc., 100(4):379391.Google Scholar
Bürgin, T. 1990. Reproduction in Middle Triassic actinopterygians: Complex fin structures and evidence of viviparity in fossil fishes. Zool J Linn Soc London 100:379391.Google Scholar
Burrow, CJ, Davidson, RG, Den Blaauwen, JL, Newman, MJ. 2015 Revision of Climatius reticulatus Agassiz, 1844 (Acanthodii, Climatiidae), from the Lower Devonian of Scotland, based on new histological and morphological data. J Vert Paleo 35: e913421.Google Scholar
Burrow, CJ, Rudkin, D. 2014. Oldest near-complete acanthodian: The first vertebrate from the Silurian Bertie Formation Konservat-Lagerstätte, Ontario. PLoS ONE 9(8): e104171.Google Scholar
Campbell, KSW, Barwick, RE. 2002. The axial postcranial structure of Griphognathus whitei from the Upper Devonian Gogo Formation of Western Australia: Comparisons with other Devonian dipnoans. Rec W Aus Mus 21:167201.Google Scholar
Capetta, H. 1987. Chondrichthyes II. Mesozoic and Cenozoic Elasmobranchii. Handbook of Paleoichthyology. In: Schultze, H-P, editor. Handbook of Paleoichthyology, Vol. 3B. Stuttgart: Gustav Fischer. pp. 1193.Google Scholar
Carnevale, G, Johnson, D. 2015. A Cretaceous cusk-eel (Teleostei, Ophidiformes) from Italy and the Mesozoic diversification of percomorph fishes. Copeia 103:771791.CrossRefGoogle Scholar
Chaloner, WG, Forey, PL, Gardiner, BG, Hill, AJ, Young, VT. 1980. Devonian fish and plants from the Bokkeveld series of South Africa. Ann SA Mus 81:128157.Google Scholar
Charest, F, Johanson, Z, Cloutier, R. 2018. Loss in the making: Absence of pelvic fins and presence of paedomorphic pelvic girdles in a Late Devonian antiarch placoderm (jawed stem-gnathostome). Biol Lett DOI: 10.1098/rsbl.2018.0199.Google Scholar
Chevrinais, M, Johanson, Z, Triajstic, K, Long, JA, Morel, C, Renaud, CB, Cloutier, RC. 2018. Evolution of vertebrate postcranial complexity: Axial skeleton regionalization and paired appendages in a Devonian jawless fish. Palaeontology https://doi.org/10.1111/pala.12379.Google Scholar
Choo, B, Zhu, M, Zhao, W, Jia, L, Zhu, YA. 2014. The largest Silurian vertebrate and its palaeoecological implications. Sci Rep 4:5242.Google Scholar
Clack, JA. 1996. Otoliths in fossil coelacanths. J Vert Paleont, 16:168171.Google Scholar
Cloutier, R. 1996. Dipnoi (Akinetica: Sarcopterygii) In: Schultze, H-P, Cloutier, R, editors. Devonian Fishes and Plants of Miguasha, Quebec, Canada. München: Friedrich Pfeil. pp. 198226.Google Scholar
Cloutier, R. 2010. The fossil record of fish ontogenies: Insights into developmental patterns and processes. Sem Cell Dev Biol 21:400413.Google Scholar
Coates, MI. 1994. The origin of vertebrate limbs. Development 1994:169180.Google Scholar
Coates, MI. 2003. The evolution of paired fins. Theory Biosci 122:266287.Google Scholar
Coates, MI, Cohn, MJ. 1998. Fins, limbs, and tails: Outgrowths and axial patterning in vertebrate evolution. Bioessays 20:371381.Google Scholar
Coates, MI, Cohn, MJ. 1999. Vertebrate axial and appendicular patterning: the early development of paired appendages. Amer Zool 39:676685.Google Scholar
Coates, MI, Gess, RW, Finarelli, JA, Criswell, KE, Tietjen, K. 2017. A symmoriiform chondrichthyan braincase and the origin of chimaeroid fishes. Nature 541:208211.Google Scholar
Cohn, MJ, Izpisúa-Belmonte, JC, Abud, H, Heath, JK, Tickle, C. 1995. Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell 80:739746.CrossRefGoogle ScholarPubMed
Conrath, CL, Musick, JA. 2012. Reproductive Biology of Elasmobranchs. In: Carrier, JA, Heithaus, MR, editors. Biology of Sharks and their Relatives. Boca Raton: Florida CRC Press. pp. 291312.Google Scholar
Dahn, RD, Davis, MC, Pappano, WN, Shubin, NH. 2007. Sonic hedgehog function in chondrichthyan fins and the evolution of appendage patterning. Nature 445:311314.Google Scholar
Davis, SP, Finarelli, JA, Coates, MI. 2012. Acanthodes and shark-like conditions in the last common ancestor of modern gnathostomes. Nature 486:247250.Google Scholar
Dean, B. 1898. On the development of the Californian hag-fish, Bdellostoma stouti, Lockington. Quart J Microsc Sci 40:269279.Google Scholar
Denison, RH. 1941. The soft anatomy of Bothriolepis. J Paleo 15:553561.Google Scholar
Dennis, K, Miles, RS. 1981. A pachyosteomorph arthrodire from Gogo, Western Australia. Zool J Linn Soc Lond 73:213258.Google Scholar
Diogo, R, Linde-Medina, M, Abdala, V, Ashley-Ross, MA. 2013. New, puzzling insights from comparative myological studies on the old and unsolved forelimb/hindlimb enigma. Biol Rev 88:196214.Google Scholar
Diogo, R, Molnar, J. 2014. Comparative anatomy, evolution, and homologies of tetrapod hindlimb muscles, comparison with forelimb muscles, and deconstruction of the forelimb-hindlimb serial homology hypothesis. Anat Rec 297:10471075.Google Scholar
Diogo, R, Walsh, S, Smith, C, Ziermann, JM, Abdala, V. 2015. Towards the resolution of a long‐standing evolutionary question: Muscle identity and attachments are mainly related to topological position and not to primordium or homeotic identity of digits. J Anat 226:523529.Google Scholar
Dodd, JM, Dodd, MHI. 1985. Evolutionary aspects of reproduction in cyclostomes and cartilaginous fishes. In: Foreman, RE, Gorbman, A, Dodd, JM, editors. Evolutionary Biology of Primitive Fishes. USA: Springer. pp. 295319.CrossRefGoogle Scholar
Donoghue, PC, Purnell, MA. 2005. Genome duplication, extinction and vertebrate evolution. Trends Ecol Evol 20:312319.Google Scholar
Don, EK, Currie, PD, Cole, NJ. 2013. The evolutionary history of the development of the pelvic fin/hindlimb. J Anat 222:114133.Google Scholar
Downs, JP, Criswell, KE, Daeschler, EB. 2011. Mass mortality of juvenile antiarchs (Bothriolepis sp.) from the Catskill Formation (Upper Devonian, Famennian Stage), Tioga County, Pennsylvania. Proc Natl Acad Sci 161:191203.Google Scholar
Duboc, V, Logan, MPO. 2011. Regulation of limb bud initiation and limb-type morphology. Dev Dyn 240:10171027.Google Scholar
Dupret, V, Sanchez, S, Goujet, D, Tafforeau, P, Ahlberg, PE. 2014. A primitive placoderm sheds light on the origin of the jawed vertebrate face. Nature 507:500503.Google Scholar
Dulvy, NK, Reynolds, JD. 2002. Predicting extinction vulnerability of skates. Conserv. Biol. 16:440450.Google Scholar
Durland, JL, Sferlazzo, M, Logan, M, Burke, AC. 2008. Visualizing the lateral somitic frontier in the Prx1Cre transgenic mouse. J Anat 212:590602.Google Scholar
Edgeworth, FH. 1935. The Cranial Muscles of Vertebrates. Cambridge: Cambridge Univ. Press.Google Scholar
Ericsson, R, Knight, R, Johanson, Z. 2013. Evolution and development of the vertebrate neck. J Anat 222:6778.Google Scholar
Fischer, J, Kogan, I. 2008. Elasmobranch egg capsules Palaeoxyris, Fayolia and Vetacapsula as subject of palaeontological research – An annotated bibliography. Freiberg Forschung C 528:7591.Google Scholar
Fischer, J, Licht, M, Kriwet, J, Schneider, JW, Buchwitz, M, Bartsch, P. 2014. Egg capsule morphology provides new information about the interrelationships of chondrichthyan fishes. J Syst Palaeo 12:389–99.Google Scholar
Fischer, J, Schneider, JW, Buchwitz, M. 2008. Pedicle ribbing structure of the egg capsule Palaeoxyris reflects a Palaeozoic to Mesozoic change-over in its chondrichthyan producers. Erlanger Geol Abhand Sonderband 6:8586.Google Scholar
Freitas, R, Cohn, MJ. 2004. Analysis of EphA4 in the lesser spotted catshark identifies a primitive gnathostome expression pattern and reveals co-option during evolution of shark-specific morphology. Dev Genes Evol 214:466472.Google Scholar
Freitas, R, Zhang, G, Cohn, MJ. 2007. Biphasic Hoxd gene expression in shark paired fins reveals an ancient origin of the distal limb domain. PloS ONE 2: e754.Google Scholar
Friedman, M. 2015. The early evolution of ray-finned fishes. Palaeontology 58:213228.Google Scholar
Friedman, M, Sallan, LC. 2012. Five hundred million years of extinction and recovery: A Phanerozoic survey of large‐scale diversity patterns in fishes. Palaeontology 55:707742.Google Scholar
Gebhardt, U. 1988. Taxonomie und Palökologie von Lissodus lacustris n. sp. (Hybodontoidea) aus dem Stefan C (Oberkarbon) der Saalesenke. Freiberg Forschung C 419:3844.Google Scholar
Gess, RW. 2011. High latitude Gondwanan Famennian biodiversity patterns–Evidence from the South African Witpoort Formation (Cape Supergroup, Witteberg Group). PhD dissertation, Faculty of Science, University of the Witwatersrand.Google Scholar
Gess, RW, Trinajstic, KM. 2017. New morphological information on, and species of placoderm fish Africanaspis (Arthrodira, Placodermi) from the Late Devonian of South Africa. PloS ONE 12:e0173169.Google Scholar
Gilbert, PW. 1972. The clasper-siphon sac mechanism in Squalus acanthias and Mustelus canis. Comp Biochem Physiol A 42:97100.CrossRefGoogle ScholarPubMed
Gilbert, SF. 1994. Sex determination. Developmental Biology. Sunderland: Sinauer Associates.Google Scholar
Gilbert, SF, Heath, GW. 1972. The clasper-siphon sac mechanism in Squalus acanthias and Mustelus canis. Comp Biochem Physiol 42A:97119.Google Scholar
Giles, S, Friedman, M, Brazeau, MD. 2015 Osteichthyan-like cranial conditions in an Early Devonian stem gnathostome. Nature 520:8285.Google Scholar
Gorbman, A. 1997. Hagfish development. Zool Sci 14:375390.Google Scholar
Gregory, WK. 1935. The pelvis from fish to man: A study in paleomorphology. Amer Nat 69:193210.Google Scholar
Grogan, ED, Lund, R. 2011 Superfoetative viviparity in a Carboniferous chondrichthyan and reproduction in early gnathostomes. Zool J Linn Soc Lond 161:587–94.Google Scholar
Grogan, ED, Lund, R, 2004. The origin and relationships of early Chondrichthyans. In: Carrier, JC, Musick, JA, Heithaus, MR, editors. Biology of sharks and their Relatives. Boca Raton: CRC Press. pp. 331.Google Scholar
Gros, J, Tabin, CJ. 2014. Vertebrate limb bud formation is initiated by localized epithelial-to-mesenchymal transition. Science 343:12531256.Google Scholar
Harris, JE. 1951. Diademodus hydei, a new fossil shark from the Cleveland Shale. J Zool 120:683697.Google Scholar
Heimberg, AM, Cowper-Sallari, R, Sémon, M, Donoghue, PCJ, Peterson, KJ. 2010. MicroRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc Natl Acad Sci USA 107:937919383.CrossRefGoogle ScholarPubMed
Hemmings, SK, Rostron, J. 1972. A multivariate analysis of measurements on the Scottish Middle Old Red Sandstone antiarch fish genus Pterichthyodes Bleeker. Biol J Linn Soc 4:1528.Google Scholar
Herrera, AM, Cohn, MJ. 2014. Embryonic origin and compartmental organization of the external genitalia. Sci Rep 4:6896.Google Scholar
Hurley, IA, Mueller, RL, Dunn, KA, Schmidt, EJ, Friedman, M, Ho, RK, Prince, VE, Yang, Z, Thomas, MG, Coates, MI. 2007. A new time-scale for ray-finned fish evolution. Proc R Soc B 274:489498.Google Scholar
Janvier, P. 1985. Les Céphalaspides du Spitsberg. Anatomie, Phylogénie et Systemématique des Ostéostracés Siluro-Dévoniens. Révision des Ostéostracés de la Formation de Wood Bay (Dévonian inférieur du Spitsberg). Centre National de la Recherche Scientifique, Paris.Google Scholar
Janvier, P. 1996. Early Vertebrates, Oxford University Press, New York.Google Scholar
Janvier, P. 2008. Early jawless vertebrates and cyclostome origins. Zool Sci 25:10451056.Google Scholar
Janvier, P, Arsenault, M, Desbiens, S. 2004. Cartilage in the paired fins of the osteostracan Escuminaspis laticeps (Traquair 1880), from the Late Devonian of Miguasha (Québec, Canada), with a consideration of the early evolution of the pectoral fin endoskeleton in vertebrates. J Vert Paleo 24:773779.Google Scholar
Johanson, Z. 2010. Evolution of paired fins and the lateral somitic frontier. J Exp Biol Zool B: Mol Dev Evol 314:347352.Google Scholar
Johanson, Z, Trinajstic, K. 2014. Fossilized ontogenies: The contribution of placoderm ontogeny to our understanding of the evolution of early gnathostomes. Palaeontology 57:505516.Google Scholar
Kelly, DA. 2016. Intromittent organ morphology and biomechanics: Defining the physical challenges of copulation. Int Comp Biol 56:705714.Google Scholar
Kind, P. 2010. The natural history of the Australian lungfish Neoceratodus forsteri (Krefft, 1870). In: Jørgensen, JM, Joss, J (editors). The Biology of Lungfishes. New Hampshire: CRC Press, Science Publishers. pp. 6195.Google Scholar
King, B, Qiao, T, Lee, MS, Zhu, M, Long, JA. 2016. Bayesian morphological clock methods resurrect placoderm monophyly and reveal rapid early evolution in jawed vertebrates. Syst Biol 66:499516.Google Scholar
Knowles, FGW. 1939. The influence of anterior-pituitary and testicular hormones on the sexual maturation of lampreys. J Exp Biol 16:535548.Google Scholar
Kuratani, S, Oisi, Y, Ota, KG. 2016. Evolution of the vertebrate cranium: Viewed from hagfish developmental studies. Zool Sci 33:229238.Google Scholar
Kusakabe, R, Kuratani, S. 2007. Evolutionary perspectives from development of mesodermal components in the lamprey. Dev Dyn 236:24102420.Google Scholar
Leigh-Sharp, WH. 1920. The comparative morphology of the secondary sexual characters of elasmobranch fishes. J Morph 35:359380.Google Scholar
Long, JA. 1997. Ptyctodontid fishes (Vertebrata, Placodermi) from the Late Devonian Gogo Formation. Geodiversitas 19:515555.Google Scholar
Long, JA, Mark-Kurik, E, Johanson, Z, Lee, MS, Young, GC, Zhu, M, Ahlberg, PE, Newman, M, Jones, R, den Blaauwen, J, Choo, B, Trinajstic, K. 2015. Copulation in antiarch placoderms and the origin of gnathostome internal fertilization. Nature 517:196199.Google Scholar
Long, JA, Trinajstic, K. 2010. The Late Devonian Gogo Formation Lägerstatte of Western Australia: Exceptional early vertebrate preservation and diversity. Ann Rev Earth Plan Sci 38:255279.Google Scholar
Long, JA, Trinajstic, K, Johanson, Z. 2009. Devonian arthrodire embryos and the origin of internal fertilization in vertebrates. Nature 457:11241127.Google Scholar
Long, JA, Trinajstic, K, Young, GC, Senden, T. 2008. Live birth in the Devonian period. Nature 453:650652.Google Scholar
Long, JA, Young, GC. 1988. Acanthothoracid remains from the Early Devonian of New South Wales, including a complete sclerotic capsule and pelvic girdle. Mem Assoc Australasian Palaeo 7:6580.Google Scholar
Lund, R. 1982. Harpagofututor volsellorhinus new genus and species (Chondrichthyes, Chondrenchelyiformes) from the Namurian Bear Gulch Limestone, Chondrenchelys problematica Traquair (Visean), and their sexual dimorphism. J Paleont 56:938958.Google Scholar
Lund, R. 1985. The morphology of Falcatus falcatus (St. John and Worthen), a Mississippian stethacanthid chondrichthyan from the Bear Gulch Limestone of Montana. J Vert Paleont 5:119.Google Scholar
Maisey, JG. 1982. The anatomy and interrelationships of Mesozoic hybodont sharks. Am Mus Novit 2724:148.Google Scholar
Maisey, JG. 1984. Higher elasmobranch phylogeny and biostratigraphy. J Linn Soc Lond, Zool 82:3354.Google Scholar
Maisey, JG. 1986. Heads and tails: A chordate phylogeny. Cladistics 2:201225.Google Scholar
Maisey, JG. 1988. Phylogeny of early vertebrate skeletal induction and ossification patterns. In: Hecht, MK, Macintyre, RJ, Clegg, MT, editors. Evolutionary Biology. New York:Plenum Press. pp. 136.Google Scholar
Maisey, JG. 2001. Primitive chondrichthyan braincase from the Middle Devonian of Bolivia. In: Ahlberg, PE, editor. Major Events in Early Vertebrate Evolution. London: Taylor and Francis. pp. 263288.Google Scholar
Maisey, JG. 2007. The braincase in Paleozoic symmoriiform and cladoselachian sharks. Am Mus Novit 31:122.Google Scholar
Maisey, JG, Miller, RF, Pradel, A, Denton, JS, Bronson, A, Janvier, P. 2017. Pectoral morphology in Doliodus: Bridging the ‘acanthodian’-chondrichthyan divide. Am Mus Novit 38:115.Google Scholar
Malashichev, Y, Christ, B, Pröls, F. 2008. Avian pelvis originates from lateral plate mesoderm and its development requires signals from both ectoderm and paraxial mesoderm. Cell Tissue Res 331:595604.Google Scholar
Mao, Y, Tournier, AL, Hoppe, A, Kester, L, Thompson, BJ, Tapon, N. 2013. Differential proliferation rates generate patterns of mechanical tension that orient tissue growth. EMBO J 32:27902803.Google Scholar
Mark-Kurik, E, Ivanov, A, Obrucheva, O. 1991. The endoskeleton of shoulder girdle in ptyctodonts (Placodermi). Proc Estonian Acad Sci Geol 40:160164.Google Scholar
Matsuoka, T, Ahlberg, PE, Kessaris, N, Iannarelli, P, Dennehy, U, Richardson, WD, McMahon, AP, Köntges, G. 2005. Neural crest origins of the neck and shoulder. Nature 436:347355.Google Scholar
Matton, O., Cloutier, R., and Stevenson, R. 2012. Apatite for destruction: Isotopic and geochemical analyses of bioapatites and sediments from the Upper Devonian Escuminac Formation (Miguasha, Québec). Palaeogeography, Palaeoclimatology, Palaeoecology 361–362:7383.Google Scholar
McGonnell, IM. 2001. The evolution of the pectoral girdle. J Anat 199:189194.Google Scholar
Meyer, A, Lydeard, C. 1993. The evolution of copulatory organs, internal fertilization, placentae and viviparity in killifishes (Cyprinodontiformes) inferred from a DNA phylogeny of the tyrosine kinase gene X-src. Proc R Soc B 254:153–62.Google Scholar
Miles, RS. 1967. Observations on the ptyctodont fish, Rhamphodopsis Watson. Zool J Linn Soc London. 47:99120.Google Scholar
Miles, RS. 1969. Features of placoderm diversification and the evolution of the arthrodire feeding mechanism. Trans Roy Soc Edinb 68:123170.Google Scholar
Miles, RS, Westoll, TS. 1968. The placoderm fish Coccosteus cuspidatus Miller ex Agassiz from the Middle Old Red Sandstone of Scotland. I. Descriptive Morphology. Earth Env Sci Trans R Soc Edinb 67:373476.Google Scholar
Miyashita, T, Diogo, R. 2016. Evolution of serial patterns in the vertebrate pharyngeal apparatus and paired appendages via assimilation of dissimilar units. Front Ecol Evol 4 (7): doi:10.3389/fevo.2016.00071.Google Scholar
Metscher, BD, Takahashi, K, Crow, K, Amemiya, C, Nonaka, DF, Wagner, GP. 2005. Expression of Hoxa-11 and Hoxa-13 in the pectoral fin of a basal ray-finned fish, Polyodon spathula: Implications for the origin of tetrapod limbs. Evol Dev 7:186195.Google Scholar
Mlewa, CM, Green, JM, Dunbrack, RL. 2010. The general natural history of the African lungfishes. In: Jørgensen, JM, Joss, J (editors). The Biology of Lungfishes. New Hampshire: CRC Press, Science Publishers. pp. 97127.Google Scholar
Møller, PR, Knudsen, SW, Schwarzhans, W, Nielsen, JG. 2016. A new classification of viviparous brotulas (Bythitidae) – with family status for Dinematichthyidae – based on molecular, morphological and fossil data. Mol Phylogenet Evol 100:391408.Google Scholar
Morris, SC, Caron, JB. 2014. A primitive fish from the Cambrian of North America. Nature 512:419422.Google Scholar
Nelson, JS. 2006. Fishes of the World. 4th edition. Hoboken: John Wiley and Sons. 601 p.Google Scholar
Noro, M, Yuguchi, H, Sato, T, Tsuihiji, T, Yonei‐Tamura, S, Yokoyama, H, Wakamatsu, Y, Tamura, K. 2011. Role of paraxial mesoderm in limb/flank regionalization of the trunk lateral plate. Dev Dyn 240:16391649.Google Scholar
Nowicki, JL, Takimoto, R, Burke, AC. 2003. The lateral somitic frontier: Dorso-ventral aspects of anterio-posterior regionalization in avian embryos. Mech Dev 120:227240.Google Scholar
O’Shaughnessy, KL, Dahn, RD, Cohn, MJ. 2015. Molecular development of chondrichthyan claspers and the evolution of copulatory organs. Nat Comm 6:(6698). https://doi.org/10.1038/ncomms7698.Google Scholar
Offen, N, Kang, JH, Meyer, A, Begemann, G. 2013. Retinoic acid is involved in the metamorphosis of the anal fin into an intromittent organ, the gonopodium, in the Green Swordtail (Xiphophorus hellerii). PLoS ONE 8(10): e77580.Google Scholar
Ohuchi, H, Nakagawa, T, Yamamoto, A, Araga, A, Ohata, T, Ishimaru, Y, Yoshioka, H, Kuwana, T, Nohno, T, Yamasaki, M, Itoh, N. 1997. The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124:22352244.Google Scholar
Ogino, Y, Katoh, H, Yamada, G. 2004. Androgen dependent development of a modified anal fin, gonopodium, as a model to understand the mechanism of secondary sexual character expression in vertebrates. FEBS Lett 575:119126.Google Scholar
Olive, S, Clément, G, Daeschler, EB, Dupret, V. 2016. Placoderm assemblage from the tetrapod-bearing locality of Strud (Belgium, upper Famennian) provides evidence for a fish nursery. PloS ONE 11(8): e0161540.Google Scholar
Onimaru, K, Kuraku, S, Takagi, W, Hyodo, S, Sharpe, J, Tanaka, M. 2015. A shift in anterior–posterior positional information underlies the fin-to-limb evolution. eLife 4:e07048.Google Scholar
Onimaru, K, Shoguchi, E, Kuratani, S, Tanaka, M. 2011. Development and evolution of the lateral plate mesoderm: Comparative analysis of amphioxus and lamprey with implications for the acquisition of paired fins. Dev Biol 359:124136.Google Scholar
Ørvig, T. 1968. The dermal skeleton: General considerations. In: Ørvig, T, editor. Current Problems of Lower Vertebrate Phylogeny. Stockholm: Almquist and Wiksell. pp. 374397.Google Scholar
Ørvig, T. 1975. Description, with special reference to the dermal skeleton, of a new radotinid arthrodire from the Gedinnian of Arctic Canada. Colloque Int. CNRS 218:4171.Google Scholar
Ota, KG, Kuratani, S. 2006. The history of scientific endeavours towards understanding hagfish embryology. Zool Sci 23:403418.Google Scholar
Ota, KG, Fujimoto, S, Oisi, Y, Kuratani, S. 2011. Identification of vertebra-like elements and their possible differentiation from sclerotomes in the hagfish. Nat Comm 2:373.Google Scholar
Patten, W. 1904. New facts concerning Bothriolepis. Biol Bull 7:113124.Google Scholar
Patzner, R.A. 1998. Gonads and reproduction in hagfishes. In: Jørgensen, JM, Lomholt, JP, Weber, RE, Malte, H, editors. The Biology of Hagfishes. Springer Netherlands. pp. 378395.Google Scholar
Petit, F, Sears, KE, Ahituv, N. 2017. Limb development: A paradigm of gene regulation. Nature Rev Genet 18:245258.Google Scholar
Pradel, A, Tafforeau, P, Maisey, JG, Janvier, P. A new Paleozoic Symmoriiformes (Chondrichthyes) from the Late Carboniferous of Kansas (USA) and cladistic analysis of early chondrichthyans. PLoS ONE 6(9):e24938.Google Scholar
Pratt, HL Jr, Carrier, JC. 2001. A review of elasmobranch reproductive behavior with a case study on the nurse shark, Ginglymostoma cirratum. In: Tricas, TC, Gruber, SH, editors. The Behavior and Sensory Biology of Elasmobranch Fishes. Springer Netherlands. pp. 157188.Google Scholar
Pridmore, PA, Barwick, RE. 1993. Post-cranial morphologies of the Late Devonian dipnoans Griphognathus and Chirodipterus and locomotor implications. Mem Assoc Australas Palaeo 15:161182.Google Scholar
Qiao, T, King, B, Long, JA, Ahlberg, PE, Zhu, M. 2016. Early gnathostome phylogeny revisited: Multiple method consensus. PLoS ONE 11: e0163157.Google Scholar
Renesto, S, Stockar, R. 2009. Exceptional preservation of embryos in the actinopterygian Saurichthys from the Middle Triassic of Monte San Giorgio, Switzerland. Swiss J Geosci 102:323330.Google Scholar
Rieppel, O. 1985. A second actinistian from the Middle Triassic of Monte San Giorgio, Kanton Tessin, Switzerland. Ecol Geol Helv 78:707713.Google Scholar
Rios, AC, Serralbo, O, Salgado, D, Marcelle, C. 2011. Neural crest regulates myogenesis through the transient activation of NOTCH. Nature 473:532535.Google Scholar
Ritchie, A. 2005. Cowralepis, a new genus of phyllolepid fish (Pisces, Placodermi) from the late Middle Devonian of New South Wales, Australia. Proc Linn Soc NSW 126:1215.Google Scholar
Rodriguez-Esteban, C, Tsukui, T, Yonei, S, Magallon, J, Tamura, K, Izpisua Belmonte, JC. 1999. The T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature 398:814818.Google Scholar
Rosen, DE, Tucker, A. 1961. Evolution of secondary sexual characters and sexual behavior patterns in a family of viviparous fishes (Cyprinodontiformes: Poeciliidae). Copeia 1961:201212.Google Scholar
Rücklin, M, Donoghue, PC, Johanson, Z, Trinajstic, K, Marone, F, Stampanoni, M. 2012. Development of teeth and jaws in the earliest jawed vertebrates. Nature 491:748751.Google Scholar
Sanchez, S, Ahlberg, PE, Trinajstic, KM, Mirone, A, Tafforeau, P. 2012. Three-dimensional synchrotron virtual paleohistology: A new insight into the world of fossil bone microstructures. Microsc Microanal 18:10951105.Google Scholar
Sanchez, S, Dupret, V, Tafforeau, P, Trinajstic, KM, Ryll, B, Gouttenoire, PJ, Wretman, L, Zylberberg, L, Peyrin, F, Ahlberg, PE. 2013. 3D microstructural architecture of muscle attachments in extant and fossil vertebrates revealed by synchrotron microtomography. PLoS ONE 8:e56992.Google Scholar
Sansom, RS, Gabbott, SE, Purnell, MA. 2013. Unusual anal fin in a Devonian jawless vertebrate reveals complex origins of paired appendages. Biol Lett 9:20130002.Google Scholar
Schaeffer, B. 1973. Interrelationships of chondrosteans. In: Greenwood, PH, Miles, RS, Patterson, C, editors. Interrelationships of Fishes. Zool J Linn Soc 53, Suppl 1:207226.Google Scholar
Schultze, HP. 1972. Early growth stages in coelacanth fishes. Nature 236:9091.Google Scholar
Scotese, CR, McKerrow, WS. 1990. Revised world maps and introduction. Geol Soc Lond Mem 12:121.Google Scholar
Sefton, EM, Bhullar, BA, Mohaddes, Z, Hanken, J. 2016. Evolution of the head-trunk interface in tetrapod vertebrates. eLife 19(5):e09972.Google Scholar
Shu, DG, Luo, HL, Morris, SC, Zhang, XL, Hu, SX, Chen, L, Han, J, Zhu, M, Li, Y, Chen, LZ. 1999. Lower Cambrian vertebrates from south China. Nature 402:4246.Google Scholar
Shu, DG, Morris, SC, Han, J, Zhang, ZF, Yasui, K, Janvier, P, Chen, L, Zhang, XL, Liu, JN, Li, Y. Liu, HQ. 2003. Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature 421:526529.Google Scholar
Shubin, N, Tabin, C, Carroll, S. 1997. Fossils, genes and the evolution of animal limbs. Nature 388:639648.Google Scholar
Shubin, N, Tabin, C, Carroll, S. 2009. Deep homology and the origins of evolutionary novelty. Nature 457:818823.Google Scholar
Smith, CL, Rand, CS, Schaeffer, B, Atz, JW. 1975. Latimeria, living coelacanth, is ovoviviparious. Science 190:11051106.Google Scholar
Stainier, X. 1894. Un Spiraxis nouveau du Devonien Belge. B Soc Belg Géol Paléon Hydro VIII:23–28.Google Scholar
Stensiö, EA. 1948. On the Placodermi of the Upper Devonian of East Greenland. II. Antiarchi: Subfamily Bothriolepinae. With an attempt at a revision of the previously described species of that family. Medd. Grønland 139:1622.Google Scholar
Tanaka, M. 2013. Molecular and evolutionary basis of limb field specifiation and limb initiation. Dev Growth Differ 55:149163.Google Scholar
Tanaka, M, Hale, LA, Amores, A, Tanaka, M, Hale, LA, Amores, A, Yan, YL, Cresko, WA, Suzuki, T, Postlethwait, JH. 2005. Developmental genetic basis for the evolution of pelvic fin loss in the pufferfish Takifugu rubripes. Dev Biol 281:227239.Google Scholar
Tanaka, M, Munsterberg, A, Anderson, WG, Prescott, AR, Hazon, N, Tickle, C. 2002. Fin development in a cartilaginous fish and the origin of vertebrate limbs. Nature 416:527531.Google Scholar
Tanaka, M, Onimaru, K. 2011. Acquisition of the paired fins: A view from the sequential evolution of the lateral plate mesoderm. Evol Dev 14:412420.Google Scholar
Theis, S, Patel, K, Valasek, P, Otto, A, Pu, Q, Harel, I, Tzahor, E, Tajbakhsh, S, Christ, B, Huang, R. 2010. The occipital lateral plate mesoderm is a novel source for vertebrate neck musculature. Development 137:29612971.Google Scholar
Thornton, JW. 2001. Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proc Natl Acad Sci 98:56715676.Google Scholar
Trinajstic, K, Boisvert, C, Long, J, Maksimenko, A, Johanson, Z. 2015. Pelvic and reproductive structures in placoderms (stem gnathostomes). Biol Rev 90:467501.Google Scholar
Trinajstic, K, Long, JA. 2009. A new genus and species of ptyctodont (Placodermi) from the Late Devonian Gneudna Formation, Western Australia, and an analysis of ptyctodont phylogeny. Geol Mag 146:743760.Google Scholar
Trinajstic, K, Long, JA, Johanson, Z, Young, G, Senden, T. 2012. New morphological information on the ptyctodontid fishes (Placodermi, Ptyctodontida) from Western Australia. J Vert Paleo 32:757780.Google Scholar
Trinajstic, K, Sanchez, S, Dupret, V, Tafforeau, P, Long, J, Young, G, Senden, T, Boisvert, C, Power, N, Ahlberg, PE. 2013. Fossil musculature of the most primitive jawed vertebrates. Science 341:160164.Google Scholar
Tschopp, P, Sherratt, E, Sanger, TJ, Tschopp, P, Sherratt, E, Sanger, TJ, Groner, AC, Aspiras, AC, Hu, JK, Pourquié, O, Gros, J, Tabin, CJ. 2014. A relative shift in cloacal location repositions external genitalia in amniote evolution. Nature 516:391394.Google Scholar
Tulenko, FJ, McCauley, DW, MacKenzie, EL, Tulenko, FJ, McCauley, DW, MacKenzie, EL, Mazan, S, Kuratani, S, Sugahara, F, Kusakabe, R, Burke, AC. 2013. Body wall development in lamprey and a new perspective on the origin of vertebrate paired fins. Proc Natl Acad Sci USA 110:1189911904.Google Scholar
Uchida, S, Toda, M, Kamei, Y. 1990. Reproduction of elasmobranchs in captivity. In: Pratt Jr HL, Gruver SH, Taniuchi T, editors. Elasmobranchs as Living Resources: Advances in the Biology, Ecology, Systematics, and the Status of Fisheries. NOAA Tech Rep NMFS 90:327346.Google Scholar
Upeniece, I. 2011. The unique fossil assemblage from the Lode quarry (Upper Devonian, Latvia). Foss Rec 4:101119.Google Scholar
Watson, DMS. 1927. The reproduction of the coelacanth fish, Undina. Zool J Linn Soc London 97:453457.Google Scholar
Watson, DMS. 1937. The acanthodian fishes. R Soc London Phil Trans B 228:49146.Google Scholar
Watson, DMS. 1938. On Rhamphodopsis, a ptyctodont from the Middle Old Red Sandstone of Scotland. Earth Environ Sci Trans R Soc Edinb 59:397410.Google Scholar
Wen, W, Zhang, QY, Hu, SX, Benton, MJ, Zhou, CY, Tao, X, Huang, JY, Chen, ZQ. 2013. Coelacanths from the Middle Triassic Luoping Biota, Yunnan, South China, with the earliest evidence of ovoviviparity. Acta Palaeontol Pol 58:175193.Google Scholar
Werdelin, L, Long, JA. 1986. Allometry in the placoderm Bothriolepis canadensis and its significance to antiarch evolution. Lethaia 19:161169.Google Scholar
Wilson, MVH, Hanke, GF, Märss, T. 2007. Paired fins of jawless vertebrates and their homologies across the Agnathan- Gnathostome Transition. In: Anderson, JS, Sues, H-D editors. Major Transitions in Vertebrate Evolution. Bloomington: Indiana University Press pp. 122149.Google Scholar
Wourms, JP. 1994. The challenges of piscine viviparity. Israel J Zool 40:551568.Google Scholar
Wourms, JP, Atz, JW, Stribling, MD. 1991. Viviparity and the maternal-embryonic relationship in the coelacanth Latimeria chalumnae. Environ Biol Fish 32:225248.Google Scholar
Wourms, JP, Lombardi, J. 1992. Reflections on the evolution of piscine viviparity. Am Zool 32:276293.Google Scholar
Xu, GH, Gao, KQ, Coates, MI. 2015. Taxonomic revision of Plesiofuro mingshuica from the Lower Triassic of northern Gansu, China, and the relationships of early neopterygian clades. J Vert Paleo 35:e1001515.Google Scholar
Xu, GH, Ma, XY. 2016. A Middle Triassic stem-neopterygian fish from China sheds new light on the peltopleuriform phylogeny and internal fertilization. Sci Bull 61:17661774.Google Scholar
Yonei-Tamura, S, Abe, G, Tanaka, Y, Yonei‐Tamura, S, Abe, G, Tanaka, Y, Anno, H, Noro, M, Ide, H, Aono, H, Kuraishi, R, Osumi, N, Kuratani, S, Tamura, K. 2008. Competent stripes for diverse positions of limbs/fins in gnathostome embryos. Evol Dev 10:737745.Google Scholar
Young, GC, Zhang, G-R. 1996. New information on the morphology of yunnanolepid antiarchs (placoderm fishes) from the Early Devonian of South China. Journal of Vertebrate Paleontology 16:623641.Google Scholar
Zhu, M. 1996. The phylogeny of the Antiarcha (Placodermi, Pisces), with the description of Early Devonian antiarchs from Qujing, Yunnan, China. Bulletin du Muséum National d’Histoire Naturelle 18:233347.Google Scholar
Zhu, M, Ahlberg, PE, Pan, Z, Zhu, YA, Qiao, T, Zhao, W, Jia, L, Lu, J. 2016. A Silurian maxillate placoderm illuminates jaw evolution. Science 354:334336.Google Scholar
Zhu, M, Yu, X-B, Ahlberg, PE, Choo, B, Lu, J, Qiao, T, Qu, Q, Zhao, W, Jia, L, Blom, H, Zhu, YA. 2013. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature 502:188193.Google Scholar
Zhu, M, Yu, X, Choo, B, Qu, Q, Jia, L, Zhu, M, Yu, X, Choo, B, Qu, Q, Jia, L, Zhao, W, Qiao, T, Lu, J. 2012. Fossil fishes from China provide first evidence of dermal pelvic girdles in osteichthyans. PLoS ONE 7(4):e35103.Google Scholar
Zhu, M., Yu, X., Choo, B., Wang, J, Jia, L., 2012. An antiarch placoderm shows that pelvic girdles arose at the root of jawed vertebrates. Biol Lett 8:453456.Google Scholar
Zhu, M, Zhao, W, Jia, L, Lu, J, Qiao, T, Qu, Q. 2009. The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature 458:469474.Google Scholar
Zidek, J. 1976. Kansas Hamilton Quarry (Upper Pennsylvanian) Acanthodes, with remarks on the previously reported North American occurrences of the genus. Univ Kansas Paleo Contrib. 83:141.Google Scholar
Ziermann, JM, Freitas, R, Diogo, R. 2017. Muscle development in the shark Scyliorhinus canicula: Implications for the evolution of the gnathostome head and paired appendage musculature. Frontiers in Zoology 14: DOI: 10.1186/s12983-017-0216-y.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×