Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-07T21:02:35.817Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 April 2013

Richard W. Healy
Affiliation:
United States Geological Survey
Bridget R. Scanlon
Affiliation:
University of Texas, Austin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aeschbach-Hertig, W., Peeters, F., Beyerle, U. and Kipfer, R. (1999). Interpretation of dissolved atmospheric noble gases in natural waters. Water Resour. Res., 35, 2779–2792.CrossRefGoogle Scholar
Ahuja, L. R. and El-Swaify, S. A. (1979). Determining soil hydrologic characteristics on a remote forest watershed by continuous monitoring of soil-water pressures, rainfall and runoff. J. Hydrol., 44, 135–147.CrossRefGoogle Scholar
Allen, R. G., Pereira, L. S., Raes, K. and Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. Irrigation and Drainage Paper 56. Rome: Food and Agriculture Organization of the United Nations.
Aller, L., Bennett, T., Lehr, J. H., Petty, R. J. and Hackett, G. (1985). DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeologic settings. US Environmental Protection Agency, Robert S. Kerr Environmental Research Laboratory, Office of Research and Development. EPA/600/2–85/018.
Alley, W. M. (1984). On the treatment of evapotranspiration, soil moisture accounting, and aquifer recharge in monthly water balance models. Water Resour. Res., 20, 1137–1149.CrossRefGoogle Scholar
Alley, W. M., Healy, R. W., LaBaugh, J. W. and Reilly, T. E. (2002). Flow and storage in groundwater systems. Science, 296, 1985–1990.CrossRefGoogle ScholarPubMed
Alley, W. M. and Leake, S. A. (2004). The journey from safe yield to sustainability. Ground Water, 42, 12–16.CrossRefGoogle ScholarPubMed
Allison, G. B. (1987). A review of some of the physical, chemical, and isotopic techniques available for estimating groundwater recharge. In Estimation of Natural Groundwater Recharge, ed. Simmers, I.. Dordrecht, Holland: D. Reidel, 49–72.Google Scholar
Allison, G. B., Cook, P. G., Barnett, S. R. et al. (1990). Land clearance and river salinisation in the western Murray Basin, Australia. J. Hydrol., 119, 1–20.CrossRefGoogle Scholar
Allison, G. B., Gee, G. W. and Tyler, S. W. (1994). Vadose zone techniques for estimating groundwater recharge in arid and semiarid regions. Soil Sci. Soc. Am. J., 58, 6–14.CrossRefGoogle Scholar
Allison, G. B. and Hughes, M. W. (1977). The history of tritium fallout in southern Australia as inferred from rainfall and wine samples. Earth Planet. Sci. Lett., 36, 334–340.CrossRefGoogle Scholar
Allison, G. B. and Hughes, M. W. (1978). The use of environmental chloride and tritium to estimate total recharge to an unconfined aquifer. Austral. J. Soil Res., 16, 181–195.CrossRefGoogle Scholar
Allison, G. B. and Hughes, M. W. (1983). The use of natural tracers as indicators of soil-water movement in a temperate semi-arid region. J. Hydrol., 60, 157–173.CrossRefGoogle Scholar
Anderson, M. P. (2005). Heat as a ground water tracer. Ground Water, 43, 951–968.CrossRefGoogle ScholarPubMed
Andraski, B. J. and Scanlon, B. R. (2002). Thermocouple psychrometry. In Methods of Soil Analysis. Part 4: Physical Methods, ed. Dane, J. H. and Topp, G. C.. Madison, Wisconsin: Soil Science Society of America, 609–642.Google Scholar
Anton, H. (1984). Calculus with Analytical Geometry, 2nd edn. New York: John Wiley and Sons.Google Scholar
Appleyard, S. J. (1995). The impact of urban development on the utilisation of groundwater resources in Perth, Western Australia. Hydrogeol. J., 3, 65–75.CrossRefGoogle Scholar
Appleyard, S. J., Davidson, W. A. and Commander, D. P. (1999). The effects of urban development on the utilisation of groundwater resources in Perth, Western Australia. In Groundwater in the Urban Environment: Selected City Profiles, ed. Chilton, J.. Rotterdam: A. A. Balkema, 97–104.Google Scholar
Aranyossy, J. F. and Gaye, C. B. (1992). La recherche du pic de tritium thermonucleaire en zone non saturee profonde sous climate semi-aride pour la mesure de la recharge des nappes: premiere application au Sahel. C.R. Acad. Sci. Paris, 315, Serie II, 637–643.Google Scholar
Arihood, L. D. and Glatfelter, D. R. (1991). Method for estimating low-flow characteristics of ungaged streams in Indiana. US Geological Survey Water Supply Paper 2372.
Arnold, J. G. and Allen, P. M. (1996). Estimating hydrologic budgets for three Illinois watersheds. J. Hydrol., 176, 57–77.CrossRefGoogle Scholar
Arnold, J. G. and Allen, P. M. (1999). Automated methods for estimating baseflow and ground water recharge from streamflow records. J. Amer. Water Resour. Assoc., 35, 411–424.CrossRefGoogle Scholar
Arnold, J. G., Allen, P. M., Muttiah, R. S. and Bernhardt, G. (1995). Automated baseflow separation and recession analysis techniques. Ground Water, 33, 1010–1018.CrossRefGoogle Scholar
Arnold, J. G., Muttiah, R. S., Srinivasan, R. and Allen, P. M. (2000). Regional estimation of base flow and groundwater recharge in the Upper Mississippi River Basin. J. Hydrol., 227, 21–40.CrossRefGoogle Scholar
Arnold, J. G., Srinivasan, R., Muttiah, R. S. and Williams, J. R. (1998). Large area hydrologic modeling and assessment. Part I: Model development. J. Amer. Water Resour. Assoc., 34, 73–89.CrossRefGoogle Scholar
Arya, L. M., Farrell, D. A. and Blake, G. R. (1975). Field study of soil water depletion patterns in presence of growing soybean roots. Part 1: Determination of hydraulic properties of the soil. Soil Sci. Soc. Am. Proc., 39, 424–430.CrossRefGoogle Scholar
Arya, L. M. and Paris, J. (1981). Physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Sci. Soc. Amer. J., 45, 1023–1030.CrossRefGoogle Scholar
ASTM (2008). Standard guide for selection of methods for assessing ground water or aquifer sensitivity and vulnerability. ASTM D6030–96(2008). American Society of Testing Materials.
Athavale, R. N. and Rangarajan, R. (1990). Natural recharge measurements in the hard rock regions of semi-arid India using tritium injection – a review. In Groundwater Recharge: A Guide to Understanding and Estimating Natural Recharge, International Contributions to Hydrogeology Vol. 8, ed. Lerner, D. N., Issar, A. S. and Simmers, I.. Hanover: Verlag Heinz Heise, 235–245.Google Scholar
Aubinet, M., Grelle, A., Ibrom, A. et al. (2000). Estimates of the annual net carbon and water exchange of European forests: the EUROFLUX methodology. Adv. Ecol. Res., 30, 133–175.Google Scholar
Baalousha, H. (2009). Stochastic water balance model for rainfall recharge quantification in Ruataniwha Basin, New Zealand. Environ. Geol., 58, 85–93.CrossRefGoogle Scholar
Baillie, M. N., Hogan, J. F., Ekwurzel, B., Wahi, A. K. and Eastoe, C. J. (2007). Quantifying water sources to a semiarid riparian ecosystem, San Pedro River, Arizona. J. Geophys. Res. G, 112, G03502, doi:10.1029/2006JG000263.Google Scholar
Bakalowicz, M. (2005). Karst groundwater: a challenge for new resources. Hydrogeol. J., 13, 148–160.CrossRefGoogle Scholar
Bakr, M. I. and Butler, A. P. (2004). Worth of head data in well-capture zone design: deterministic and stochastic analysis. J. Hydrol., 290, 202–216.CrossRefGoogle Scholar
Baldocchi, D., Falge, E., Gu, L. et al. (2001). FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Met. Soc., 82, 2415–2434.2.3.CO;2>CrossRefGoogle Scholar
Bardenhagen, I. (2000). Groundwater reservoir characterisation based on pumping test curve diagnosis in fractured formation. In Groundwater: Past Achievements and Future Challenges, ed. Sililo, O.. Rotterdam: Balkema, 81–86.Google Scholar
Bardsley, W. E. and Campbell, D. I. (2007). An expression for land surface water storage monitoring using a two-formation geological weighing lysimeter. J. Hydrol., 335, 240–246.CrossRefGoogle Scholar
Barlow, P. M., Desimone, L. A. and Moench, A. F. (2000). Aquifer response to stream-stage and recharge variations, II. Convolution method and applications. J. Hydrol., 230, 211–229.CrossRefGoogle Scholar
Barnes, B. S. (1939). The structure of discharge recession curves. Trans. Amer. Geophys. Union, 20, 721–725.CrossRefGoogle Scholar
Barnes, C. J. and Allison, G. B. (1983). The distribution of deuterium and oxygen-18 in dry soils I. Theory. J. Hydrol., 60, 141–156.CrossRefGoogle Scholar
Barnes, C. J. and Allison, G. B. (1988). Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen. J. Hydrol., 100, 143–176.CrossRefGoogle Scholar
Barnston, A. G. (1993). Atlas of Frequency Distribution, Auto-correlation and Cross-correlation of Daily Temperature and Precipitation at Stations in the US, 1948–1991. Camp Springs, MD: National Oceanic and Atmospheric Administration.Google Scholar
Barr, A. G., van der Kamp, G., Schmidt, R. and Black, T. A. (2000). Monitoring the moisture balance of a boreal aspen forest using a deep groundwater piezometer. Agric. Forest Met., 102, 13–24.CrossRefGoogle Scholar
Barth, S. (1998). Application of boron isotopes for tracing sources of anthropogenic contamination in groundwater. Water Res., 32, 685–690.CrossRefGoogle Scholar
Bartolino, J. R. and Niswonger, R. G. (1999). Numerical simulation of vertical ground-water flux of the Rio Grande from ground-water temperature profiles, central New Mexico. US Geological Survey Water-Resources Investigations Report 99–4212.
Batelaan, O. and De Smedt, F. (2007). GIS-based recharge estimation by coupling surface-subsurface water balances. J. Hydrol., 337, 337–355.CrossRefGoogle Scholar
Batu, V. (1998). Aquifer Hydraulics: A Comprehensive Guide to Hydrogeological Data Analysis. Hoboken, NJ: John Wiley and Sons.Google Scholar
Bauer, H. H. and Mastin, M. C. (1997). Recharge from precipitation in three small glacial-till-mantled catchments in the Puget Sound Lowland, Washington. US Geological Survey Water-Resources Investigations Report 96–4219.
Bauer, H. H. and Vaccaro, J. J. (1987). Documentation of a deep percolation model for estimating ground-water recharge. US Geological Survey Open-File Report 86–536.
Bauer, H. H. and Vaccaro, J. J. (1990). Estimates of ground-water recharge to the Columbia Plateau regional aquifer system, Washington, Oregon, and Idaho, for predevelopment and current land-use conditions. US Geological Survey Water-Resources Investigations Report 88–4108.
Bear, J. (1972). Dynamics of Fluids in Porous Media. New York: Elsevier.Google Scholar
Becker, M. W. (2006). Potential for satellite remote sensing of ground water. Ground Water, 44, 306–318.CrossRefGoogle ScholarPubMed
Becker, M. W., Georgian, T., Ambrose, H., Siniscalchi, J. and Fredrick, K. (2004). Estimating flow and flux of ground water discharge using water temperature and velocity. J. Hydrol., 296, 221–233.CrossRefGoogle Scholar
Bekesi, G. and McConchie, J. (1999). Groundwater recharge modelling using the Monte Carlo technique, Manawatu region, New Zealand. J. Hydrol., 224, 137–148.CrossRefGoogle Scholar
Belanger, T. V., Mikutel, D. F. and Churchill, P. A. (1985). Groundwater seepage nutrient loading in a Florida lake. Water Res., 19, 773–782.CrossRefGoogle Scholar
Belanger, T. V. and Montgomery, M. T. (1992). Seepage meter errors. Limnol. Oceanogr., 37, 1787–1795.CrossRefGoogle Scholar
Beltrami, H., Ferguson, G. and Harris, R. N. (2005). Long-term tracking of climate change by underground temperatures. Geophys. Res. Lett., 32, 1–4.CrossRefGoogle Scholar
Bencala, K. E., McKnight, D. M. and Zellweger, G. W. (1987). Evaluation of natural tracers in an acidic and metal-rich stream. Water Resour. Res., 23, 827–836.CrossRefGoogle Scholar
Bendjoudi, H., Cheviron, B., Guérin, R. and Tabbagh, A. (2005). Determination of upward/downward groundwater fluxes using transient variations of soil profile temperature: test of the method with Voyons (Aube, France) experimental data. Hydrol. Proc., 19, 3735–3745.CrossRefGoogle Scholar
Bentley, H. W., Phillips, F. M. and Davis, S. N. (1986). 36Cl in the terrestrial environment. In Handbook of Environmental Isotope Geochemistry, ed. Fritz, P. and Fontes, J.-C.. New York: Elsevier Science, 2b, 422–475.Google Scholar
Berenbrock, C., Rousseau, J. P. and Twining, B. V. (2007). Hydraulic characteristics of bedrock constrictions and an evaluation of one- and two-dimensional models of flood flow on the Big Lost River at the Idaho National Engineering and Environmental Laboratory, Idaho. US Geological Survey Scientific Investigations Report 2007–5080.
Berendrecht, W. L., Heemink, A. W., van Geer, F. C. and Gehrels, J. C. (2006). A non-linear state space approach to model groundwater fluctuations. Adv. Water Resour., 29, 959–973.CrossRefGoogle Scholar
Besbes, M. (2006). Aquifer recharge by floods in ephemeral streams. IAHS-AISH Publication, 305, 43–72.Google Scholar
Besbes, M. and de Marsily, G. (1984). From infiltration to recharge: use of a parametric transfer function. J. Hydrol., 74, 271–293.CrossRefGoogle Scholar
Bevan, M. J., Endres, A. L., Rudolph, D. L., Parkin, G. (2003). The non-invasive characterization of pumping-induced dewatering using ground penetrating radar. J. Hydrol., 28, 55–69.CrossRefGoogle Scholar
Bevans, H. E. (1986). Estimating stream-aquifer interactions in coal areas of eastern Kansas by using streamflow records. US Geological Survey Water Supply Paper 2290, 51–64.
Bidaux, P. and Drouge, C. (1993). Calculation of low-range flow velocities in fractured carbonate media from borehole hydrochemical logging data comparison with thermometric results. Ground Water, 31, 19–26.CrossRefGoogle Scholar
Bierkens, M. F. P. (1998). Modeling water table fluctuations by means of a stochastic differential equation. Water Resour. Res., 34, 2485–2499.CrossRefGoogle Scholar
Binley, A., Winship, P., Middleton, R., Pokar, M. and West, J. (2001). High-resolution characterization of vadose zone dynamics using cross-borehole radar. Water Resour. Res., 37, 2639–2652.CrossRefGoogle Scholar
Black, T. A., Gardner, W. R. and Thurtell, G. W. (1969). The prediction of evaporation, drainage, and soil water storage for a bare soil. Soil Sci. Soc. Amer. Proc., 33, 655–660.CrossRefGoogle Scholar
Blasch, K. W., Constantz, J. and Stonestrom, D. (2007). Thermal methods to investigate ground-water recharge. In Ground-water Recharge in the Arid and Semiarid Southwestern United States, ed. Stonestrom, D. A., Constantz, J., Ferre, T. P. A. and Leake, S. A.. US Geological Survey Professional Paper 1703, Appendix 1.
Blasch, K. W., Ferré, T. P. A. and Hoffmann, J. P. (2004). A statistical technique for interpreting streamflow timing using streambed sediment thermographs. Vadose Zone J., 3, 936–946.CrossRefGoogle Scholar
Blasch, K. W., Ferré, T. P. A., Hoffmann, J. P. and Fleming, J. B. (2006). Relative contributions of transient and steady state infiltration during ephemeral streamflow. Water Resour. Res., 42, W08405, doi:10.1029/2005WR004049.CrossRefGoogle Scholar
Blonquist, J. M. Jr., Jones, S. B. and Robinson, D. A. (2005). Standardizing characterization of electromagnetic water content sensors, Part 2 Evaluation of seven sensing systems. Vadose Zone J., 4, 1059–1069.CrossRefGoogle Scholar
Bogena, H., Kunkel, R., Montzka, C. and Wendland, F. (2005). Uncertainties in the simulation of groundwater recharge at different scales. Adv. Geosciences, 5, 25–30.CrossRefGoogle Scholar
Böhlke, J. K. (2002). Groundwater recharge and agricultural contamination. Hydrogeol. J., 10, 153–179.CrossRefGoogle Scholar
Bonan, G. B. and Levis, S. (2006). Evaluating aspects of the Community Land and Atmosphere Models (CLM3 and CAM3) using a dynamic global vegetation model. J. Climate, 19, 2290–2301.CrossRefGoogle Scholar
Boonstra, J. and Bhutta, M. N. (1996). Ground water recharge in irrigated agriculture: the theory and practice of inverse modelling. J. Hydrol., 174, 357–374.CrossRefGoogle Scholar
Bossong, C. R., Caine, J. S., Stannard, D. I. et al. (2003). Hydrologic conditions and assessment of water resources in the Turkey Creek watershed, Jefferson County, Colorado, 1998–2001. US Geological Survey Water-Resources Investigations Report 2003–4263.
Boulton, N. S. (1963). Analysis of data from non-equilibrium pumping tests allowing for delayed yield from storage. Proc. Inst. Civil Eng., 26, 469–482.Google Scholar
Bowen, I. S. (1926). The ratio of heat losses by conduction and by evaporation from any water surface. Physical Rev., 27, 779–787.CrossRefGoogle Scholar
Bowman, R. S. and Rice, R. C. (1986). Transport of conservative tracers in the field under intermittent flood irrigation. Water Resour. Res., 22, 1531–1536.CrossRefGoogle Scholar
Bowman, R. S., Schroeder, J., Bulusu, R., Remmenga, M. and Heightman, R. (1997). Plant toxicity and plant uptake of fluorobenzoate and bromide water tracers. J. Env. Qual., 25, 1292–1299.CrossRefGoogle Scholar
Brandes, D., Cavallo, G. J. and Nilson, M. L. (2005). Base flow trends in urbanizing watersheds of the Delaware River Basin. J. Amer. Water Resour. Assoc., 41, 1377–1391.CrossRefGoogle Scholar
Bredehoeft, J. D. (2002). The water budget myth revisited: why hydrogeologists model. Ground Water, 40, 340–345.CrossRefGoogle ScholarPubMed
Bredehoeft, J. D. (2005). The conceptualization model problem: surprise. Hydrogeol. J., 13, 37–46.CrossRefGoogle Scholar
Bredehoeft, J. D. and Papadopulos, I. S. (1965). Rates of vertical groundwater movement estimated from the Earth’s thermal profile. Water Resour. Res., 1, 325–328.CrossRefGoogle Scholar
Bredehoeft, J. D., Papadopulos, S. S. and Cooper, H. H. (1982). The water budget myth. In Scientific Basis of Water Resource Management, Studies in Geophysics. Washington, DC: National Academy Press, 51–57.Google Scholar
Briggs, L. J. and Shantz, H. L. (1912). The wilting coefficient for different plants and its indirect determination. US Department of Agriculture, Bureau of Plant Industry Bulletin 230.CrossRef
Bristow, K. L. (2002). Thermal conductivity. In Methods of Soil Analysis. Part 4: Physical Methods, ed. Dane, J. H. and Topp, G. C.. Madison, Wisconsin: Soil Science Society of America, 1209–1226.Google Scholar
Brooks, R. H. and Corey, A. T. (1964). Hydraulic properties of porous media. Hydrology Paper 3. Colorado State University. Fort Collins, Colorado.
Brunner, P., Hendricks Franssen, H. J., Kgotlhang, L., Bauer-Gottwein, P. and Kinzelbach, W. (2007). How can remote sensing contribute in ground­water modeling?Hydrogeol. J., 15, 5–18.CrossRefGoogle Scholar
Brutsaert, W. (1982). Evaporation into the Atmosphere. Dordrecht: D. Reidel.CrossRefGoogle Scholar
Brye, K. R., Norman, J. M., Bundy, L. G. and Gower, S. T. (1999). An equilibrium tension lysimeter for measuring drainage through soil. Soil Sci. Soc. Amer. J., 63, 536–543.CrossRefGoogle Scholar
Brye, K. R., Norman, J. M., Bundy, L. G. and Gower, S. T. (2000). Water-budget evaluation of prairie and maize ecosystems. Soil Sci. Soc. Amer. J., 64, 715–724.CrossRefGoogle Scholar
Bu, X. and Warner, M. J. (1995). Solubility of chlorofluorocarbon 113. Water and Seawater, 42, 1151–1161.Google Scholar
Burkhardt, M., Kasteel, R., Vanderborght, J. and Vereecken, H. (2008). Field study on colloid transport using fluorescent microspheres. Eur. J. Soil Sci., 59, 82–93.CrossRefGoogle Scholar
Busenberg, E. and Plummer, L. N. (1992). Use of chlorofluorocarbons (CCl3F and CCl2F2) as hydrologic tracers and age-dating tools: the alluvium and terrace system of central Oklahoma. Water Resour. Res., 28, 2257–2283.CrossRefGoogle Scholar
Busenberg, E. and Plummer, L. N. (2000). Dating young groundwater with sulfur hexafluoride: natural and anthropogenic sources of sulfur hexafluoride. Water Resour. Res., 36, 3011–3030.CrossRefGoogle Scholar
Butler, J. J. (1997). The Design, Performance, and Analysis of Slug Tests. Boca Raton, Florida: Lewis.Google Scholar
Buttle, J. M. and Peters, D. L. (1997). Inferring hydrological processes in a temperate basin using isotopic and geochemical hydrograph separation: a re-evaluation. Hydrol. Proc., 11, 557–573.3.0.CO;2-Y>CrossRefGoogle Scholar
Buytaert, W., Iñiguez, V. and Bièvre, B. D. (2007). The effects of afforestation and cultivation on water yield in the Andean páramo. Forest Ecol. Man., 251, 22–30.CrossRefGoogle Scholar
Callow, J. N. and Smettem, K. R. J. (2007). Channel response to a new hydrological regime in southwestern Australia. Geomorphology, 84, 254–276.CrossRefGoogle Scholar
Campbell, G. S. (1985). Soil Physics with BASIC. New York: Elsevier.Google Scholar
Campbell, K., Wolfsberg, A., Fabryka-Martin, J. and Sweetkind, D. (2003). Chlorine-36 data at Yucca Mountain: statistical tests of conceptual models for unsaturated-zone flow. J. Contam. Hydrol., 62–63, 43–61.CrossRefGoogle ScholarPubMed
Carrera, J., Alcolea, A., Medina, A., Hidalgo, J. and Slooten, L. J. (2005). Inverse problem in hydrogeology. Hydrogeol. J., 13, 206–222.CrossRefGoogle Scholar
Carrera, J. and Neuman, S. P. (1986). Estimation of aquifer parameters under transient and steady state conditions: I. Maximum likelihood method incorporating prior information. Water Resour. Res., 22, 199–210.CrossRefGoogle Scholar
Carsel, R. F. and Parrish, R. S. (1988). Developing joint probability distributions of soil water retention characteristics. Water Resour. Res., 24, 755–769.CrossRefGoogle Scholar
Carslaw, H. S. and Jaeger, J. C. (1959). Conduction of Heat in Solids. 2nd edn. New York: Oxford University Press.Google Scholar
Carter, R. W. and Anderson, I. E. (1963). Accuracy of current-meter measurements. Amer. Soc. Civil Eng. J., 89, 105–115.Google Scholar
Carter, R. W., Anderson, W. L., Isherwood, W. L. et al. (1963). Automation of streamflow records. US Geological Survey Circular 474.
Cartwright, K. (1970). Groundwater discharge in the Illinois Basin as suggested by temperature anomalies. Water Resour. Res., 6, 912–918.CrossRefGoogle Scholar
Cartwright, K. (1974). Tracing shallow groundwater systems by soil temperatures. Water Resour. Res., 10, 847–855.CrossRefGoogle Scholar
Cassel, D. K. and Nielsen, D. R. (1986). Field capacity and available water capacity. In Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. 2nd edn., ed. Klute, A.. Madison, Wisconsin: Soil Science Society of America, 901–926.Google Scholar
Cedergren, H. R. (1988). Seepage, Drainage, and Flow Nets, 3rd edn. New York: John Wiley and Sons, Inc.Google Scholar
Chang, A. T. C., Foster, J. L., Hall, D. K. et al. (1997). Snow parameters derived from microwave measurements during the BOREAS winter field campaign. J. Geophys. Res. D, 102, 29663–29671.CrossRefGoogle Scholar
Chapman, D. S., Sahm, E. and Gettings, P. (2008). Monitoring aquifer recharge using repeated high-precision gravity measurements: a pilot study in South Weber, Utah. Geophysics, 73, WA83–WA93.CrossRefGoogle Scholar
Chapman, T. (1999). A comparison of algorithms for stream flow recession and baseflow separation. Hydrol. Proc., 13, 701–714.3.0.CO;2-2>CrossRefGoogle Scholar
Charbeneau, R. J. (1984). Kinematic models for soil moisture and solute transport (unsaturated groundwater recharge). Water Resour. Res., 20, 699–706.CrossRefGoogle Scholar
Chen, W. P. and Lee, C. H. (2003). Estimating ground-water recharge from streamflow records. Environ. Geol., 44, 257–265.CrossRefGoogle Scholar
Cherkauer, D. S. (2004). Quantifying ground water recharge at multiple scales using PRMS and GIS. Ground Water, 42, 97–110.CrossRefGoogle ScholarPubMed
Cherkauer, D. S. and Ansari, S. A. (2005). Estimating ground water recharge from topo­graphy, hydrogeology, and land cover. Ground Water, 43, 102–112.CrossRefGoogle Scholar
Cheviron, B., Guérin, R., Tabbagh, A. and Bendjoudi, H. (2005). Determining long-term effective groundwater recharge by analyzing vertical soil temperature profiles at meteorological stations. Water Resour. Res., 41, 1–6.CrossRefGoogle Scholar
Childs, E. C. (1960). The nonsteady state of the water table in drained land. J. Geophys. Res., 65, 780–782.CrossRefGoogle Scholar
Childs, E. C. (1969). An Introduction to the Physical Basis of Soil Water Phenomena. London: John Wiley and Sons.Google Scholar
Chong, S., Green, R. E. and Ahuja, L. R. (1981). Simple in situ determination of hydraulic conductivity by power function descriptions of drainage. Water Resour. Res., 17, 1109–1114.CrossRefGoogle Scholar
Chow, V. T. (ed.) (1964). Handbook of Applied Hydrology. New York: McGraw-Hill.
Chow, V. T., Maidment, D. R. and Mays, L. W. (1988). Applied Hydrology. New York: McGraw-Hill.Google Scholar
Clark, W. O. (1917). Groundwater for irrigation in the Morgan Hill area, California. US Geological Survey Water-Supply Paper 400-E.
Clarke, R., Lawrence, A. and Foster, S. (1996). Groundwater: A threatened resource. Nairobi, Kenya: United Nations Environment Programme Environment Library No. 15.
Clarke, W. B., Jenkins, W. J. and Top, Z. (1976). Determination of tritium by mass spectrometric measurements of 3He+. Int. J. Appl. Radiat. Isotopes, 27, 512–522.CrossRefGoogle Scholar
Clow, D. W. and Fleming, A. C. (2008). Tracer gauge: an automated dye dilution gauging system for ice-affected streams. Water Resour. Res., 44, W12441, doi:10.1029/2008WR007090.CrossRefGoogle Scholar
Clow, G. D. (1992). The extent of temporal smearing in surface-temperature histories derived from borehole temperature measurements. Palaeogeography, Palaeoclimatology, Palaeoecology, 98, 81–86.CrossRefGoogle Scholar
Coes, A. L., Spruill, T. B. and Thomasson, M. J. (2007). Multiple-method estimation of recharge rates at diverse locations in the North Carolina Coastal Plain, USA. Hydrogeol. J., 15, 773–788.CrossRefGoogle Scholar
Colbeck, S. C. (1972). A theory of water percolation in snow. J. Glaciology, 2, 369–385.CrossRefGoogle Scholar
ConantJr., B. (2004). Delineating and quantifying ground water discharge zones using streambed temperatures. Ground Water, 42, 243–257.CrossRefGoogle ScholarPubMed
Constantz, J., Niswonger, R. and Stewart, A. E. (2008). Analysis of temperature gradients to determine stream exchanges with ground water. US Geological Survey Techniques and Methods 4-D2 Chapter 4.
Constantz, J., Stonestrom, D., Stewart, A. E., Niswonger, R. and Smith, T. R. (2001). Analysis of streambed temperatures in ephemeral channels to determine streamflow frequency and duration. Water Resour. Res., 37, 317–328.CrossRefGoogle Scholar
Constantz, J., Tyler, S. W. and Kwicklis, E. M. (2003). Temperature-profile methods for estimating percolation rates in arid environments. Vadose Zone J., 2, 12–24.CrossRefGoogle Scholar
Cook, P. G. and Böhlke, J. K. (2000). Determining timescales for groundwater flow and solute transport. In Environmental Tracers in Subsurface Hydrology, ed. Cook, P. G. and Herczeg, A. L.. Boston: Kluwer Academic Publishers, 1–30.CrossRefGoogle Scholar
Cook, P. G. and Herczeg, A. L. (1998). Groundwater chemical methods for recharge studies. In Part 2: Basics of Recharge and Discharge, ed. Zhang, L.. Victoria, Australia: CSIRO, 1–17.Google Scholar
Cook, P. G. and Herczeg, A. L. (eds.) (2000). Environmental Tracers in Subsurface Hydrology. Boston: Kluwer Academic Publishers.CrossRef
Cook, P. G., Jolly, I. D., Leaney, F. W. and Walker, G. R. (1994). Unsaturated zone tritium and chlorine 36 profiles from southern Australia: their use as tracers of soil water movement. Water Resour. Res., 30, 1709–1719.CrossRefGoogle Scholar
Cook, P. G. and Kilty, S. (1992). A helicopter-borne electromagnetic survey to delineate groundwater recharge rates. Water Resour. Res., 28, 2953–2961.CrossRefGoogle Scholar
Cook, P. G. and Solomon, D. K. (1995). Transport of atmospheric trace gases to the water table: ­implications for groundwater dating with chlorofluorocarbons and krypton 85. Water Resour. Res., 31, 263–270.CrossRefGoogle Scholar
Cook, P. G. and Solomon, D. K. (1997). Recent advances in dating young groundwater: chlorofluorocarbons, H-3/He-3 and Kr-85. J. Hydrol., 191, 245–265.CrossRefGoogle Scholar
Cook, P. G., Solomon, D. K., Plummer, L. N., Busenberg, E. and Schiff, S. L. (1995). Chlorofluorocarbons as tracers of groundwater transport processes in a shallow, silty sand aquifer. Water Resour. Res., 31, 425–434.CrossRefGoogle Scholar
Cook, P. G., Walker, G. R. and Jolly, I. D. (1989). Spatial variability of groundwater recharge in a semiarid region. J. Hydrol., 111, 195–212.CrossRefGoogle Scholar
Cooley, R. L. (1979). A method of estimating parameters and assessing reliability for models of steady state groundwater flow: 2. Application of statistical analysis. Water Resour. Res., 15, 603–617.CrossRefGoogle Scholar
Cooley, R. L. (1983). Incorporation of prior information on parameters into nonlinear regression groundwater flow models: 2. Applications. Water Resour. Res., 19, 662–676.CrossRefGoogle Scholar
Cooley, R. L. and Naff, R. L. (1990). Regression modeling of ground-water flow. US Geological Survey Techniques in Water-Resources Investigations, Book 3, Chapter B4.
Cooper, J. D., Gardner, C. M. K. and Mackenzie, N. (1990). Soil controls on recharge to aquifers. J. Soil Sci., 41, 613–630.CrossRefGoogle Scholar
Coulibaly, P., Anctil, F., Aravena, R. and Bobée, B. (2001). Artificial neural network modeling of water table depth fluctuations. Water Resour. Res., 37, 885–896.CrossRefGoogle Scholar
Crawford, N. H. and Linsley, R. K. (1962). The synthesis of continuous streamflow hydrographs on a digital computer. Technical Report 12. Civil Engineering Department Stanford University.
Crosbie, R. S., Binning, P. and Kalma, J. D. (2005). A time series approach to inferring groundwater recharge using the water table fluctuation method. Water Resour. Res., 41, 1–9.CrossRefGoogle Scholar
Culler, R. C., Hanson, R. L., Myrick, R. M., Turner, R. M. and Kipple, F. P. (1982). Evapotranspiration before and after clearing phreatophytes, Gila River flood plain, Graham County, Arizona. US Geological Survey Professional Paper 655-P.
Cunnold, D. M., Fraser, P. J., Weiss, R. F. et al. (1994). Global trends and annual releases of CCl3F and CCl2F2 estimated from Ale/Gage and other measurements from July 1978 to June 1991. J. Geophys. Res. D, 99, 1107–1126.CrossRefGoogle Scholar
Cushing, E. M., Kantrowitz, E. M. and Taylor, K. R. (1973). Water resources of the Delmarva Peninsula. US Geological Survey Professional Paper 822.
Czarnecki, J. B., Gillip, J. A., Jones, P. M. and Yeatts, D. S. (2009). Groundwater-flow model of the Ozark Plateaus aquifer system, northwestern Arkansas, Southeastern Kansas, Southwestern Missouri, and Northeastern Oklahoma. US Geological Survey Scientific Investigations Report 2009–5148.
Dages, C., Voltz, M., Bsaibes, A. et al. (2009). Estimating the role of a ditch network in groundwater recharge in a Mediterranean catchment using a water balance approach. J. Hydrol., 375, 498–512.CrossRefGoogle Scholar
Dahan, O., Shani, Y., Enzel, Y., Yechieli, Y. and Yakirevich, A. (2007). Direct measurements of floodwater infiltration into shallow alluvial aquifers. J. Hydrol., 344, 157–170.CrossRefGoogle Scholar
Daly, C., Halbleib, M., Smith, J. I. et al. (2008). Physiographically sensitive mapping of temperature and precipitation across the conterminous United States. Inter. J. Climatology, doi:10.1002/joc.1688.CrossRefGoogle Scholar
Daly, C., Neilson, R. P. and Phillips, D. L. (1994). A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Met., 33, 140–158.2.0.CO;2>CrossRefGoogle Scholar
Dane, J. H. and Topp, G. C. (eds.) (2002). Methods of Soil Analysis. Part 4: Physical Methods. Madison, Wisconsin: Soil Science Society of America.
Daniel, C. C. and Harned, D. A. (1998). Ground-water recharge to and storage in the regolith-fractured crystalline rock aquifer system, Guilford County, North Carolina. US Geological Survey Water-Resources Investigations Report 97–4140.
Daniel, J. F. (1976). Estimating groundwater evapotranspiration from streamflow records. Water Resour. Res., 12, 360–364.CrossRefGoogle Scholar
Danielson, T. W. and Hood, J. W. (1984). Infiltration to the Navajo Sandstone in the lower Dirty Devil River Basin, Utah, with emphasis on techniques used in its determination. US Geological Survey Water-Resources Investigations Report 84–4154.
Davidson, W. A. (1995). Hydrogeology and groundwater resources of the Perth region, Western Australia. West. Austral. Geol. Surv. Bull., 142.Google Scholar
Davis, S. N., Campbell, D. J., Bentley, H. W. and Flynn, T. J. (1985). Ground Water Tracers. Dublin, Ohio: National Water Well Association.Google Scholar
Dawes, W. R., Zhang, L., Hatton, T. J. et al. (1997). Evaluation of a distributed parameter ecohydrological model (TOPOG-IRM) on a small cropping rotation catchment. J. Hydrol., 191, 64–86.CrossRefGoogle Scholar
de Marsily, G. (1986). Quantitative Hydrogeology: Groundwater Hydrology for Engineers. Orlando, Florida: Academic Press.Google Scholar
de Vries, D. A. (1966). Thermal properties of soil. In Physics of Plant Environment, ed. van Wijk, W. R.. Amsterdam: North-Holland Publishing Company.Google Scholar
Delin, G. N., Healy, R. W., Landon, M. K. and Böhlke, J. K. (2000). Effects of topography and soil properties on recharge at two sites in an agricultural field. J. Amer. Water Resour. Assoc., 36, 1401–1416.CrossRefGoogle Scholar
Delin, G. N., Healy, R. W., Lorenz, D. L. and Nimmo, J. R. (2007). Comparison of local- to regional-scale estimates of ground-water recharge in Minnesota, USA. J. Hydrol., 334, 231–249.CrossRefGoogle Scholar
Delin, G. N. and Herkelrath, W. N. (2005). Use of soil moisture probes to estimate ground water recharge at an oil spill site. J. Amer. Water Resour. Assoc., 41, 1259–1277.CrossRefGoogle Scholar
Desconnets, J. C., Taupin, J. D., Lebel, T. and Leduc, C. (1997). Hydrology of the HAPEX-Sahel Central Super-Site: surface water drainage and aquifer recharge through the pool systems. J. Hydrol., 188–189, 155–178.CrossRefGoogle Scholar
Dettinger, M. D. (1989). Reconnaissance estimates of natural recharge to desert basins in Nevada, USA, by using chloride-balance calculations. J. Hydrol., 106, 55–78.CrossRefGoogle Scholar
Devlin, J. F. and Sophocleous, M. (2005). The persistence of the water budget myth and its relationship to sustainability. Hydrogeol. J., 13, 549–554.CrossRefGoogle Scholar
Dewalle, D. R., Swistock, B. R. and Sharpe, W. E. (1988). Three-component tracer model for stormflow on a small Appalachian forested catchment. J. Hydrol., 104, 301–310.CrossRefGoogle Scholar
Dewandel, B., Lachassagne, P., Bakalowicz, M., Weng, P. and Al-Malki, A. (2003). Evaluation of aquifer thickness by analysing recession hydrographs: application to the Oman ophiolite hard-rock aquifer. J. Hydrol., 274, 248–269.CrossRefGoogle Scholar
Dickinson, J. E., Hanson, R. T., Ferré, T. P. A. and Leake, S. A. (2004). Inferring time-varying recharge from inverse analysis of long-term water levels. Water Resour. Res., 40, W074031–W0740315.CrossRefGoogle Scholar
Dincer, T., Al-Mugrin, A. and Zimmermann, U. (1974). Study of the infiltration and recharge through the sand dunes in arid zones with special reference to stable isotopes and thermonuclear tritium. J. Hydrol., 23, 79–109.CrossRefGoogle Scholar
Dingman, S. L. (1978). Synthesis of flow-duration curves for unregulated streams in New Hampshire. Water Resour. Bull., 14, 12.CrossRefGoogle Scholar
Doerfliger, N., Jeannin, P. Y. and Zwahlen, F. (2000). Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ. Geol., 39, 165–176.CrossRefGoogle Scholar
Doherty, J. (2004). PEST: Model-independent Parameter Estimation, User Manual. 5th edn. Brisbane, QLD, Australia: Watermark Numerical Computing.Google Scholar
Doherty, J. (2005). PEST Version 9.01. Corinda, Australia: Watermark Computing.Google Scholar
Domenico, P. A. and Schwartz, F. W. (1998). Physical and Chemical Hydrogeology. 2nd edn. New York: John Wiley & Sons, Inc.Google Scholar
Donato, M. M. (1998). Surface-water/ground-water relations in the Lemhi River Basin, east-central Idaho. US Geological Survey Water-Resources Investigations Report 98–4185.
Dooge, J. C. (1959). A general theory of the unit hydrograph. J. Geophys. Res., 64, 241–256.CrossRefGoogle Scholar
Doorenbos, J. and Pruitt, W. O. (1975). Crop water requirements. Irrigation and drainage Paper No. 24. Rome: Food and Agricultural Organization of the United Nations.
Dos Santos, A. G. Jr. and Youngs, E. G. (1969). Study of specific yield in land-drainage situations. J. Hydrol., 8, 59–81.CrossRefGoogle Scholar
Downey, J. S. (1984). Geohydrology of the Madison and associated aquifers in parts of Montana, North Dakota, South Dakota, and Wyoming. US Geological Survey Professional Paper 1273-G.
Dreiss, S. J. and Anderson, L. D. (1985). Estimating vertical soil moisture flux at a land treatment site. Ground Water, 23, 503–511.CrossRefGoogle Scholar
Dripps, W. R. and Bradbury, K. R. (2007). A simple daily soil-water balance model for estimating the spatial and temporal distribution of groundwater recharge in temperate humid areas. Hydrogeol. J., 15, 433–444.CrossRefGoogle Scholar
Dripps, W. R., Hunt, R. J. and Anderson, M. P. (2006). Estimating recharge rates with analytic element models and parameter estimation. Ground Water, 44, 47–55.CrossRefGoogle ScholarPubMed
Dugan, J. T. and Peckenpaugh, J. M. (1985). Effects of climate, vegetation, and soils on consumptive water use and ground-water recharge to the central Midwest regional aquifer system, Mid-continent United States. US Geological Survey Water-Resources Investigations Report 85–4236.
Duke, H. R. (1972). Capillary properties of soils: influence upon specific yield. Trans. Amer. Soc. Agric. Eng., 15, 688–691.CrossRefGoogle Scholar
Dumouchelle, D. H. (2001). Evaluation of ground-water/surface-water relations, Chapman Creek, west-central Ohio, by means of multiple methods. US Geological Survey Water-Resources Investigations Report 2001–4202.
Dumouchelle, D. H. and Schiefer, M. C. (2002). Use of streamflow records and basin characteristics to estimate groundwater recharge rates in Ohio. Columbus, Ohio: Ohio Department of Natural Resources Bulletin 46.
Dunkle, S. A., Plummer, L. N., Busenberg, E. et al. (1993). Chlorofluorocarbons (CCl3F and CCl2F2) as dating tools and hydrologic tracers in shallow groundwater of the Delmarva Peninsula, Atlantic coastal plain, United States. Water Resour. Res., 29, 3837–3860.CrossRefGoogle Scholar
Dunne, T., Zhang, W. and Aubry, B. F. (1991). Effects of rainfall, vegetation, and microtopography on infiltration and runoff. Water Resour. Res., 27, 2271–2285.CrossRefGoogle Scholar
Eckhardt, K. (2005). How to construct recursive digital filters for baseflow separation. Hydrol. Proc., 19, 507–515.CrossRefGoogle Scholar
Eckhardt, K. (2008). A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. J. Hydrol., 352, 168–173.CrossRefGoogle Scholar
Eckhardt, K. and Ulbrich, U. (2003). Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J. Hydrol., 284, 244–252.CrossRefGoogle Scholar
Edmunds, W. M., Fellman, E., Goni, I. B. and Prudhomme, C. (2002). Spatial and temporal distribution of groundwater recharge in northern Nigeria. Hydrogeol. J., 10, 205–215.CrossRefGoogle Scholar
Ek, M. B., Mitchell, K. E., Lin, Y. et al. (2003). Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. D, 108, GCP121-GCP1216.CrossRefGoogle Scholar
Ekwurzel, B., Schlosser, P., Smethie, W. M., Jr. et al. (1994). Dating of shallow groundwater: comparison of the transient tracers 3H/3He, chlorofluorocarbons, and 85Kr. Water Resour. Res., 30, 1693–1708.CrossRefGoogle Scholar
El-Kadi, A. I. (2005). Validity of the generalized Richards equation for the analysis of pumping test data for a coarse-material aquifer. Vadose Zone J., 4, 196–205.CrossRefGoogle Scholar
Endres, A. L., Clement, W. P. and Rudolph, D. L. (2000). Ground penetrating radar imaging of an aquifer during a pumping test. Ground Water, 38, 566–576.CrossRefGoogle Scholar
Enfield, C. G., Hsieh, J. J. and Warrick, A. W. (1973). Evaluation of water flux above a deep water table using thermocouple psychrometers. Soil Sci. Soc. Amer. Proc., 37, 968–970.CrossRefGoogle Scholar
Engesgaard, P., Jensen, K. H., Molson, J., Frind, E. O. and Olsen, H. (1996). Large-scale dispersion in a sandy aquifer: simulation of subsurface transport of environmental tritium. Water Resour. Res., 32, 3253–3266.CrossRefGoogle Scholar
Englund, E., Aldahan, A. and Possnert, G. (2008). Tracing anthropogenic nuclear activity with 129I in lake sediment. J. Environ. Radioact., 99, 219–229.CrossRefGoogle Scholar
Engott, J. A. and Vana, T. T. (2007). Effects of agricultural land-use changes and rainfall on ground-water recharge in central and west Maui, Hawaii, 1926–2004. US Geological Survey Scientific Investigations Report 2007–5103.
Entekhabi, D. and Moghaddam, M. (2007). Mapping recharge from space: roadmap to meeting the grand challenge. Hydrogeol. J., 15, 105–116.CrossRefGoogle Scholar
Eriksson, E. and Khunakasem, V. (1969). Chloride concentration in groundwater, recharge rate and rate of deposition of chloride in the Israel Coastal Plain. J. Hydrol., 7, 178–197.CrossRefGoogle Scholar
Essaid, H. I., Zamora, C. M., McCarthy, K. A., Vogel, J. R. and Wilson, J. T. (2008). Using heat to characterize streambed water flux variability in four stream reaches. J. Environ. Qual., 37, 1010–1023.CrossRefGoogle Scholar
Evett, S. R., Warrick, A. W. and Matthias, A. D. (1995). Wall material and capping effects on microlysimeter temperatures and evaporation. Soil Sci. Soc. Amer. J., 59, 329–336.CrossRefGoogle Scholar
Fan, Y., Van den Dool, H. M., Lohmann, D. and Mitchell, K. (2006). 1948–98 US hydrological reanalysis by the Noah land data assimilation system. J. Climate, 19, 1214–1237.CrossRefGoogle Scholar
Fassnacht, S. R., Dressler, K. A. and Bales, R. C. (2003). Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data. Water Resour. Res., 39, SWC31–WC310.CrossRefGoogle Scholar
Faunt, C. C. (ed.) (2009). Groundwater availability of the Central Valley aquifer, California. US Geological Survey Professional Paper 1766.
Favreau, G., Cappelaere, B., Massuel, S. et al. (2009). Land clearing, climate variability, and water resources increase in semiarid southwest Niger: a review. Water Resour. Res., 45, W00A16, doi:10.1029/2007WR006785.CrossRefGoogle Scholar
Faye, R. E. and Mayer, G. C. (1997). Simulation of ground-water flow in southeastern Coastal Plain clastic aquifers in Georgia and adjacent parts of Alabama and South Carolina. US Geological Survey Professional Paper 1410-F.
Fayer, M. J. (2000). UNSAT-H version 3.0: Unsaturated soil water and heat flow model, theory, user manual, and examples. Pacific Northwest National Laboratory PNNL 13249. Richland, WA.
Fayer, M. J. and Gee, G. W. (2006). Multiple-year water balance of soil covers in a semiarid setting. J. Environ. Qual., 35, 366–377.CrossRefGoogle Scholar
Fayer, M. J., Gee, G. W., Rockhold, M. L., Freshley, M. D. and Walters, T. B. (1996). Estimating recharge rates for a groundwater model using a GIS. J. Environ. Qual., 25, 510–518.CrossRefGoogle Scholar
Fernando, L. G. and Gerardo, O. F. (1999). Feasibility study for the attenuation of groundwater exploitation impacts in the urban area of Aquascalientes, Mexico. In Groundwater in the Urban Environment: Selected City Profiles, ed. Chilton, J.. Rotterdam: A. A. Balkema, 181–187.Google Scholar
Ferré, T. P. A., Binley, A. M., Blasch, K. W. et al. (2007). Geophysical methods for investigating ground-water recharge. In Ground-water recharge in the arid and semiarid southwestern United States, ed. Stonestrom, D. A., Constantz, J., Ferré, T. P. A., and Leake, S. A., US Geological Survey Professional Paper 1703, 377–414.
Ferré, T. P. A., von Glinski, G. and Ferré, L. A. (2003). Monitoring the maximum depth of drainage in response to pumping using borehole ground penetrating radar. Vadose Zone J., 2, 511–518.CrossRefGoogle Scholar
Feth, J. H. (1964). Hidden recharge. Ground Water, 2, 14–17.CrossRefGoogle Scholar
Feth, J. H., Barker, D. A., Moore, L. G., Brown, R. J. and Veirs, C. E. (1966). Lake Bonneville: geology and hydrology of the Weber Delta district, including Ogden, Utah. US Geological Survey Professional Paper 518.
Finch, J. W. (1998). Estimating direct groundwater recharge using a simple water balance model: sensitivity to land surface parameters. J. Hydrol., 211, 112–125.CrossRefGoogle Scholar
Fischer, B., Goldberg, V. and Bernhofer, C. (2008). Effect of a coupled soil water-plant gas exchange on forest energy fluxes: simulations with the coupled vegetation-boundary layer model HIRVAC. Ecological Modelling, 214, 75–82.CrossRefGoogle Scholar
Fisher, L. H. and Healy, R. W. (2008). Water movement within the unsaturated zone in four agricultural areas of the United States. J. Environ. Qual., 37, 1051–1063.CrossRefGoogle ScholarPubMed
Flint, A. L. and Flint, L. E. (2007). Application of the Basin Characterization Model to estimate in-place recharge and runoff potential in the Basin and Range Carbonate-Rock aquifer system, White Pine County, Nevada, and adjacent areas in Nevada and Utah. US Geological Survey Scientific Investigations Report 2007–5099.
Flint, A. L., Flint, L. E., Bodvarsson, G. S., Kwicklis, E. M. and Fabryka-Martin, J. (2001a). Evolution of the conceptual model of unsaturated zone hydrology at Yucca Mountain, Nevada. J. Hydrol., 247, 1–30.CrossRefGoogle Scholar
Flint, A. L., Flint, L. E., Hevesi, J. A. and Blainey, J. M. (2004). Fundamental concepts of recharge in the Desert Southwest: a regional modeling perspective. In Groundwater Recharge in a Desert Environment, the Southwestern United States, ed. Hogan, J. F., Phillips, F. M. and Scanlon, B. R.. Washington, DC: American Geophysical Union Water Science and Application Series, 9, 159–184.Google Scholar
Flint, A. L., Flint, L. E., Kwicklis, E. M., Bodvarsson, G. S. and Fabryka-Martin, J. (2001b). Hydrology of Yucca Mountain, Nevada. Rev. Geophys., 39, 447–470.CrossRefGoogle Scholar
Flint, A. L., Flint, L. E., Kwicklis, E. M., Fabryka-Martin, J. T. and Bodvarsson, G. S. (2002). Estimating recharge at Yucca Mountain, Nevada, USA: comparison of methods. Hydrogeol. J., 10, 180–204.CrossRefGoogle Scholar
Flury, M. and Papritz, A. (1993). Bromide in the natural environment: occurrence and toxicity. J. Environ. Qual., 22, 747–758.CrossRefGoogle Scholar
Flynn, R. H. and Tasker, G. D. (2004). Generalized estimates from streamflow data of annual and seasonal ground-water-recharge rates for drainage basins in New Hampshire. US Geological Survey Scientific Investigations Report 2004–5019.
Forchheimer, P. (1930). Hydraulik, 3rd edn. Berlin: B. G. Teubner.Google Scholar
Franke, O. L., Reilly, T. E., Pollock, D. W. and LaBaugh, J. W. (1998). Estimating areas contributing recharge to wells, lessons from previous studies. US Geological Survey Circular 1174.
Frankenberger, W. T., Tabatabai, M. A., Adriano, D. C. and Doner, H. E. (1996). Bromine, chlorine, and fluorine. In Methods of Soil Analysis. Part 3: Chemical Methods, ed. Bartels, J. M.. Madison, Wisconsin. Soil Science of America, 833–867.Google Scholar
Freeman, L. A., Carpenter, M. C., Rosenberry, D. O. et al. (2004). Use of submersible pressure transducers in water-resources investigations. US Geological Survey Techniques of Water-Resources Investigation Report 08-A3.
Freethey, G. W. and Cordy, G. E. (1991). Geohydrology of Mesozoic rocks in the upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, excluding the San Juan Basin. US Geological Survey Professional Paper 1411-C.
Freeze, R. A. and Cherry, J. A. (1979). Groundwater. Englewood Cliffs, NJ: Prentice-Hall Inc.Google Scholar
Gardner, W. R. (1964). Water movement below the root zone. 8th International Congress on Soil Science, Bucharest: Rompresfilatelia.
Gardner, W. R. (1967). Water uptake and salt distribution patterns in saline soils. In Proceedings of the Symposium on Isotope and Radiation Techniques in Soil Physics and irrigation studies. June 12–16, 1967. Istanbul. Vienna: International Atomic Energy Agency, 335–340.Google Scholar
Garen, D. C. and Moore, D. S. (2005a). Reply to discussion by M. Todd Walter and Stephen B. Shaw on curve number hydrology in water quality modeling: uses, abuses, and future directions. J. Amer. Water Resour. Assoc., 41, 1493–1494.CrossRefGoogle Scholar
Garen, D. C. and Moore, D. S. (2005b). Curve number hydrology in water quality modeling: uses, abuses, and future directions. J. Amer. Water Resour. Assoc., 41, 377–388.CrossRefGoogle Scholar
Gat, J. R. (1996). Oxygen and hydrogen isotopes in the hydrologic cycle. Ann. Rev. Earth Planet. Sci., 24, 225–262.CrossRefGoogle Scholar
Gates, J. B., Edmunds, W. M., Ma, J. and Scanlon, B. R. (2008). Estimating groundwater recharge in a cold desert environment in northern China using chloride. Hydrogeol. J., 16, 893–910.CrossRefGoogle Scholar
Gburek, W. J. and Folmar, G. J. (1999). A ground water recharge field study: site characterization and initial results. Hydrol. Proc., 13, 2813–2831.3.0.CO;2-6>CrossRefGoogle Scholar
Gburek, W. J., Folmar, G. J. and Urban, J. B. (1999). Field data and ground water modeling in a layered fractured aquifer. Ground Water, 37, 175–184.CrossRefGoogle Scholar
Gebert, W. A., Radloff, M. J., Considine, E. J. and Kennedy, J. L. (2007). Use of streamflow data to estimate base flow ground-water recharge for Wisconsin. J. Amer. Water Resour. Assoc., 43, 220–236.CrossRefGoogle Scholar
Gee, G. W., Fayer, M. J., Rockhold, M. L. and Campbell, M. D. (1992). Variations in recharge at the Hanford Site. Northwest Science, 66, 237–250.Google Scholar
Gee, G. W. and Hillel, D. (1988). Groundwater recharge in arid regions: review and critique of estimation methods. Hydrol. Proc., 2, 255–266.CrossRefGoogle Scholar
Gee, G. W., Newman, B. D., Green, S. R. et al. (2009). Passive wick fluxmeters: design considerations and field applications. Water Resour. Res., 45, W04420, doi:10.1029/2008/WR007088.CrossRefGoogle Scholar
Gee, G. W., Ward, A. L., Caldwell, T. G. and Ritter, J. C. (2002). A vadose zone water fluxmeter with divergence control. Water Resour. Res., 38(8) 1141, doi:10.1029/2001WR000816.CrossRefGoogle Scholar
Gee, G. W., Wierenga, P. J., Andraski, B. J. et al. (1994). Variations in water balance and recharge potential at three western desert sites. Soil Sci. Soc. Amer. J., 58, 63–72.CrossRefGoogle Scholar
Genereux, D. P. (1998). Quantifying uncertainty in tracer-based hydrograph separations. Water Resour. Res., 34, 915–919.CrossRefGoogle Scholar
Genereux, D. P., Leahy, S., Mitasova, H., Kennedy, C. D. and Corbett, D. R. (2008). Spatial and temporal variability of streambed hydraulic conductivity in West Bear Creek, North Carolina, USA. J. Hydrol., 358, 332–353.CrossRefGoogle Scholar
Gerhart, J. M. (1986). Ground-water recharge and its effects on nitrate concentration beneath a manured field site in Pennsylvania. Ground Water, 24, 483–489.CrossRefGoogle Scholar
Gerla, P. J. (1999). Estimating the ground-water contribution in wetlands using modeling and digital terrain analysis. Wetlands, 19, 394–402.CrossRefGoogle Scholar
Ghodrati, M. and Jury, W. A. (1990). A field study using dyes to characterize preferential flow of water. Soil Sci. Soc. Am. J., 54, 1558–1563.CrossRefGoogle Scholar
Gillham, R. W. (1984). The capillary fringe and its effect on water-table response. J. Hydrol., 67, 307–324.CrossRefGoogle Scholar
Glover, R. E. (1964). Ground-water movement. US Bureau of Reclamation Engineering Monograph 13.
Glynn, J. E., Carroll, T. R., Holman, P. B. and Grasty, R. L. (1988). An airborne gamma ray snow survey of a forest covered area with a deep snowpack. Remote Sens. Environ., 26, 149–160.CrossRefGoogle Scholar
Glynn, P. and Busenberg, E. (1996). Unsaturated zone investigations and chlorofluorocarbon dating of ground waters in the Pinal Creek Basin, Arizona. In Proceedings of the US Geological Survey Toxic Substances Hydrology Program Technical Meeting. Colorado Springs, CO, September 20–24, 1993. ed. Mallard, G. L. and Aronson, D.A.. US Geological Survey Water-Resources Investigations Report 93–4015.
Gogu, R. C. and Dassargues, A. (2000). Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ. Geol., 39, 549–559.CrossRefGoogle Scholar
Goldscheider, N. (2005). Karst groundwater vulnerability mapping: application of a new method in the Swabian Alb, Germany. Hydrogeol. J., 13, 555–564.CrossRefGoogle Scholar
Graham, D. N., Butts, M. B. and Frevert, D. K. (2006). Flexible integrated watershed modeling with MIKE SHE. In Watershed Models, ed. Singh, V. P. and Frevert, D. K.. Boca Raton, Florida: CRC Press.Google Scholar
Greene, E. A. (1997). Tracing recharge from sinking streams over spatial dimensions of kilometers in a karst aquifer. Ground Water, 35, 898–904.CrossRefGoogle Scholar
Gu, A., Gray, F., Eastoe, C. J. et al. (2008). Tracing ground water input to base flow using sulfate (S, O) isotopes. Ground Water, 46, 502–509.CrossRefGoogle ScholarPubMed
Gunderson, L. C. S. and Wanty, R. B. (1991). Field studies of radon in rocks, soils, and water. US Geological Survey Bulletin 1971.
Gurdak, J. J. and Roe, C. D. (2009). Recharge rates and chemistry beneath playas of the High Plains aquifer: a literature review and synthesis. US Geological Survey Circular 1333.
Gvirtzman, H. and Magaritz, M. (1986). Investigation of water movement in the unsaturated zone under an irrigated area using environmental tritium. Water Resour. Res., 22, 635–642.CrossRefGoogle Scholar
Gvirtzman, H., Ronen, D. and Magaritz, M. (1986). Anion exclusion during transport through the unsaturated zone. J. Hydrol., 87, 267–283.CrossRefGoogle Scholar
Ha, K., Koh, D. C., Yum, B. W. and Lee, K. K. (2008). Estimation of river stage effect on groundwater level, discharge, and bank storage and its field application. Geosciences J., 12, 191–204.CrossRefGoogle Scholar
Haitjema, H. M. (1995). Analytic Element Modeling of Groundwater Flow. San Diego: Academic Press.Google Scholar
Halford, K. J. (1997). Effects of unsaturated zone on aquifer test analysis in a shallow-aquifer system. Ground Water, 35, 512–522.CrossRefGoogle Scholar
Halford, K. J. and Mayer, G. C. (2000). Problems associated with estimating ground water discharge and recharge from stream-discharge records. Ground Water, 38, 331–342.CrossRefGoogle Scholar
Hall, D. W. and Risser, D. W. (1993). Effects of agricultural nutrient management on nitrogen fate and transport in Lancaster County, Pennsylvania. Water Resour. Bull., 29, 55–76.CrossRefGoogle Scholar
Hall, F. R. (1968). Base-flow recessions: a review. Water Resour. Res., 4, 973–983.CrossRefGoogle Scholar
Hall, F. R. and Moench, A. F. (1972). Application of the convolution equation to stream-aquifer relationships. Water Resour. Res., 8, 487–493.CrossRefGoogle Scholar
Hamon, W. R. (1963). Computation of direct runoff amounts from storm rainfall. Inter. Assoc. Sci. Hydrol. Pub., 63, 52–62.Google Scholar
Hanson, R. T., McLean, J. S. and Miller, R. S. (1994). Hydrogeologic framework and preliminary simulation of ground-water flow in the Mimbres Basin, southwestern New Mexico. US Geological Survey Water-Resources Investigations Report 94–4011.
Hantush, M. S. (1956). Analysis of data from pumping tests in leaky aquifers. Trans. Amer. Geophys. Union, 37, 702–714.CrossRefGoogle Scholar
Harbaugh, A. W. (2005). MODFLOW-2005: the US Geological Survey modular ground-water model, the ground-water flow process. US Geological Survey Techniques and Methods Report 6-A16.
Hardman, G. (1936). Nevada precipitation and acreages of land by rainfall zones. University of Nevada, Reno Agricultural Experiment Station Report.
Hart, G. L. and Lowery, B. (1998). Measuring instantaneous solute flux and loading with time domain reflectometry. Soil Sci. Soc. Amer. J., 62, 23–35.CrossRefGoogle Scholar
Harvey, J. W., Wagner, B. J. and Bencala, K. E. (1996). Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange. Water Resour. Res., 32, 2441–2451.CrossRefGoogle Scholar
Hatch, C. E., Fisher, A. T., Revenaugh, J. S., Constantz, J. and Ruehl, C. (2006). Quantifying surface water-groundwater interactions using time series analysis of streambed thermal records: method development. Water Resour. Res., 42, W10410, doi:10.1029/2005WR004787.CrossRefGoogle Scholar
Healy, R. W. (1989). Seepage through a hazardous-waste trench cover. J. Hydrol., 108, 213–234.CrossRefGoogle Scholar
Healy, R. W. and Cook, P. G. (2002). Using groundwater levels to estimate recharge. Hydrogeol. J., 10, 91–109.CrossRefGoogle Scholar
Healy, R. W., Gray, J. R., de Vries, M. P. and Mills, P. C. (1989). Water balance at a low-level radioactive-waste disposal site. Water Resour. Bull., 25, 381–390.CrossRefGoogle Scholar
Healy, R. W. and Mills, P. C. (1991). Variability of an unsaturated sand unit underlying a radioactive-waste trench. Soil Sci. Soc. Amer. J., 55, 899–907.CrossRefGoogle Scholar
Healy, R. W., Rice, C. A., Bartos, T. T. and McKinley, M. P. (2008). Infiltration from an impoundment for coal-bed natural gas, Powder River Basin, Wyoming: evolution of water and sediment chemistry. Water Resour. Res., 44, W06424, doi:10.1029/2007WR006396.CrossRefGoogle Scholar
Healy, R. W. and Ronan, A. D. (1996). Documentation of computer program VS2DH for simulation of energy transport in variably saturated porous media. US Geological Survey Water-Resources Investigations Report 96–4230.
Healy, R. W., Winter, T. C., LaBaugh, J. W. and Franke, O. L. (2007). Water budgets: foundations for effective water-resources and environmental management. US Geological Survey Circular 1308.
Heath, R. C. (1983). Basic ground-water hydrology. US Geological Survey Water-Supply Paper 2220.
Heath, R. C. (1984). Ground-water regions of the United States. US Geological Survey Water-Supply Paper 2242.
Heaton, T. H. E. and Vogel., J. C. (1981). Excess air in groundwater. J. Hydrol., 50, 201–216.CrossRefGoogle Scholar
Heilweil, V. M. and Freethey, G. W. (1992). Simulation of ground-water flow and water-level declines that could be caused by proposed withdrawals, Navajo Sandstone, southwestern Utah and northwestern Arizona. US Geological Survey Water-Resources Investigations Report 90–4105.
Heilweil, V. M., Solomon, D. K. and Gardner, P. M. (2006). Borehole environmental tracers for evaluating net infiltration and recharge through desert bedrock. Vadose Zone J., 5, 98–120.CrossRefGoogle Scholar
Heilweil, V. M., Solomon, D. K. and Gardner, P. M. (2007). Infiltration and recharge at Sand Hollow, an upland bedrock basin in southwestern Utah. In Ground-water Recharge in the Arid and Semiarid Southwestern United States, ed. Stonestrom, D. A., Constantz, J., Ferre, T. P. A., and Leake, S. A.. US Geological Survey Professional Paper 1703, Chapter I, 221–252.
Helsel, D. R. and Hirsch, R. M. (2002). Statistical Methods in Water Resources. US Geological Survey Techniques of Water Resources Investigations, Book 4, Chapter A3.
Hendricks Franssen, H. J., Brunner, P., Kgothlang, L. and Kinzelbach, W. (2006). Inclusion of remote sensing information to improve groundwater flow modelling in the Chobe region (Botswana). In Calibration and Reliability in Groundwater Modeling: From Uncertainty to Decision Making. IAHS-AISH Publication 304, ed. Bierkens, M. F. P., Gehrels, J. C. and K. Kovar: International Association of Hydrological Sciences, 31–37.Google Scholar
Hendry, M. J. (1983). Groundwater recharge through heavy-textured soil. J. Hydrol., 63, 201–209.CrossRefGoogle Scholar
Heppner, C. S. and Nimmo, J. R. (2005). A computer program for predicting recharge with a master recession curve. US Geological Survey Scientific Investigations Report 2005–5172.
Heppner, C. S., Nimmo, J. R., Folmar, G. J., Gburek, W. J. and Risser, D. W. (2007). Multiple-methods investigation of recharge at a humid-region fractured rock site, Pennsylvania, USA. Hydrogeol. J., 15, 915–927.CrossRefGoogle Scholar
Herczeg, A. L. and Edmunds, W. M. (2000). Inorganic ions as tracers. In Environmental Tracers in Subsurface Hydrology, ed. Cook, P. G. and Herczeg, A. L.. Boston: Kluwer Academic Publishers, 31–77.Google Scholar
Hevesi, J. A., Flint, A. L. and Istok, J. D. (1992a). Precipitation estimation in mountainous terrain using multivariate geostatistics. Part II: Isohyetal maps. J. Appl. Met., 31, 677–688.2.0.CO;2>CrossRefGoogle Scholar
Hevesi, J. A., Istok, J. D. and Flint, A. L. (1992b). Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I: Structural analysis. J. Appl. Met., 31, 661–676.2.0.CO;2>CrossRefGoogle Scholar
Hignett, C. and Evett, S. R. (2002). Neutron thermalization. In Methods of Soil Analysis. Part 4: Physical Methods, ed. Dane, J. H. and Topp, G. C.. Madison, Wisconsin: Soil Science Society of America.Google Scholar
Hill, M. C. (1992). A computer program (MODFLOWP) for estimating parameters of a transient, three-dimensional ground-water flow model using nonlinear regression. US Geological Survey Open-File Report 91–484.
Hill, M. C. (1998). Methods and guidelines for effective model calibration. US Geological Survey Water-Resources Investigations Report 98–4005.
Hill, M. C. and Tiedeman, C. R. (2007). Effective Groundwater Model Calibration. Hoboken, NJ: John Wiley and Sons, Inc.CrossRefGoogle Scholar
Hillel, D. (1980). Fundamentals of Soil Physics. New York: Academic Press.Google Scholar
Ho, D. T. and Schlosser, P. (2000). Atmospheric SF6 near a large urban area. Geophys. Res. Lett., 27, 1679–1682.CrossRefGoogle Scholar
Hodnett, M. G. and Bell, J. P. (1990). Processes of water movement through a chalk Coombe deposit in southeast England. Hydrol. Proc., 4, 361–372.CrossRefGoogle Scholar
Hoffmann, J. P., Blasch, K. W. and Ferre, T. P. (2003). Combined use of heat and soil-water content to determine stream/ground-water exchanges, Rillito Creek, Tucson, Arizona. In Heat as a Tool for Studying the Movement of Ground Water Near Streams, ed. Stonestrom, D. A. and Constantz, J.. US Geological Survey Circular 1260, 48–56.
Hoffmann, J. P., Blasch, K. W., Pool, D. R., Bailey, M. A. and Callegary, J. B. (2007). Estimated infiltration, percolation, and recharge rates at the Rillito Creek focused recharge investigation site, Pima County, Arizona. In Ground-water Recharge in the Arid and Semiarid Southwestern United States, ed. Stonestrom, D. A., Constantz, J., Ferre, T. P. A. and Leake, S. A.. US Geological Survey Professional Paper 1703, Chapter H, 185–220.
Hogan, J. F., Phillips, F. M. and Scanlon, B. R. (eds.) (2004). Groundwater Recharge in a Desert Environment. The Southwestern United States. Washington, DC: American Geophysical Union.CrossRef
Holder, M., Brown, K. W., Thomas, J. C., Zabcik, D. and Murray, H. E. (1991). Capillary-wick unsaturated zone soil pore water sampler. Soil Sci. Soc. Amer. J., 55, 1195–1202.CrossRefGoogle Scholar
Holser, W. T. (1979). Mineralogy of evaporites. InMarine Minerals, ed. Burns, R. G.. Mineralogical Society of America, 6, 211–294.Google Scholar
Holtschlag, D. J. (1997). A generalized estimate of ground-water-recharge rates in the lower peninsula of Michigan. US Geological Survey Water-Supply Paper 2437.
Hooper, R. P. and Shoemaker, C. A. (1986). Comparison of chemical and isotopic hydrograph separation. Water Resour. Res., 22, 1444–1454.CrossRefGoogle Scholar
Hoos, A. B. (1990). Recharge rates and aquifer hydraulic characteristics for selected drainage basins in middle and east Tennessee. US Geological Survey Water-Resources Investigations Report 90–4015.
Hsieh, P. A., Wingle, W. and Healy, R. W. (1999). VS2DI: a graphical software package for simulating fluid flow and solute or energy transport in variably saturated porous media. US Geological Survey Water-Resources Investigations Report 99–4130.
Huang, S., Pollack, H. N. and Shen, P. Y. (2000). Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature, 403, 756–758.CrossRefGoogle ScholarPubMed
Hubbell, J. M. and Sisson, J. B. (1998). Advanced tensiometer for shallow or deep soil water potential. Soil Sci., 163, 271–277.CrossRefGoogle Scholar
Hughes, A. G., Mansour, M. M. and Robins, N. S. (2008). Evaluation of distributed recharge in an upland semi-arid karst system: the West Bank Mountain Aquifer, Middle East. Hydrogeol. J., 16, 845–854.CrossRefGoogle Scholar
Huisman, J. A., Snepvangers, J. J., Bouten, W. and Heuvelink, G. B. (2003). Monitoring temporal development of spatial soil water content variation: comparison of ground penetrating radar and time domain reflectometry. Vadose Zone J., 2, 519–529.CrossRefGoogle Scholar
Hunt, R. J., Anderson, M. P. and Kelson, V. A. (1998). Improving a complex finite-difference ground water flow model through the use of an analytic element screening model. Ground Water, 36, 1011–1017.CrossRefGoogle Scholar
Hunt, R. J., Doherty, J. and Tonkin, M. J. (2007). Are models too simple? Arguments for increased parameterization. Ground Water, 45, 254–262.CrossRefGoogle ScholarPubMed
Hunt, R. J., Krabbenhoft, D. P. and Anderson, M. P. (1996). Groundwater inflow measurements in wetland systems. Water Resour. Res., 32, 495–507.CrossRefGoogle Scholar
Hunt, R. J. and Steuer, J. J. (2001). Evaluating the effects of urbanization and land-use planning using ground-water and surface-water models. US Geological Survey Fact Sheet 102–01.
Hunt, R. J., Steuer, J. J., Mansor, M. T. C. and Bullen, T. D. (2001). Delineating a recharge area for a spring using numerical modeling, Monte Carlo techniques, and geochemical investigation. Ground Water, 39, 702–712.CrossRefGoogle ScholarPubMed
Hurr, T. R. and Litke, D. W. (1989). Estimating pumping time and ground-water withdrawals using energy-consumption data. US Geological Survey Water-Resources Investigations Report 89–4107.
Hutson, J. L. and Wagenet, R. J. (1992). LEACHM: Leaching estimation and chemistry model: a process-based model of water and solute movement, transformations, plant uptake and chemical reactions in the unsaturated zone continuum. Version 3. Ithaca, NY. Water Resources Institute, Cornell University.
Imes, J. L. and Emmett, L. F. (1994). Geohydrology of the Ozark Plateaus aquifer system in parts of Missouri, Arkansas, Oklahoma, and Kansas. US Geological Survey Professional Paper 1414-D.
Ingebritsen, S. E., Sanford, W. E. and Neuzil, C. E. (2006). Groundwater in Geologic Processes, 2nd edn. New York: Cambridge University Press.Google Scholar
Ingraham, N. L. and Shadel, C. (1992). A comparison of the toluene distillation and vacuum/heat methods for extracting soil water for stable isotopic analysis. J. Hydrol., 140, 371–387.CrossRefGoogle Scholar
Institute of Hydrology (1980). Low flow studies: Research Report 1. Institute of Hydrology. Wallingford, UK.
Izuka, S. K., Oki, D. S. and Chen, C. -H. (2005). Effects of irrigation and rainfall reduction on ground-­water recharge in the Lihue Basin, Kauai, Hawaii. US Geological Survey Scientific Investigations Report 2005–5146.
Jamison, V. C. and Kroth, E. M. (1958). Available moisture storage capacity in relation to textural composition and organic matter content of several Missouri soils. Soil Sci. Soc. Amer. Proc., 22, 189–192.CrossRefGoogle Scholar
Jan, C. D., Chen, T. H. and Lo, W. C. (2007). Effect of rainfall intensity and distribution on groundwater level fluctuations. J. Hydrol., 332, 348–360.CrossRefGoogle Scholar
Jarvis, N. (2002). The MACRO model (Version 4.3) technical description. Uppsala. Department of Soil Sciences, Swedish University of Agricultural Sciences.
Jensen, M. E., Burman, R. D. and Allen, R. G. (1990). Evapotranspiration and Irrigation Water Requirements. New York: American Society of Civil Engineers.Google Scholar
Jensen, M. E. and Haise, H. R. (1963). Estimating evapotranspiration from solar radiation. J. Irrig. Drain. Div. Amer. Soc. Civ. Engin., 89, 15–41.Google Scholar
Johnson, A. I. (1967). Specific yield: compilation of specific yields for various materials. US Geological Survey Water-Supply Paper 1662-D.
Johnson, A. I., Prill, R. C. and Morris, D. A. (1963). Specific yield: column drainage and centrifuge moisture content. US Geological Survey Water-Supply Paper 1662-A.
Johnson, J. B. and Schaefer, G. L. (2002). The influence of thermal, hydrologic, and snow deformation mechanisms on snow water equivalent pressure sensor accuracy. Hydrol. Proc., 16, 3529–3542.CrossRefGoogle Scholar
Jolly, I. D., Cook, P. G., Allison, G. B. and Hughes, M. W. (1989). Simultaneous water and solute movement through an unsaturated soil following an increase in recharge. J. Hydrol., 111, 391–396.CrossRefGoogle Scholar
Jones, J. P., Sudicky, E. A., Brookfield, A. E. and Park, Y. J. (2006). An assessment of the tracer-based approach to quantifying groundwater contributions to streamflow. Water Resour. Res., 42, W02407, doi:10.1029/2005WR004130.CrossRefGoogle Scholar
Journel, A. G. and Huijbregts, C. J. (1978). Mining Geostatistics. New York: Academic Press.Google Scholar
Juckem, P. F. and Hunt, R. J. (2007). Simulation of the shallow ground-water flow system near Grindstone Creek and the community of New Post, Sawyer County, Wisconsin. US Geological Survey Scientific Investigations Report 2007–5014.
Jury, W. A. (1982). Simulation of solute transport using a transfer function model. Water Resour. Res., 18, 363–368.CrossRefGoogle Scholar
Jyrkama, M. I., Sykes, J. F. and Normani, S. D. (2002). Recharge estimation for transient ground water modeling. Ground Water, 40, 638–648.CrossRefGoogle ScholarPubMed
Kachanoski, G., Pringle, E. and Ward, A. (1992). Field measurement of solute travel times using time domain reflectometry. Soil Sci. Soc. Amer. J., 56, 47–52.CrossRefGoogle Scholar
Kalin, R. M. (2000). Radiocarbon dating of groundwater systems. In Environmental Tracers in Subsurface Hydrology, ed. Cook, P. G. and Herczeg, A. L.. Boston: Kluwer Academic Publishers, 111–144.Google Scholar
Kalnay, E., Kanamitsu, M. and Baker, W. E. (1990). Global numerical weather prediction at the National Meteorological Center. Bull. Amer. Met. Soc., 71, 1410–1428.2.0.CO;2>CrossRefGoogle Scholar
Karl, T. R. and Knight, R. W. (1985). Atlas of Monthly Palmer Moisture Anomaly Indices (1931–1983) for the Contiguous United States. Ashville, NC: National Climatic Data Center.Google Scholar
Katz, B. G., Coplen, T. B., Bullen, T. D. and Hal Davis, J. (1997). Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst. Ground Water, 35, 1014–1028.CrossRefGoogle Scholar
Kaufman, S. and Libby, W. F. (1954). The natural distribution of tritium. Phys. Rev., 93, 1337–1344.CrossRefGoogle Scholar
Keery, J., Binley, A., Crook, N. and Smith, J. W. N. (2007). Temporal and spatial variability of groundwater-surface water fluxes: development and application of an analytical method using temperature time series. J. Hydrol., 336, 1–16.CrossRefGoogle Scholar
Keese, K. E., Scanlon, B. R. and Reedy, R. C. (2005). Assessing controls on diffuse groundwater recharge using unsaturated flow modeling. Water Resour. Res., 41, 1–12.CrossRefGoogle Scholar
Kendall, C. and McDonnell, J. J. (eds.) (1998). Isotope Tracers in Catchment Hydrology. Amsterdam: Elsevier Science Publishing.
Kengni, L., Vachaud, G., Thony, J. L. et al. (1994). Field measurements of water and nitrogen losses under irrigated maize. J. Hydrol., 162, 23–46.CrossRefGoogle Scholar
Kennedy, C. D., Genereux, D. P., Mitasova, H., Corbett, D. R. and Leahy, S. (2008). Effect of sampling density and design on estimation of streambed attributes. J. Hydrol., 355, 164–180.CrossRefGoogle Scholar
Kennedy, E. J. (1984). Discharge ratings at gaging stations. US Geological Survey Techniques of Water-Resources Investigations 03-A10.
Kernodle, J. M., McAda, D. P. and Thorn, C. R. (1995). Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, ­1901–1994, with projections to 2020. US Geological Survey Water-Resources Investigations Report 94–4251.
Ketchum, J. N., Donovan, J. J. and Avery, W. H. (2000). Recharge characteristics of a phreatic aquifer as determined by storage accumulation. Hydrogeol. J., 8, 579–593.CrossRefGoogle Scholar
Kilpatrick, F. A. and Cobb, E. D. (1985). Measurement of discharge using tracers. US Geological Survey Techniques of Water-Resource Investigation, Chapter 03-A16.
Kimball, B. A., Broshears, R. E., Bencala, K. E. and McKnight, D. M. (1994). Coupling of hydrologic transport and chemical reactions in a stream affected by acid mine drainage. Environ. Sci. Technol., 28, 2065–2073.CrossRefGoogle Scholar
Kimball, B. A., Runkel, R. L., Cleasby, T. E. and Nimick, D. A. (2004). Quantification of metal loading by tracer injection and synoptic sampling, 1997–98. In Integrated Investigations of Environmental Effects of Historical Mining in the Basin and Boulder Mining Districts, Boulder River Watershed, Jefferson County, Montana, ed. Nimick, D. A., Church, S. E. and Finger, S. E.. US Geological Survey Professional Paper 1652, 191–262.
Kimball, B. A., Walton-Day, K. and Runkel, R. L. (2007). Quantification of metal loading by tracer injection and synoptic sampling, 1996–2000. US Geological Survey Professional Paper 1651-E9.
King, F. H. (1899). Principles and conditions of the movements of groundwater. US Geological Survey Nineteenth Annual Report, 86–91.
Kinzelbach, W., Aeschbach, W., Alberich, C. et al. (2002). A survey of methods for groundwater recharge in arid and semi-arid regions. UNEP/DEWA/RS.02.2. Nairobi, Kenya: United Nations Environment Programme.
Kipp, K. L. (1997). Guide to the revised heat and solute transport simulator, HST3D. US Geological Survey Water-Resources Investigations Report 97–4157.
Kitching, R. and Shearer, T. R. (1982). Construction and operation of a large undisturbed lysimeter to measure recharge to the Chalk aquifer, England. J. Hydrol., 58, 267–277.CrossRefGoogle Scholar
Knott, J. F. and Olimpio, J. C. (1986). Estimation of recharge rates to the sand and gravel aquifer using environmental tritium, Nantucket Island, Massachusetts. US Geological Survey Water Supply Paper 2297.
Kontis, A. L., Randall, A. D. and Mazzaferro, D. L. (2004). Regional hydrology and simulation of flow of stratified-drift aquifers in the glaciated northeastern United States. US Geological Survey Professional Paper 1415-C.
Krajewski, W. F., Anderson, M. C., Eichinger, W. E. et al. (2006). A remote sensing observatory for hydrologic sciences: a genesis for scaling to continental hydrology. Water Resour. Res., 42, W07301, doi:10.1029/2005WR004435.CrossRefGoogle Scholar
Krul, W. F. and Liefrinck, F. A. (1946). Recent Groundwater Investigations in the Netherlands: Monograph on the Progress of Research in Holland. New York: Elsevier.Google Scholar
Kung, K. J. S. (1990a). Influence of plant uptake on the performance of bromide tracer. Soil Sci. Soc. Am. J., 54, 975–979.CrossRefGoogle Scholar
Kung, K. J. S. (1990b). Preferential flow in a sandy vadose zone: 1. Field observation. Geoderma, 46, 51–58.CrossRefGoogle Scholar
Kung, K. J. S., Kladivko, E. J., Gish, T. J. et al. (2000). Quantifying preferential flow by breakthrough of sequentially applied tracers: silt loam soil. Soil Sci. Soc. Am. J., 64, 1296–1304.CrossRefGoogle Scholar
Kuniansky, E. L. (1989). Geohydrology and simulation of groundwater flow in the “400-foot,” “600-foot,” and adjacent aquifers, Baton Rouge area, Louisiana. Louisiana Department of Transportation and Development Technical Report 49.
Kwicklis, E. M. (1999). Analysis of percolation flux based on heat flow estimated in boreholes. In Hydrogeology of the Unsaturated Zone, North Ramp Area of the Exploratory Studies Facility, Yucca Mountain, Nevada, ed. Rousseau, J. P., Kwicklis, E. M. and Gillies, D. C.. US Geological Survey Water-Resources Investigations Report 98–4050, 184–208.
Kwicklis, E. M., Flint, A. L. and Healy, R. W. (1993). Estimation of unsaturated zone liquid water flux at borehole UZ#4, UZ#5, UZ#7, and UZ#13, Yucca Mountain, Nevada, from saturation and water potential profiles. In Proceedings Topical Meeting on Site Characterization and Model Validation, Focus 93. LaGrange Park, Illinois: American Nuclear Society, 39–57.Google Scholar
LaBaugh, J. W. and Rosenberry, D. O. (2008). Introduction and characteristics of flow. In Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water, ed. Rosenberry, D. I. and Labaugh, J. W.. US Geological Survey Techniques and Methods 4-D2, 1–38.
LaBaugh, J. W., Rosenberry, D. O. and Winter, T. C. (1995). Groundwater contribution to the water and chemical budgets of Williams Lake, Minnesota, 1980–1991. Can. J. Fish. Aquatic Sci., 52, 754–767.CrossRefGoogle Scholar
Laczniak, R. J., Flint, A. L., Moreo, M. T. et al. (2008). Ground-water budgets. In Water Resources of the Basin and Range Carbonate-rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah, ed. Welch, A. H., Bright, D. J. and Knochenmus, L. A.. US Geological Survey Scientific Investigations Report 2007–5261.
Laenen, A. and Risley, J. C. (1997). Precipitation-runoff and streamflow-routing models for the Willamette River Basin, Oregon. US Geological Survey Water-Resources Investigations Report 05–4284.
Langsholt, E. (1992). A water balance study in lateritic terrain. Hydrol. Proc., 6, 11–27.CrossRefGoogle Scholar
Lapham, W. W. (1989). Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity. US Geological Survey Water-Supply Paper 2337.
Leake, S. A. (1984). A method for estimating ground-water return flow to the Colorado River in the Parker area, Arizona and California. US Geological Survey Water-Resources Investigations Report 84–4299.
Leavesley, G. H., Lichty, R. W., Troutman, B. M. and Saindon, L. G. (1983). Precipitation-runoff modeling system: user’s manual. US Geological Survey Water-Resources Investigations Report 83–4238.
Leavesley, G. H., Markstrom, S. L., Brewer, M. S. and Viger, R. J. (1996). The Modular Modeling System (MMS): the physical process modeling component of a database-centered decision support system for water and power management. Water, Air, and Soil Pollution, 90, 303–311.CrossRefGoogle Scholar
Leblanc, M. J., Favreau, G., Massuel, S. et al. (2008). Land clearance and hydrological change in the Sahel: SW Niger. Global and Planetary Change, 61, 135–150.CrossRefGoogle Scholar
Leduc, C., Favreau, G. and Schroeter, P. (2001). Long-term rise in a Sahelian water-table: the Continental Terminal in South-West Niger. J. Hydrol., 243, 43–54.CrossRefGoogle Scholar
Lee, C. H., Chen, W. P. and Lee, R. H. (2006). Estimation of groundwater recharge using water balance coupled with base-flow-record estimation and stable-base-flow analysis. Environ. Geol., 51, 73–82.CrossRefGoogle Scholar
Lee, D. R. (1977). A device for measuring seepage flux in lakes and estuaries. Limnol. Oceanogr., 22, 140–147.CrossRefGoogle Scholar
Lee, D. R. and Cherry, J. A. (1978). A field exercise on ground-water flow using seepage meters and mini-piezometers. J. Geol. Educ., 27, 6–20.CrossRefGoogle Scholar
Lee, E. S. and Krothe, N. C. (2001). A four-component mixing model for water in a karst terrain in south-central Indiana, USA: using solute concentration and stable isotopes as tracers. Chem. Geol., 179, 129–143.CrossRefGoogle Scholar
Lee, J. Y., Yi, M. J. and Hwang, D. (2005). Dependency of hydrologic responses and recharge estimates on water-level monitoring locations within a small catchment. Geosciences J., 9, 277–286.CrossRefGoogle Scholar
Lee, X., Massman, W. and Law, B. (eds.) (2004). Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis. New York: Springer.Google Scholar
Lehmann, B. E., Davis, S. N. and Fabryka-Martin, J. T. (1993). Atmospheric and subsurface sources of stable and radioactive nuclides used for groundwater dating. Water Resour. Res., 29, 2027–2040.CrossRefGoogle Scholar
Lerner, D. N. (1986). Leaking pipes recharge groundwater. Ground Water, 24, 654–662.CrossRefGoogle Scholar
Lerner, D. N. (2002). Identifying and quantifying urban recharge: a review. Hydrogeol. J., 10, 143–152.CrossRefGoogle Scholar
Lerner, D. N., Isaar, A. S. and Simmers, I. (eds.) (1990). Groundwater Recharge: A Guide to Understanding and Estimating Natural Recharge, International Contributions to Hydrogeology Vol. 8. Hanover: Verlag Heinz Heise.
Lim, K. J., Engel, B. A., Tang, A. et al. (2005). Automated WEB GIS based hydrograph analysis tool, WHAT. J. Amer. Water Resour. Assoc., 41, 10.CrossRefGoogle Scholar
Lin, R. F. and Wei, K. Q. (2006). Tritium profiles of pore water in the Chinese loess unsaturated zone: implications for estimation of groundwater recharge. J. Hydrol., 328, 192–199.CrossRefGoogle Scholar
Lin, Y. F. and Anderson, M. P. (2003). A digital procedure for ground water recharge and discharge pattern recognition and rate estimation. Ground Water, 41, 306–315.CrossRefGoogle ScholarPubMed
Lin, Y. F., Wang, J. and Valocchi, A. J. (2009). PRO-GRADE: GIS toolkits for ground water recharge and discharge estimation. Ground Water, 47, 122–128.CrossRefGoogle ScholarPubMed
Linsley, R. K., Kohler, M. A. and Paulhus, J. L. H. (1982). Hydrology for Engineers, 3rd edn. New York: McGraw-Hill.Google Scholar
Liu, B., Phillips, F., Hoines, S., Campbell, A. R. and Sharma, P. (1995). Water movement in desert soil traced by hydrogen and oxygen isotopes, chloride, and chlorine-36, southern Arizona. J. Hydrol., 168, 91–110.CrossRefGoogle Scholar
Liu, J., Chen, J. M. and Cihlar, J. (2003). Mapping evapotranspiration based on remote sensing: an application to Canada’s landmass. Water Resour. Res., 39, SWC41-SWC415.CrossRefGoogle Scholar
Loeltz, O. J., and Leake, S. A. (1983). A method for estimating ground-water return flow to the lower Colorado River in the Yuma area, Arizona and California. US Geological Survey Water-Resources Investigations Report 83–4220.
Loheide, S. P. Jr., Butler, J. J. Jr. and Gorelick, S. M. (2005). Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: a saturated-unsaturated flow assessment. Water Resour. Res., 41, 1–14.CrossRefGoogle Scholar
Loheide, S. P. and Gorelick, S. M. (2006). Quantifying stream-aquifer interactions through the analysis of remotely sensed thermographic profiles and in situ temperature histories. Environ. Sci. Technol., 40, 3336–3341.CrossRefGoogle ScholarPubMed
Lorenz, D. L. and Delin, G. N. (2007). A regression model to estimate regional ground water recharge. Ground Water, 45, 196–208.CrossRefGoogle ScholarPubMed
Louie, M. J., Shelby, P. M., Smesrud, J. S. et al. (2000). Field evaluation of passive capillary samplers for estimating groundwater recharge. Water Resour. Res., 36, 2407–2416.CrossRefGoogle Scholar
Lowry, C. S., Walker, J. F., Hunt, R. J. and Anderson, M. P. (2007). Identifying spatial variability of groundwater discharge in a wetland stream using a distributed temperature sensor. Water Resour. Res., 43, W10408, doi:10.1029/2007WR006145.CrossRefGoogle Scholar
Lu, N. and Ge, S. (1996). Effect of horizontal heat and fluid flow on the vertical temperature distribution in a semiconfining layer. Water Resour. Res., 32, 1449–1453.CrossRefGoogle Scholar
Lucas, L. L. and Unterweger, M. P. (2000). Comprehensive review and critical evaluation of the half-life of tritium. J. Res. Nat. Inst. Stand. Tech., 105, 541–549.CrossRefGoogle ScholarPubMed
Luckey, R. R. and Becker, M. F. (1999). Hydrogeology, water use, and simulation of flow in the High Plains aquifer in southwestern Oklahoma, southeastern Colorado, southwestern Kansas, northeastern New Mexico, and northwestern Texas. US Geological Survey Water-Resources Report 99–4104.
Luckey, R. R., Gutentag, E. D., Heimes, F. J. and Weeks, J. B. (1986). Digital simulation of ground-water flow in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. US Geological Survey Professional Paper 1400-D.
Maidment, D. R. (ed.) (1993). Handbook in Hydrology. New York: McGraw-Hill.
Makkeasorn, A., Chang, N. B., Beaman, M., Wyatt, C. and Slater, C. (2006). Soil moisture estimation in a semiarid watershed using RADARSAT-1 satellite imagery and genetic programming. Water Resour. Res., 42, W09401, doi:10.1029/2005WR004033.CrossRefGoogle Scholar
Mallants, D., Vanclooster, M., Toride, N. et al. (1996). Comparison of three methods to calibrate TDR for monitoring solute movement in undisturbed soil. Soil Sci. Soc. Amer. J., 60, 747–754.CrossRefGoogle Scholar
Maloszewski, P. and Zuber, A. (1982). Determining the turnover time of groundwater systems with the aid of environmental tracers. 1. Models and their applicability. J. Hydrol., 57, 207–231.CrossRefGoogle Scholar
Mandle, R. J. and Kontis, A. L. (1992). Simulation of regional ground-water flow in the Cambrian-Ordovician aquifer system in the northern Midwest, United States. US Geological Survey Professional Paper 1405-C.
Manning, A. H. and Solomon, D. K. (2004). Constraining mountain-block recharge to the eastern Salt lake valley, Utah with dissolved noble gas and tritium data. In Groundwater Recharge in a Desert Environment, the Southwestern United States, ed. Hogan, J. F., Phillips, F. M. and Scanlon, B. R.. Washington, DC: American Geophysical Union, 139–148.Google Scholar
Markstrom, S. L., Niswonger, R. G., Regan, R. S., Prudic, D. E. and Barlow, P. M. (2008). GSFLOW: coupled ground-water and surface-water flow model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005). US Geological Survey Techniques and Methods Report 6-D1.
Masarik, K. C., Norman, J. M., Brye, K. R. and Baker, J. M. (2004). Improvements to measuring water flux in the vadose zone. J. Environ. Qual., 33, 1152–1158.CrossRefGoogle ScholarPubMed
Mau, D. P. and Winter, T. C. (1997). Estimating ground-water recharge from streamflow hydrographs for a small mountain watershed in a temperate humid climate, New Hampshire, United States. Ground Water, 35, 291–304.CrossRefGoogle Scholar
Maxey, G. B. and Eakin, T. E. (1949). Ground water in White River Valley, White Pine, Nye, and Lincoln Counties, Nevada. Nevada State Engineer Water Resources Bulletin 8.
McCabe, G. J. and Markstrom, S. L. (2007). A monthly water-balance model driven by a graphical user interface, US Geological Survey Open-File Report 2007–1088.
McCarthy, R. L., Bower, F. A. and Jesson, J. P. (1977). Fluorocarbon-ozone theory: 1. Production and release – world production and release of CCl3F and CCl2F2 (Fluorocarbons 11 and 12) through 1975. Atmos. Environ., 11, 491–497.CrossRefGoogle Scholar
McConville, C., Kalin, R. M., Johnston, H. and McNeill, G. W. (2001). Evaluation of recharge in a small temperate catchment using natural and applied 18O profiles in the unsaturated zone. Ground Water, 39, 616–624.CrossRefGoogle Scholar
McDonald, M. G. and Harbaugh, A. W. (1988). A modular three-dimensional finite-difference ground-water flow model. US Geological Survey Techniques of Water-Resources Investigations, Volume 6, Chapter A1.
McDonnell, J. J. (1990). A rationale for old water discharge through macropores in a steep, humid catchment. Water Resour. Res., 26, 2821–2832.CrossRefGoogle Scholar
McGuire, V. L., Johnson, M. R., Schieffer, R. L. et al. (2003). Water in storage and approaches to ground-water management, High Plains aquifer, 2000. US Geological Survey Circular 1243.
McMahon, P. B., Böhlke, J. K. and Christenson, S. C. (2004). Geochemistry, radiocarbon ages, and paleorecharge conditions along a transect in the central High Plains aquifer, southwestern Kansas, USA. Applied Geochem., 19, 1655–1686.CrossRefGoogle Scholar
McMahon, P. B., Böhlke, J. K., Kauffman, L. J. et al. (2008). Source and transport controls on the movement of nitrate to public supply wells in selected principal aquifers of the United States. Water Resour. Res., 44, W04401, doi:10.1029/2007WR006252.CrossRefGoogle Scholar
McMahon, P. B., Dennehy, K. F., Bruce, B. W. et al. (2006). Storage and transit time of chemicals in thick unsaturated zones under rangeland and irrigated cropland, High Plains, United States. Water Resour. Res., 42, W03413.CrossRefGoogle Scholar
McMahon, P. B., Dennehy, K. F., Michel, R. L. et al. (2003). Water movement through thick unsaturated zones overlying the central High Plains aquifer, southwestern Kansas, 2000–2001. US Geological Survey Water-Resources Investigations Report 2003–4171.
Meinzer, O. E. (1923). The occurrence of ground water in the United States with a discussion of principles. US Geological Survey Water-Supply Paper 489.
Meinzer, O. E. and Stearns, N. D. (1929). A study of groundwater in the Pomperaug Basin, Conn, with special reference to intake and discharge. US Geological Survey Water-Supply Paper 597-B.
Mertes, L. A. K. (2002). Remote sensing of riverine landscapes. Freshwater Biology, 47, 799–816.CrossRefGoogle Scholar
Merz, Z. and Bloschl, G. (2004). Regionalisation of catchment model parameters. J. Hydrol., 95–123.CrossRefGoogle Scholar
Meyboom, P. (1961). Estimating ground-water recharge from stream hydrographs. J. Geophys. Res., 66, 1203–1214.CrossRefGoogle Scholar
Meyboom, P. (1967). Groundwater studies in the Assiniboine River Drainage Basin. Part II: hydrologic characteristics of phreatophytic vegetation in south-central Saskatchewan. Geological Survey of Canada Bulletin 139.
Meyer, S. C. (2005). Analysis of base flow trends in urban streams, Northeastern Illinois, USA. Hydrogeol. J., 13, 871–885.CrossRefGoogle Scholar
Meyer, W. R. (1962). Use of a neutron moisture probe to determine the storage coefficient of an unconfined aquifer. US Geological Survey Professional Paper 450-E.
Micovic, Z. and Quick, M. C. (1999). A rainfall and snowmelt runoff modeling approach to flow estimation at ungauged sites in British Columbia. J. Hydrol., 226, 101–120.CrossRefGoogle Scholar
Minasny, B. and McBratney, A. B. (2007). Estimating the water retention shape parameter from sand and clay content. Soil Sci. Soc. Amer. J., 71, 1105–1110.CrossRefGoogle Scholar
Minasny, B., McBratney, A. B. and Bristow, K. L. (1999). Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma, 93, 225–253.CrossRefGoogle Scholar
Minor, T. B., Russell, C. E. and Mizell, S. A. (2007). Development of a GIS-based model for extrapolating mesoscale groundwater recharge estimates using integrated geospatial data sets. Hydrogeol. J., 15, 183–195.CrossRefGoogle Scholar
Modica, E., Buxton, H. T. and Plummer, L. N. (1998). Evaluating the source and residence times of groundwater seepage to streams, New Jersey Coastal Plain. Water Resour. Res., 34, 2797–2810.CrossRefGoogle Scholar
Modica, E., Reilly, T. E. and Pollock, D. W. (1997). Patterns and age distribution of ground-water flow to streams. Ground Water, 35, 523–537.CrossRefGoogle Scholar
Moench, A. F. (1994). Specific yield as determined by type-curve analysis of aquifer-test data. Ground Water, 32, 949–957.CrossRefGoogle Scholar
Moench, A. F. (1995). Combining the Neuman and Boulton models for flow to a well in an unconfined aquifer. Ground Water, 33, 378–384.CrossRefGoogle Scholar
Moench, A. F. (1996). Flow to a well in a water-table aquifer: an improved Laplace transform solution. Ground Water, 34, 593–604.CrossRefGoogle Scholar
Moench, A. F. (2003). Estimation of hectare-scale soil-moisture characteristics from aquifer-test data. J. Hydrol., 281, 82–95.CrossRefGoogle Scholar
Moench, A. F. and Barlow, P. M. (2000). Aquifer response to stream-stage and recharge variations: I. Analytical step-response functions. J. Hydrol., 230, 192–210.CrossRefGoogle Scholar
Molini, A., Lanza, L. G. and La Barbera, P. (2005). Improving the accuracy of tipping-bucket rain records using disaggregation techniques. Atmos. Res., 77, 203–217.CrossRefGoogle Scholar
Monteith, J. L. (1963). Gas exchange in plant communities. In Environmental Control of Plant Growth, ed. Evans, L. T.. New York: Academic Press, 95–112.Google Scholar
Moore, G. K. (1992). Hydrograph analysis in a fractured rock terrane. Ground Water, 30, 390–395.CrossRefGoogle Scholar
Morel-Seytoux, H. J. (1984). From excess infiltration to aquifer recharge: a derivation based on the theory of flow of water in unsaturated soils (unit hydrograph). Water Resour. Res., 20, 1230–1240.CrossRefGoogle Scholar
Moreo, M. T., Laczniak, R. J. and Stannard, D. I. (2007). Evapotranspiration rate measurements of vegetation typical of ground-water discharge areas in the Basin and Range carbonate-rock aquifer system, White Pine County, Nevada, and adjacent areas in Nevada and Utah, September 2005–August 2006. US Geological Survey Scientific Investigations Report 2007–5078.
Morgan, C. P. and Stolt, M. H. (2004). A comparison of several approaches to monitor water-table fluctuations. Soil Sci. Soc. Amer. J., 68, 562–566.CrossRefGoogle Scholar
Morton, F. I. (1978). Estimating evapotranspiration from potential evaporation: practicality of an iconoclastic approach. J. Hydrol., 38, 1–32.CrossRefGoogle Scholar
Moutsopoulos, K. N., Gemitzi, A. and Tsihrintzis, V. A. (2008). Delineation of groundwater protection zones by the backward particle tracking method: theoretical background and GIS-based stochastic analysis. Environ. Geol., 54, 1081–1090.CrossRefGoogle Scholar
Moysey, S., Davis, S. N., Zreda, M. and Cecil, L. D. (2003). The distribution of meteoric Cl-36/Cl in the United States: a comparison of models. Hydrogeol. J., 11, 615–627.CrossRefGoogle Scholar
Murdoch, L. C. and Kelly, S. E. (2003). Factors affecting the performance of conventional seepage meters. Water Resour. Res., 39, SWC21-SWC210.CrossRefGoogle Scholar
Nace, R. L. (1967). Are we running out of water? US Geological Survey Circular 536.
Nachabe, M. H. (2002). Analytical expressions for transient specific yield and shallow water table drainage. Water Resour. Res., 38, 1193, doi:10.1029/2001WR001071CrossRefGoogle Scholar
Nathan, R. J. and McMahon, T. A. (1990). Evaluation of automated techniques for base flow and recession analyses. Water Resour. Res., 26, 1465–1473.CrossRefGoogle Scholar
Nativ, R., Adar, E., Dahan, O. and Geyh, M. (1995). Water recharge and solute transport through the vadose zone of fractured chalk under desert conditions. Water Resour. Res., 31, 253–261.CrossRefGoogle Scholar
Nativ, R., Günay, G., Hötzl, H. et al. (1999). Separation of groundwater-flow components in a karstified aquifer using environmental tracers. Applied Geochem., 14, 1001–1014.CrossRefGoogle Scholar
Natural Resources Conservation Service (2004). Chapter 10: Estimation of direct runoff from storm rainfall, Part 630, National Engineering Handbook. Washington, DC: US Department of Agriculture.
Neff, B. P., Day, S. M., Piggott, A. R. and Fuller, L. M. (2005). Base flow in the Great Lakes Basin. US Geological Survey Scientific Investigations Report 2005–5217.
Nelms, D. L., Harlow, G. E. and Hayes, D. C. (1997). Base-flow characteristics of streams in the Valley and Ridge, the Blue Ridge, and the Piedmont physiographic provinces of Virginia. US Geological Survey Water-Supply Paper 2457.
Neukem, C., Hötzl, H. and Himmelsbach, T. (2008). Validation of vulnerability mapping methods by field investigations and numerical modelling. Hydrogeol. J., 16, 641–658.CrossRefGoogle Scholar
Neuman, S. P. (1972). Theory of flow in unconfined aquifers considering delayed response of the water table. Water Resour. Res., 8, 1031–1045.CrossRefGoogle Scholar
Neuman, S. P. and Witherspoon, P. A. (1972). Field determination of the hydraulic properties of leaky multiple aquifer systems. Water Resour. Res., 8, 1284–1298.CrossRefGoogle Scholar
Neuzil, C. E. (1986). Groundwater flow in low-permeability environments. Water Resour. Res., 22, 1163–1195.CrossRefGoogle Scholar
Nichols, D. S. and Verry, E. S. (2001). Stream flow and ground water recharge from small forested watersheds in north central Minnesota. J. Hydrol., 245, 89–103.CrossRefGoogle Scholar
Nichols, W. D. (2000). Regional ground-water evapotranspiration and ground-water budgets, Great Basin, Nevada. US Geological Survey Professional Paper 1628.
Nielsen, T. H., Well, R. and Myrold, D. D. (1997). Combination probe for nitrogen-15 soil labeling and sampling of soil atmosphere to measure subsurface denitrification activity. Soil Sci. Soc. Amer. J., 61, 802–811.CrossRefGoogle Scholar
Nimmo, J. R. and Perkins, K. S. (2008). Effect of soil disturbance on recharging fluxes: case study on the Snake River Plain, Idaho National Laboratory, USA. Hydrogeol. J., 16, 829–844.CrossRefGoogle Scholar
Nimmo, J. R., Perkins, K. S. and Lewis, A. M. (2002a). Steady-state centrifuge. In Methods of Soil Analysis. Part 4: Physical Methods, ed. Dane, J. H. and Topp, G. C.. Madison, Wisconsin: Soil Science Society of America.Google Scholar
Nimmo, J. R., Perkins, K. S., Rose, P. E. et al. (2002b). Kilometer-scale rapid transport of naphthalene sulfonate tracer in the unsaturated zone at the Idaho National Engineering and Environmental Laboratory. Vadose Zone J., 1, 89–101.CrossRefGoogle Scholar
Nimmo, J. R., Stonestrom, D. A. and Akstin, K. C. (1994). The feasibility of recharge rate determinations using the steady-state centrifuge method. Soil Sci. Soc. Amer. J., 58, 49–56.CrossRefGoogle Scholar
Niswonger, R. G. and Prudic, D. E. (2003). Modeling heat as a tracer to estimate streambed seepage and hydraulic conductivity. In Heat as a Tool for Studying the Movement of Ground Water Near Streams, ed. Stonestrom, D. A. and Constantz, J.. US Geological Survey Circular 1260, 81–89.
Niswonger, R. G., Prudic, D. E., Fogg, G. E., Stonestrom, D. A. and Buckland, E. M. (2008). Method for estimating spatially variable seepage loss and hydraulic conductivity in intermittent and ephemeral streams. Water Resour. Res., 44, W05418, doi:10.1029/2007WR006626.CrossRefGoogle Scholar
Niswonger, R. G., Prudic, D. E. and Regan, R. S. (2006). Documentation of the unsaturated-zone flow (UZF1) package for modeling unsaturated flow between the land surface and the water table with MODFLOW-2005. US Geological Survey Techniques and Methods 6-A19.
Nœtinger, B., Artus, V. and Zargar, G. (2005). The future of stochastic and upscaling methods in hydrogeology. Hydrogeol. J., 13, 184–201.CrossRefGoogle Scholar
Noilhan, J. and Planton, S. (1989). A simple parameterization of land surface processes for meteorological models. Monthly Weather Rev., 117, 536–549.2.0.CO;2>CrossRefGoogle Scholar
Nolan, B. T., Healy, R. W., Taber, P. E. et al. (2007). Factors influencing ground-water recharge in the eastern United States. J. Hydrol., 332, 187–205.CrossRefGoogle Scholar
Norin, M., Hulten, A. -M. and Svensson, C. (1999). Groundwater studies conducted in Göteborg, Sweden. In Groundwater in the Urban Environment: Selected City Profiles, ed. Chilton, J.. Rotterdam: A. A. Balkema, 209–216.Google Scholar
Norman, J. M., Kustas, W. P. and Humes, K. S. (1995). Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. Forest Met., 77, 263–293.CrossRefGoogle Scholar
Normand, B., Recous, S., Vachaud, G., Kengni, L. and Garino, B. (1997). Nitrogen-15 tracers combined with tensio-neutronic method to estimate the nitrogen balance of irrigated maize. Soil Sci. Soc. Amer. J., 61, 1508–1518.CrossRefGoogle Scholar
Norris, A. E., Wolfsberg, K., Gifford, S. K., Bentley, H. W. and Elmore, D. (1987). Infiltration at Yucca Mountain, Nevada, traced by 36Cl. Nucl. Inst. Meth. Phys. Res., B29, 376–379.CrossRefGoogle Scholar
Nwankwor, G. I., Cherry, J. A. and Gillham, R. W. (1984). A comparative study of specific yield determinations for a shallow sand aquifer. Ground Water, 22, 764–772.CrossRefGoogle Scholar
Oberg, K. A., Morlock, S. E. and Caldwell, W. S. (2005). Quality-assurance plan for discharge measurements using acoustic Doppler current profilers. US Geological Survey Scientific Investigations Report 2005–5183.
Ockerman, D. J. (2002). Simulation of runoff and recharge and estimation of constituent loads in runoff: Edwards aquifer recharge zone (outcrop) and catchment area, Bexar County, Texas, 1997–2000. US Geological Survey Water-Resources Investigations Report 02–4241.
Ockerman, D. J. (2005). Simulation of streamflow and estimation of recharge to the Edwards aquifer in the Hondo Creek, Verde Creek, and San Geronimo Creek watersheds, south-central Texas, 1951–2003. US Geological Survey Scientific Investigations Report 2005–5252.
Ockerman, D. J. (2007). Simulation of streamflow and estimation of ground-water recharge in the upper Cibolo Creek watershed, south-central Texas, 1992–2004. US Geological Survey Scientific Investigations Report 2007–5202.
Olson, S. A. and Norris, J. M. (2007). US Geological Survey Streamgaging from the National Streamflow Information Program, US Geological Survey Fact Sheet 2005–3131.
O’Reilly, A. M. (2004). A method for simulating transient ground-water recharge in deep water-table settings in central Florida by using a simple water-balance/transfer-function model. US Geological Survey Scientific Investigations Report 2004–5195.
Ostendorf, D. W., Rees, P. L. S., Kelley, S. P. and Lutenegger, A. J. (2004). Steady, annual, and monthly recharge implied by deep unconfined aquifer flow. J. Hydrol., 290, 259–274.CrossRefGoogle Scholar
Ostlund, H. G. and Dorsey, H. G. (1977). Rapid electrolytic enrichment and hydrogen gas proportional counting of tritium. In Proceedings of the International Conference on Low-Radioactivity Measurements and Application, 6–10 October 1975: The High Tatras, Czechoslovakia, Slovenske Pedagogicke Nakladatelstvo, Bratislava.
Padilla, A., Pulido-Bosch, A. and Mangin, A. (1994). Relative importance of baseflow and quickflow from hydrographs of Karst spring. Ground Water, 32, 267–277.CrossRefGoogle Scholar
Parizek, R. R. and Lane, B. E. (1970). Soil-water sampling using pan and deep pressure-vacuum lysimeters. J. Hydrol., 11, 1–21.CrossRefGoogle Scholar
Parsons, M. L. (1970). Groundwater thermal regime in a glacial complex. Water Resour. Res., 6, 1701–1720.CrossRefGoogle Scholar
Payne, D. F., Rumman, M. A. and Clarke, J. S. (2005). Simulation of ground-water flow in coastal Georgia and adjacent parts of South Carolina and Florida predevelopment, 1980, and 2000. US Geological Survey Scientific Investigations Report 2005–5089.
Penman, H. L. (1948). Natural evapotranspiration from open water, bare soil, and grass. Proc. Roy. Soc. London, A193, 120–145.CrossRefGoogle Scholar
Pérez, E. S. (1997). Estimation of basin-wide recharge rates using spring flow, precipitation, and temperature data. Ground Water, 35, 1058–1065.CrossRefGoogle Scholar
Pettyjohn, W. A. and Henning, R. (1979). Preliminary estimate of ground-water recharge rates, related streamflow, and water quality in Ohio. Ohio State University Water Resources Center Project Completion Report 552.
Philip, J. R. and de Vries, D. A. (1957). Moisture movement in porous materials under temperature gradients. Trans. Amer. Geophys. Union, 38, 222–232.CrossRefGoogle Scholar
Phillips, F. M. (1994). Environmental tracers for water movement in desert soils of the American southwest. Soil Sci. Soc. Amer. J., 58, 15–24.CrossRefGoogle Scholar
Phillips, F. M. (2000). Chlorine-36. In Environmental Tracers in Subsurface Hydrology, ed. Cook, P. G. and A. L. Herczeg. Boston: Kluwer Academic Publishers.Google Scholar
Phillips, F. M., Mattick, J. L., Duval, T. A., Elmore, D. and Kubik, P. W. (1988). Chlorine 36 and tritium from nuclear weapons fallout as tracers for long-term liquid and vapor movement in desert soils. Water Resour. Res., 24, 1877–1891.CrossRefGoogle Scholar
Piggott, A. R., Moin, S. and Southam, C. (2005). A revised approach to the UKIH method for the calculation of baseflow. Hydrol. Sci. J., 50, 911–920.CrossRefGoogle Scholar
Plummer, L. N. (2005). Dating of young groundwater. In Isotopes in the Water Cycle: Past, Present, and Future of a Developing Science, ed. Aggarwal, P. K., Gat, J. R. and Froehlich, K. F. O.. Dordrecht, The Netherlands: Springer, 193–220.Google Scholar
Plummer, L. N., Bexfield, L. M., Anderholm, S. K., Sanford, W. E. and Busenberg, E. (2004). Hydrochemical tracers in the Middle Rio Grande Basin, USA: 1. Conceptualization of groundwater flow. Hydrogeol. J., 12, 359–388.CrossRefGoogle Scholar
Plummer, L. N. and Busenberg, E. (2000). Chlorofluorocarbons. In Environmental Tracers in Subsurface Hydrology, ed. Cook, P. G. and A. L. Herczeg. Boston: Kluwer Academic Publishers, 441–478.Google Scholar
Plummer, L. N., Busenberg, E., Böhlke, J. K. et al. (2001). Groundwater residence times in Shenandoah National Park, Blue Ridge Mountains, Virginia, USA: a multi-tracer approach. Chem. Geol., 179, 93–111.CrossRefGoogle Scholar
Plummer, L. N., Busenberg, E., McConnell, J. B. et al. (1998). Flow of river water into a karstic limestone aquifer. 1. Tracing the young fraction in groundwater mixtures in the Upper Floridan Aquifer near Valdosta, Georgia. Applied Geochem., 13, 995–1015.CrossRefGoogle Scholar
Plummer, L. N., Prestemon, E. C. and Parkhurst, D. L. (1994). An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH, version 2.0. US Geological Survey Water-Resources Investigations Report 94–4169.
Poeter, E. P. and Hill, M. C. (1997). Inverse models: a necessary next step in groundwater modeling. Ground Water, 35, 250–260.CrossRefGoogle Scholar
Poeter, E. P. and Hill, M. C. (1998). Documentation of UCODE: a computer code for universal inverse modeling. US Geological Survey Water-Resources Investigations Report 98–4080.
Poeter, E. P., Hill, M. C., Banta, E. R. and Mehl, S. W. (2005). UCODE_2005 and three post-processors: computer codes for universal sensitivity analysis, inverse modeling, and uncertainty evaluation. US Geological Survey Techniques and Methods Report TM 6-A11.
Pollock, D. W. (1994). User’s guide for MODPATH/MODPATH-PLOT, Version 3: a particle tracking post-processing package for MODFLOW, the US Geological Survey finite-difference ground-water flow model. US Geological Survey Open-File Report 94–464.
Pool, D. R. (2005). Variations in climate and ephemeral channel recharge in southeastern Arizona, United States. Water Resour. Res., 41, 1–24.CrossRefGoogle Scholar
Pool, D. R. (2008). The utility of gravity and water-level monitoring at alluvial aquifer wells in southern Arizona. Geophysics, 73, WA49-WA59.CrossRefGoogle Scholar
Pool, D. R. and Eychaner, J. H. (1995). Measurements of aquifer-storage change and specific yield using gravity surveys. Ground Water, 33, 425–432.CrossRefGoogle Scholar
Pool, D. R. and Schmidt, W. (1997). Measurement of ground-water storage change and specific yield using the temporal-gravity method near Rillito Creek, Tucson, Arizona, US Geological Survey Water-Resources Investigations Report 97–4125.
Portniaguine, O. and Solomon, D. K. (1998). Parameter estimation using groundwater age and head data, Cape Cod, Massachusetts. Water Resour. Res., 34, 637–645.CrossRefGoogle Scholar
Price, M., Low, R. G. and McCann, C. (2000). Mechanisms of water storage and flow in the unsaturated zone of the Chalk aquifer. J. Hydrol., 233, 54–71.CrossRefGoogle Scholar
Prickett, T. A. (1965). Type-curve solution to aquifer tests under water-table conditions. Ground Water, 3, 5–14.CrossRefGoogle Scholar
Priestley, C. H. B. and Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Rev., 100, 81–92.2.3.CO;2>CrossRefGoogle Scholar
Prill, R. C., Johnson, A. I. and Morris, D. A. (1965). Specific yield-laboratory experiments showing the effect of time on column drainage. US Geological Survey Water-Supply Paper 1662-B.
Prince, K. R. (1981). Use of flow-duration curves to evaluate effects of urbanization on streamflow patterns on Long Island, New York. US Geological Survey Water-Resources Investigations Report 80–114.
Prudic, D. E., Niswonger, R., Harrill, J. R. and Wood, J. L. (2007). Streambed infiltration and ground-water flow from the Trout Creek drainage, an intermittent tributary to the Humboldt River, north-central Nevada. In Ground-water Recharge in the Arid and Semiarid Southwestern United States, ed. Stonestrom, D. A., Constantz, J., Ferre, T. P. A. and Leake, S. A.. US Geological Survey Professional Paper 1703, Chapter K, 313–351.
Prudic, D. E., Niswonger, R. G., Wood, J. L. and Henkelman, K. K. (2003). Trout Creek: estimating flow duration and seepage losses along an intermittent stream tributary to the Humboldt River, Lander and Humboldt Counties, Nevada. In Heat as a Tool for Studying the Movement of Ground Water Near Streams, ed. Stonestrom, D. A. and Constantz, J.. US Geological Survey Circular 1260, 58–71.
Pruess, K., Oldenburg, C. and Moridis, G. (1999). TOUGH2 user’s guide. Version 2.0. Lawrence Berkeley National Laboratory Report LBNL-43134. Berkeley, CA.
Pruitt, W. O. and Angus, D. E. (1960). Large weighing lysimeter for measuring evapotranspiration. Trans. Amer. Soc. Agric. Eng., 3, 13–18.Google Scholar
Prych, E. A. (1998). Using chloride and chlorine-36 as soil-water tracers to estimate deep percolation at selected locations on the US Department of Energy Hanford Site, Washington. US Geological Survey Water-Supply Paper 2481.
Puente, C. (1978). Method of estimating natural recharge to the Edwards aquifer in the San Antonio area, Texas. US Geological Survey Water-Resources Investigations Report 78–10.
Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H. and Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sens. Environ., 48, 119–126.CrossRefGoogle Scholar
Ragab, R., Finch, J. and Harding, R. (1997). Estimation of groundwater recharge to chalk and sandstone aquifers using simple soil models. J. Hydrol., 190, 19–41.CrossRefGoogle Scholar
Rangarajan, R. and Athavale, R. N. (2000). Annual replenishable ground water potential of India: an estimate based on injected tritium studies. J. Hydrol., 234, 38–53.CrossRefGoogle Scholar
Rantz, S. E. et al. (1982). Measurement and computation of streamflow. US Geological Survey Water Supply Paper 2175.
Rasmussen, T. C. and Crawford, L. A. (1997). Identifying and removing barometric pressure effects in confined and unconfined aquifers. Ground Water, 35, 502–511.CrossRefGoogle Scholar
Rasmussen, T. C. and Mote, T. L. (2007). Monitoring surface and subsurface water storage using confined aquifer water levels at the Savannah River Site, USA. Vadose Zone J., 6, 327–335.CrossRefGoogle Scholar
Rasmussen, W. C. and Andreasen, G. E. (1959). Hydrologic budget of the Beaverdam Creek Basin, Maryland. US Geological Survey Water-Supply Paper 1472.
Rawls, W. J., Brakensick, D. L. and Saxton, K. E. (1982). Estimation of soil water properties. Trans. Amer. Soc. Agric. Eng., 25, 1316–1320.CrossRefGoogle Scholar
Rehm, B. W., Moran, S. R. and Groenewold, G. H. (1982). Natural groundwater recharge in an upland area of central North Dakota, USA. J. Hydrol., 59, 293–314.CrossRefGoogle Scholar
Reilly, T. E., Plummer, L. N., Phillips, P. J. and Busenberg, E. (1994). The use of simulation and multiple environmental tracers to quantify groundwater flow in a shallow aquifer. Water Resour. Res., 30, 421–433.CrossRefGoogle Scholar
Reiter, M. (2003). Hydrogeothermal studies in the Albuquerque Basin: a geophysical investigation of ground water flow characteristics. Circular 211. New Mexico Bureau of Geology and Mineral Resources.
Remson, I. and Lang, S. M. (1955). A pumping test method for the determination of specific yield. Trans. Amer. Geophys. Union, 36, 321–325.CrossRefGoogle Scholar
Reynolds Electrical and Engineering Company (1994). Site characterization and monitoring data from Area 5 pilot wells, Nevada Test Site, Nye County, Nevada. Contract Report DOE/NB/11432–74. US Department of Energy, Las Vegas, Nevada.
Reynolds, R. J. (1982). Base flow of streams on Long Island, New York. US Geological Survey Water-Resources Investigations Report 81–48.
Reynolds, W. D., Elrick, D. E., Youngs, E. G. et al. (2002). Saturated and field-saturated water flow parameters. In Methods of Soil Analysis. Part 4: Physical Methods, ed. Dane, J. H. and Topp, G. C.. Madison, Wisconsin: Soil Science Society of America.Google Scholar
Richards, L. A., Gardner, W. R. and Ogata, G. (1956). Physical process determining water loss from soil. Soil Sci. Soc. Amer. Proc., 20, 310–314.CrossRefGoogle Scholar
Rimmer, A. and Salingar, Y. (2006). Modelling precipitation-streamflow processes in karst basin: the case of the Jordan River sources, Israel. J. Hydrol., 331, 524–542.CrossRefGoogle Scholar
Risser, D. W. (2008). Spatial distribution of ground-water recharge estimated with a water-budget method for the Jordan Creek watershed, Lehigh County, Pennsylvania. US Geological Survey Scientific Investigations Reports 2008–5041.
Risser, D. W., Conger, R. W., Ulrich, J. E. and Asmussen, M. P. (2005a). Estimates of ground-water recharge based on streamflow-hydrograph methods: Pennsylvania. US Geological Survey Open-File Report 2005–1333.
Risser, D. W., Gburek, W. J. and Folmar, G. J. (2005b). Comparison of methods for estimating ground-water recharge and base flow at a small watershed underlain by fractured bedrock in the Eastern United States. US Geological Survey Scientific Investigations Report 2005–5038.
Risser, D. W., Gburek, W. J. and Folmar, G. J. (2009). Comparison of recharge estimates at a small watershed in east-central Pennsylvania, USA. Hydrogeol. J., 17, 287–298.CrossRefGoogle Scholar
Roark, D. M. and Healy, D. F. (1998). Quantification of deep percolation from two flood-irrigated alfalfa fields, Roswell Basin, New Mexico. US Geological Survey Water-Resources Investigations Report 98–4096.
Robertson, W. D. and Cherry, J. A. (1989). Tritium as an indicator of recharge and dispersion in a groundwater system in central Ontario. Water Resour. Res., 25, 1097–1109.CrossRefGoogle Scholar
Robinson, D. A., Binley, A., Crook, N. et al. (2008a). Advancing process-based watershed hydrological research using near-surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods. Hydrol. Proc., 22, 3604–3635.CrossRefGoogle Scholar
Robinson, D. A., Campbell, C. S., Hopmans, J. W. et al. (2008b). Soil moisture measurement for ecological and hydrological watershed-scale observatories: a review. Vadose Zone J., 7, 358–389.CrossRefGoogle Scholar
Robock, A. and Li, H. (2006). Solar dimming and CO2 effects on soil moisture trends. Geophys. Res. Lett., 33, L20708, doi:10.1029/2006GL027585.CrossRefGoogle Scholar
Robock, A., Vinnikov, K. Y., Srinivasan, G. et al. (2000). The global soil moisture data bank. Bull. Amer. Met. Soc., 81, 1281–1299.2.3.CO;2>CrossRefGoogle Scholar
Rodell, M., Chen, J., Kato, H. et al. (2007). Estimating groundwater storage changes in the Mississippi River Basin (USA) using GRACE. Hydrogeol. J., 15, 159–166.CrossRefGoogle Scholar
Rodell, M., Famiglietti, J. S., Chen, J. et al. (2004). Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett., 31, L20504, doi:10.1029/2004GL020873.CrossRefGoogle Scholar
Rogowski, A. S. (1996). GIS modeling of recharge on a watershed. J. Environ. Qual., 25, 463–474.CrossRefGoogle Scholar
Rojstaczer, S. (1988). Determination of fluid flow properties from the response of water levels in wells to atmospheric loading. Water Resour. Res., 24, 1927–1938.CrossRefGoogle Scholar
Roman, R., Caballero, R., Bustos, A. et al. (1996). Water and solute movement under conventional corn in Central Spain: I. Water balance. Soil Sci. Soc. Amer. J., 60, 1530–1536.CrossRefGoogle Scholar
Romano, N. and Santini, A. (2002). Water retention and storage: field. In Methods of Soil Analysis. Part 4: Physical Methods, ed. Dane, J. H. and Topp, G. C.. Madison, Wisconsin: Soil Science Society of America, 721–738.Google Scholar
Ronan, A. D., Prudic, D. E., Thodal, C. E. and Constantz, J. (1998). Field study and simulation of diurnal temperature effects on infiltration and variably saturated flow beneath an ephemeral stream. Water Resour. Res., 34, 2137–2153.CrossRefGoogle Scholar
Rorabaugh, M. I. (1960). Use of water levels in estimating aquifer constants. Inter. Assoc. Sci. Hydrol. Pub., 52, 314–323.Google Scholar
Rorabaugh, M. I. (1964). Estimating changes in bank storage and groundwater contribution to streamflow. Inter. Assoc. Sci. Hydrol. Pub., 63, 432–441.Google Scholar
Rosenberg, N. J., Blad, B. L. and Verma, S. V. (1983). The Biological Environment. New York: John Wiley and Sons, Inc.Google Scholar
Rosenberry, D. O. (2008). A seepage meter designed for use in flowing water. J. Hydrol., 359, 118–130.CrossRefGoogle Scholar
Rosenberry, D. O., Labaugh, J. W. and Hunt, R. J. (2008). Use of monitoring wells, portable piezometers, and seepage meters to quantify flow between surface water and ground water. In Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water, ed. Rosenberry, D. I. and Labaugh, J. W.. US Geological Survey Techniques and Methods 4-D2, 39–70.
Rosenberry, D. O. and Menheer, M. A. (2006). A system for calibrating seepage meters used to measure flow between ground water and surface water. US Geological Survey Scientific Investigations Report 2006–5053.
Rosenberry, D. O. and Morin, R. H. (2004). Use of an electromagnetic seepage meter to investigate temporal variability in lake seepage. Ground Water, 42, 68–77.CrossRefGoogle ScholarPubMed
Rosqvist, H. and Destouni, G. (2000). Solute transport through preferential pathways in municipal solid waste. J. Contam. Hydrol., 46, 39–60.CrossRefGoogle Scholar
Royer, J. M. and Vachaud, G. (1974). Determination directe de l’evapotranspiration et de l’infiltration par mesures des teneurs en eau et des succions. Hydrol. Sci. Bull., 19, 319–336.CrossRefGoogle Scholar
Rugh, D. F. and Burbey, T. J. (2008). Using saline tracers to evaluate preferential recharge in fractured rocks, Floyd County, Virginia, USA. Hydrogeol. J., 16, 251–262.CrossRefGoogle Scholar
Rutledge, A. T. (1998). Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow records: update. US Geological Survey Water-Resources Investigations Report 98–4148.
Rutledge, A. T. (2000). Considerations for use of the RORA program to estimate ground-water recharge from streamflow records. US Geological Survey Open-File Report 2000–156.
Rutledge, A. T. (2007). Update on the use of the RORA program for recharge estimation. Ground Water, 45, 374–382.CrossRefGoogle ScholarPubMed
Rutledge, A. T. and Daniel, C. C. (1994). Testing an automated method to estimate ground-water recharge from streamflow records. Ground Water, 32, 180–189.CrossRefGoogle Scholar
Rutledge, A. T. and Mesko, T. O. (1996). Estimated hydrologic characteristics of shallow aquifer systems in the Valley and Ridge, the Blue Ridge, and the Piedmont physiographic provinces based on analysis of streamflow recession and base flow. US Geological Survey Professional Paper 1422-B.
Saha, D. and Agrawal, A. K. (2006). Determination of specific yield using a water balance approach: case study of Torla Odha watershed in the Deccan Trap province, Maharastra State, India. Hydrogeol. J., 14, 625–635.CrossRefGoogle Scholar
Salama, R. B., Bartle, G. A. and Farrington, P. (1994a). Water use of plantation Eucalyptus camaldulensis estimated by groundwater hydrograph separation techniques and heat pulse method. J. Hydrol., 156, 163–180.CrossRefGoogle Scholar
Salama, R. B., Tapley, I., Ishii, T. and Hawkes, G. (1994b). Identification of areas of recharge and discharge using Landsat-TM satellite imagery and aerial photography mapping techniques. J. Hydrol., 162, 119–141.CrossRefGoogle Scholar
Sami, K. and Hughes, D. A. (1996). A comparison of recharge estimates to a fractured sedimentary aquifer in South Africa from a chloride mass balance and an integrated surface-subsurface model. J. Hydrol., 179, 111–136.CrossRefGoogle Scholar
Sammis, T. W., Evans, D. D. and Warrick, A. W. (1982). Comparison of methods to estimate deep percolation rate. Water Resour. Bull., 18, 465–470.CrossRefGoogle Scholar
Sanford, W. E. (2002). Recharge and groundwater models: an overview. Hydrogeol. J., 10, 110–120.CrossRefGoogle Scholar
Sanford, W. E., Plummer, L. N., McAda, D. P., Bexfield, L. M. and Anderholm, S. K. (2004). Hydrochemical tracers in the Middle Rio Grande Basin, USA: 2. Calibration of a ground-water flow model. Hydrogeol. J., 12, 389–407.CrossRefGoogle Scholar
Santhi, C., Allen, P. M., Muttiah, R. S., Arnold, J. G. and Tuppad, P. (2008). Regional estimation of base flow for the conterminous United States by hydrologic landscape regions. J. Hydrol., 351, 139–153.CrossRefGoogle Scholar
Sauer, T. J. (2002). Heat flux density. In Methods of Soil Analysis. Part 4: Physical Methods, ed. Dane, J. H. and Topp, G. C.. Madison, Wisconsin: Soil Science Society of America, 1233–1252.Google Scholar
Scanlon, B. R. (1991). Evaluation of moisture flux from chloride data in desert soils. J. Hydrol., 128, 137–156.CrossRefGoogle Scholar
Scanlon, B. R. (1992). Evaluation of liquid and vapor water flow in desert soils based on chlorine 36 and tritium tracers and nonisothermal flow simulations. Water Resour. Res., 28, 285–297.CrossRefGoogle Scholar
Scanlon, B. R. (2000). Uncertainties in estimating water fluxes and residence times using environmental tracers in an arid unsaturated zone. Water Resour. Res., 36, 395–409.CrossRefGoogle Scholar
Scanlon, B. R., Andraski, B. J. and Bilskie, J. (2002a). Miscellaneous methods for measuring matric or water potential. In Methods of Soil Analysis. Part 4: Physical Methods, ed. Dane, J. H. and Topp, G. C.. Madison, Wisconsin: Soil Science Society of America.Google Scholar
Scanlon, B. R. and Goldsmith, R. S. (1997). Field study of spatial variability in unsaturated flow beneath and adjacent to playas. Water Resour. Res., 33, 2239–2252.CrossRefGoogle Scholar
Scanlon, B. R., Healy, R. W. and Cook, P. G. (2002b). Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J., 10, 18–39.CrossRefGoogle Scholar
Scanlon, B. R., Keese, K., Reedy, R. C., Simunek, J. and Andraski, B. J. (2003). Variations in flow and transport in thick desert vadose zones in response to paleoclimatic forcing (0–90 kyr): field measurements, modeling, and uncertainties. Water Resour. Res., 39, Art. No. 1179.CrossRefGoogle Scholar
Scanlon, B. R. and Milly, P. C. D. (1994). Water and heat fluxes in desert soils: 2. Numerical simulations. Water Resour. Res., 30, 709–719.CrossRefGoogle Scholar
Scanlon, B. R., Paine, J. G. and Goldsmith, R. S. (1999) Evaluation of electromagnetic induction as a reconnaissance technique to characterize unsaturated flow in an arid setting. Ground Water, 37, 296–304.CrossRefGoogle Scholar
Scanlon, B. R., Reedy, R. C., Stonestrom, D. A., Prudic, D. E. and Dennehy, K. F. (2005). Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology, 11, 1577–1593.CrossRefGoogle Scholar
Scanlon, B. R., Reedy, R. C. and Tachovsky, J. A. (2007). Semiarid unsaturated zone chloride profiles: archives of past land use change impacts on water resources in the southern High Plains, United States. Water Resour. Res., 43, W06423, doi:10.1029/2006WR005769.CrossRefGoogle Scholar
Schaap, M. G., Leij, F. J. and van Genuchten, M. T. (2001). Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol., 251, 163–176.CrossRefGoogle Scholar
Schemenauer, R. S. and Cereceda, P. (1994). A proposed standard fog collector for use in high-elevation regions. J. Appl. Met., 33, 1313–1322.2.0.CO;2>CrossRefGoogle Scholar
Schicht, R. J. and Walton, W. C. (1961). Hydrologic budgets for three small watersheds in Illinois. Illinois State Water Survey Report of Investigation 40.
Schilling, K. E. and Kiniry, J. R. (2007). Estimation of evapotranspiration by reed canarygrass using field observations and model simulations. J. Hydrol., 337, 356–363.CrossRefGoogle Scholar
Schilling, K. E. and Wolter, C. F. (2005). Estimation of streamflow, base flow, and nitrate-nitrogen loads in Iowa using multiple linear regression models. J. Amer. Water Resour. Assoc., 41, 1333–1346.CrossRefGoogle Scholar
Schlosser, P., Stute, M., Dörr, H., Sonntag, C. and Münich, K. O. (1988). Tritium/3He dating of shallow groundwater. Earth Planet. Sci. Lett., 89, 353–362.CrossRefGoogle Scholar
Schlosser, P., Stute, M., Sonntag, C. and Münich, K. O. (1989). Tritiogenic 3He in shallow groundwater. Earth Planet. Sci. Lett., 94, 245–256.CrossRefGoogle Scholar
Schmidt, C., Conant, B. Jr., Bayer-Raich, M. and Schirmer, M. (2007). Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mapped streambed temperatures. J. Hydrol., 347, 292–307.CrossRefGoogle Scholar
Schmugge, T. J., Kustas, W. P., Ritchie, J. C., Jackson, T. J. and Rango, A. (2002). Remote sensing in hydrology. Adv. Water Resour., 25, 1367–1385.CrossRefGoogle Scholar
Scholl, M., Christenson, S., Cozzarelli, I., Ferree, D. and Jaeshke, J. (2005). Recharge processes in an alluvial aquifer riparian zone, Norman Landfill, Norman, Oklahoma, 1998–2000. US Geological Survey Scientific Investigations Report 2004–5238.
Schroeder, P. R., Dozier, P. R., Zappi, P. A. et al. (1994). The Hydrologic Evaluation of Landfill Performance (HELP) model, engineering documentation for Version 3. EPA/600/9–94/1686. US Environmental Protection Agency Risk Reduction Engineering Laboratory. Washington, DC.
Schultz, T. R., Randall, J. H., Wilson, L. G. and Davis, S. V. (1976). Tracing sewage effluent recharge, Tucson, Arizona. Ground Water, 14, 463–470.CrossRefGoogle Scholar
Schwartz, M. O. (2006). Numerical modelling of groundwater vulnerability: the example Namibia. Environ. Geol., 50, 237–249.CrossRefGoogle Scholar
Schwartz, R. C., Baumhardt, R. L. and Howell, T. A. (2008). Estimation of soil water balance components using an iterative procedure. Vadose Zone J., 7, 115–123.CrossRefGoogle Scholar
Seiler, K. P. and Alvarado Rivas, J. (1999). Recharge and discharge of the Caracas aquifer, Venezuela. In Groundwater in the Urban Environment, Selected City Profiles, ed. Chilton, J.. Rotterdam: A. A. Balkema, 233–238.Google Scholar
Selker, J., van de Giesen, N. C., Westhoff, M., Luxemburg, W. and Parlange, M. B. (2006a). Fiber optics opens window on stream dynamics. Geophys. Res. Lett., 33.CrossRefGoogle Scholar
Selker, J. S., Thévenaz, L., Huwald, H. et al. (2006b). Distributed fiber-optic temperature sensing for hydrologic systems. Water Resour. Res., 42, W12202, doi: 10.1029/2006WR005326.CrossRefGoogle Scholar
Seo, D. J. (1998). Real-time estimation of rainfall fields using radar rainfall and rain gage data. J. Hydrol., 208, 37–52.CrossRefGoogle Scholar
Seo, D. J., Breidenbach, J., Fulton, R., Miller, D. and O’Bannon, T. (2000). Real-time adjustment of range-dependent biases in WSR-88D rainfall estimates due to nonuniform vertical profile of reflectivity. J. Hydromet., 1, 222–240.2.0.CO;2>CrossRefGoogle Scholar
Seo, D. J., Breidenbach, J. P. and Johnson, E. R. (1999). Real-time estimation of mean field bias in radar rainfall data. J. Hydrol., 223, 131–147.CrossRefGoogle Scholar
Shan, C. and Bodvarsson, G. (2004). An analytical solution for estimating percolation rate by fitting temperature profiles in the vadose zone. J. Contam. Hydrol., 68, 83–95.CrossRefGoogle ScholarPubMed
Sharma, M. L., Bari, M. and Byrne, J. (1991). Dynamics of seasonal recharge beneath a semiarid vegetation on the Gnangara mound, western Australia. Hydrol. Proc., 5, 383–398.CrossRefGoogle Scholar
Sharma, M. L. and Hughes, M. W. (1985). Groundwater recharge estimation using chloride, deuterium and oxygen-18 profiles in the deep coastal sands of western Australia. J. Hydrol., 81, 93–109.CrossRefGoogle Scholar
Sheffield, J., Ferguson, C. R., Troy, T. J., Wood, E. F. and McCabe, M. F. (2009). Closing the terrestrial water budget from satellite remote sensing. Geophys. Res. Lett., 36, L07403, doi:10.1029/2009GL037338.CrossRefGoogle Scholar
Shevenell, L. (1996). Analysis of well hydrographs in a karst aquifer: estimates of specific yields and continuum transmissivities. J. Hydrol., 174, 331–355.CrossRefGoogle Scholar
Shi, J. and Dozier, J. (1997). Mapping seasonal snow with SIR-C/X-SAR in mountainous areas. Remote Sens. Environ., 59, 294–307.CrossRefGoogle Scholar
Shiklomanov, I. A. and Rodda, J. C. (2003). World Water Resources at the Beginning of the Twenty-first Century. Cambridge: Cambridge University Press.Google Scholar
Silliman, S. E. and Booth, D. F. (1993). Analysis of time-series measurements of sediment temperature for identification of gaining vs. losing portions of Juday Creek, Indiana. J. Hydrol., 146, 131–148.CrossRefGoogle Scholar
Silliman, S. E., Ramirez, J. and McCabe, R. L. (1995). Quantifying downflow through creek sediments using temperature time series: one-dimensional solution incorporating measured surface temperature. J. Hydrol., 167, 99–119.CrossRefGoogle Scholar
Simmers, I. (ed.) (1988). Estimation of Natural Groundwater Recharge. Dordrecht, Holland: D. Reidel.CrossRef
Simmers, I. (1990). Aridity, groundwater recharge and water resources management. In Groundwater Recharge, A Guide to Understanding and Estimating Natural Recharge. International Contributions to Hydrogeology Vol. 8, ed. Lerner, D. N., Isaar, A. S. and Simmers, I.. Hanover: Verlag Heinz Heise, 3–22.Google Scholar
Simmers, I. (ed.) (1997). Recharge of Phreatic Aquifers in (Semi-) Arid Areas. Rotterdam: A. A. Balkema.
Simmons, C. T., Hong, H., Wye, D., Cook, P. G. and Love, A. J. (1999). Signal propagation and periodic response in aquifers: the effect of fractures and signal measurement methods. Water 99 Joint Congress, 727–732.Google Scholar
Simonds, F. W., Longpre, C. I. and Justin, G. B. (2004). Ground-water system in the Chimacum Creek Basin and surface water/ground water interaction in Chimacum and Tarboo Creeks and the Big and Little Quilcene Rivers, Eastern Jefferson County, Washington. US Geological Survey Scientific Investigations Report 2004–5058.
Simunek, J., Sejna, M. and van Genuchten, M. T. (1999). The HYDRUS-2D software package for simulating the two-dimensional movement of water, heat, and multiple solutes in variably saturated media. Version 2.0. IGWMC-TPS 53. International Ground Water Modeling Center, Colorado School of Mines.
Singh, K. P. (1971). Model flow duration and streamflow variability. Water Resour. Res., 7, 1031–1036.CrossRefGoogle Scholar
Singh, V. P. (ed.) (1995). Computer Models of Watershed Hydrology. Highlands Ranch, Colorado: Water Resources Publications.
Singh, V. P. and Frevert, D. K. (eds.) (2006). Watershed Models. Boca Raton, Florida: CRC Press.
Sisson, J. B. (1987). Drainage from layered field soils: fixed gradient models. Water Resour. Res., 23, 2071–2075.CrossRefGoogle Scholar
Sloto, R. A. and Crouse, M. Y. (1996). HYSEP: A computer program for streamflow hydrograph separation and analysis. US Geological Survey Water-Resources Investigations Report 96–4040.
Smakhtin, V. U. (2001). Low flow hydrology: a review. J. Hydrol., 240, 147–186.CrossRefGoogle Scholar
Smerdon, B. D., Mendoza, C. A. and Devito, K. J. (2008). Influence of subhumid climate and water table depth on groundwater recharge in shallow outwash aquifers. Water Resour. Res., 44, W08427, doi:10.1029/2007WR0059550.CrossRefGoogle Scholar
Smith, J. L., Laczniak, R. J., Moreo, M. T. and Welborn, T. L. (2007). Mapping evapotranspiration units in the Basin and Range carbonate-rock aquifer system, White Pine County, Nevada, and adjacent parts of Nevada and Utah, US Geological Survey Scientific Investigations Report 2007–5087.
Smith, R. E. (1983). Approximate soil water movement by kinematic characteristics. Soil Sci. Soc. Amer. J., 47, 3–8.CrossRefGoogle Scholar
Solomon, D. K. and Cook, P. G. (2000). 3H and 3He. In Environmental Tracers in Subsurface Hydrology, ed. Cook, P. G. and A. L. Herczeg. Boston: Kluwer Academic Publishers, 397–424.Google Scholar
Solomon, D. K., Poreda, R. J., Cook, P. G. and Hunt, A. (1995). Site characterization using 3H/3He ground-water ages, Cape Cod, MA. Ground Water, 33, 988–996.CrossRefGoogle Scholar
Solomon, D. K., Poreda, R. J., Schiff, S. L. and Cherry, J. A. (1992). Tritium and helium 3 as groundwater age tracers in the Borden aquifer. Water Resour. Res., 28, 741–755.CrossRefGoogle Scholar
Solomon, D. K., Schiff, S. L., Poreda, R. J. and Clark, W. B. (1993). A validation of the 3H/3He method for determining groundwater recharge. Water Resour. Res., 29, 2951–2962.CrossRefGoogle Scholar
Sophocleous, M. (1992). Groundwater recharge estimation and regionalization: the Great Bend Prairie of central Kansas and its recharge statistics. J. Hydrol., 137, 113–140.CrossRefGoogle Scholar
Sophocleous, M. (2000). From safe yield to sustainable development of water resources: the Kansas experience. J. Hydrol., 235, 27–43.CrossRefGoogle Scholar
Sophocleous, M., Bardsley, E. and Healey, J. (2006). A rainfall loading response recorded at 300 meters depth: implications for geological weighing lysimeters. J. Hydrol., 319, 237–244.CrossRefGoogle Scholar
Sophocleous, M., Devlin, J. F. and Bredehoeft, J. D. (2004). Discussion of “the water budget myth revisited: why hydrogeologists model,” by John D. Bredehoeft. July–August 2002 issue, v. 40, no. 4: 340–345. Ground Water, 42, 618–619.CrossRefGoogle Scholar
Sophocleous, M. and Perkins, S. P. (2000). Methodology and application of combined watershed and ground-water models in Kansas. J. Hydrol., 236, 185–201.CrossRefGoogle Scholar
Sophocleous, M. A. (1991). Combining the soilwater balance and water-level fluctuation methods to estimate natural groundwater recharge: practical aspects. J. Hydrol., 124, 229–241.CrossRefGoogle Scholar
Sophocleous, M. A., Kluitenberg, G. and Healey, J. (2002). Southwestern Kansas High Plains unsaturated zone pilot study to estimate Darcian-based groundwater recharge at three instrumented sites. Kansas Geological Survey Open-File Report 2001–11.
Sorey, M. L. (1971). Measurement of vertical groundwater velocity from temperature profiles in wells. Water Resour. Res., 7, 963–970.CrossRefGoogle Scholar
Soulsby, C., Rodgers, P. J., Petry, J., Hannah, D. M., Malcolm, I. A. and Dunn, S. M. (2004). Using tracers to upscale flow path understanding in mesoscale mountainous catchments: two examples from Scotland. J. Hydrol., 291, 174–196.CrossRefGoogle Scholar
Spinello, A. G. and Simmons, D. L. (1992). Base flow of 10 south-shore streams, Long Island, New York, 1976–85, and the effects of urbanization on base flow and flow duration. US Geological Survey Water-Resources Investigations Report 90–4205.
Stallman, R. W. (1963). Computation of ground-water velocity from temperature data. In Methods of Collecting and Interpreting Ground-Water Data, US Geological Survey Water-Supply Paper 1544-H, 36–47.
Stallman, R. W. (1965). Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature. J. Geophys. Res., 70, 2821–2827.CrossRefGoogle Scholar
Stallman, R. W. (1967). Flow in the zone of aeration. In Advances in Hydrosciences, Volume 4, ed. Chow, V. T.. New York: Academic Press, 151–197.Google Scholar
Stallman, R. W. (1971). Aquifer-test design, observation and data analysis. Techniques of Water Resource Investigations of the US Geological Survey, Chapter B1.
Stannard, D. I. and Weltz, M. A. (2006). Partitioning evapotranspiration in sparsely vegetated rangeland using a portable chamber. Water Resour. Res., 42, W02413, doi:10.1029/2005WR004251.CrossRefGoogle Scholar
Steenhuis, T. S., Jackson, C. D., Kung, S. K. J. and Brutsaert, W. (1985). Measurement of groundwater recharge on eastern Long Island, New York, USA. J. Hydrol., 79, 145–169.CrossRefGoogle Scholar
Steenhuis, T. S. and van der Molen, W. H. (1986). The Thornthwaite-Mather procedure as a simple engineering method to predict recharge. J. Hydrol., 84, 221–229.CrossRefGoogle Scholar
Stephens, D. B. and Knowlton, R. Jr. (1986). Soil water movement and recharge through sand at a semiarid site in New Mexico. Water Resour. Res., 22, 881–889.CrossRefGoogle Scholar
Steuer, J. J. and Hunt, R. J. (2001). Use of a ­watershed-modeling approach to assess hydrologic effects of urbanization, North Fork Pheasant Branch Basin near Middleton, Wisconsin. US Geological Survey Water-Resources Investigations Report 2001–4113.
Stewart, M., Cimino, J. and Ross, M. (2007). Calibration of base flow separation methods with streamflow conductivity. Ground Water, 45, 17–27.CrossRefGoogle ScholarPubMed
Stoertz, M. W. and Bradbury, K. R. (1989). Mapping recharge areas using a ground-water flow model: a case study. Ground Water, 27, 220–228.CrossRefGoogle Scholar
Stonestrom, D. and Blasch, K. W. (2003). Determining temperature and thermal properties for heat-based studies of surface-water ground-water interactions. In Heat as a Tool for Studying the Movement of Ground Water Near Streams, ed. Stonestrom, D. A. and Constantz, J.. US Geological Survey Circular 1260, 73–80.
Stonestrom, D. A. and Constantz, J. (eds.) (2003). Heat as a Tool for Studying the Movement of Ground Water near Streams. US Geological Survey Circular 1260.
Stonestrom, D. A., Constantz, J., Ferré, T. P. A. and Leake, S. A. (eds.) (2007). Ground-water recharge in the arid and semiarid southwestern United States. US Geological Survey Professional Paper 1703.
Stonestrom, D. A. and Harrill, J. R. (2007). Ground-water recharge in the arid and semiarid southwestern United States: climatic and geologic framework. In Ground-water Recharge in the Arid and Semiarid Southwestern United States, ed. Stonestrom, D. A., Constantz, J., Ferre, T. P. A. and Leake, S. A.. US Geological Survey Professional Paper 1703, Chapter A, 1–28.
Stonestrom, D. A., Prudic, D. E., Laczniak, R. J. and Akstin, K. C. (2004). Tectonic, climatic, and land-use controls of groundwater recharge in an arid alluvial basin: Amargosa Desert, USA. In Groundwater Recharge in a Desert Environment. The southwestern United States, ed. Hogan, J. F., Phillips, F. M. and Scanlon, B. R.. Washington, DC: American Geophysical Union, 29–48.Google Scholar
Strangeways, I. (2004). Improving precipitation measurement. Inter. J. Climatology, 24, 1443–1460.CrossRefGoogle Scholar
Strassberg, G., Scanlon, B. R. and Rodell, M. (2007). Comparison of seasonal terrestrial water storage variations from GRACE with groundwater-level measurements from the High Plains Aquifer (USA). Geophys. Res. Lett., 34, L14402, doi:10.1029/2007GL030139.CrossRefGoogle Scholar
Stricker, V. (1983). Base flow of streams in the outcrop area of southeastern sand aquifer, South Carolina, Georgia, Alabama, and Mississippi. US Geological Survey Water-Resources Investigations Report 83–4106.
Su, N. (1994). A formula for computation of time-varying recharge of groundwater. J. Hydrol., 160, 123–135.CrossRefGoogle Scholar
Sumner, D. M. (1996). Evapotranspiration from successional vegetation in a deforested area of the Lake Wales Ridge, Florida. US Geological Survey Water-Resources Investigations Report 96–4244.
Suzuki, S. (1960). Percolation measurements based on heat flow through soil with special reference to paddy fields. J. Geophys. Res., 65, 2883–2885.CrossRefGoogle Scholar
Swenson, F. A. (1968). New theory of recharge in the artesian basin of the Dakotas. Geol. Soc. Amer. Bull., 79, 163–182.CrossRefGoogle Scholar
Szabo, Z., Rice, D. E., Plummer, L. N., Busenberg, E., Drenkard, S. and Schlosser, P. (1996). Age dating of shallow groundwater with chlorofluorocarbons, tritium/helium 3, and flow path analysis, southern New Jersey coastal plain. Water Resour. Res., 32, 1023–1038.CrossRefGoogle Scholar
Szilagyi, J., Harvey, F. E. and Ayers, J. F. (2003). Regional estimation of base recharge to ground water using water balance and a base-flow index. Ground Water, 41, 504–513.CrossRefGoogle Scholar
Szilagyi, J., Harvey, F. E. and Ayers, J. F. (2005). Regional estimation of total recharge to ground water in Nebraska. Ground Water, 43, 63–69.CrossRefGoogle ScholarPubMed
Tabbagh, A., Bendjoudi, H. and Benderitter, Y. (1999). Determination of recharge in unsaturated soils using temperature monitoring. Water Resour. Res., 35, 2439–2446.CrossRefGoogle Scholar
Tamura, Y., Sato, T., Ooe, M. and Ishiguro, M. (1991). A procedure for tidal analysis with a Bayesian information criterion. Geophys. J. Inter., 104, 507–516.CrossRefGoogle Scholar
Tan, S. B. K., Shuy, E. B. and Chua, L. H. C. (2007). Regression method for estimating rainfall recharge at unconfined sandy aquifers with an equatorial climate. Hydrol. Proc., 21, 3514–3526.CrossRefGoogle Scholar
Taniguchi, M. and Fukuo, Y. (1993). Continuous measurements of ground-water seepage using an automatic seepage meter. Ground Water, 31, 675–679.CrossRefGoogle Scholar
Tankersley, C. D., Graham, W. D. and Hatfield, K. (1993). Comparison of univariate and transfer function models of groundwater fluctuations. Water Resour. Res., 29, 3517–3533.CrossRefGoogle Scholar
Tarantola, A. (2005). Inverse Problem Theory. Philadelphia: Society for Industrial and Applied Mathematics.Google Scholar
Taylor, C. J. and Alley, W. M. (2001). Ground-water-level monitoring and the importance of long-term water-level data. US Geological Survey Circular 1217.
Theis, C. V. (1937). Amount of ground-water recharge in the Southern High Plains. Trans. Amer. Geophys. Union, 18, 564–568.CrossRefGoogle Scholar
Thom, A. S. and Oliver, H. R. (1977). On Penman’s equation for estimating regional evaporation. Quart. J. Roy. Met. Soc., 103, 345–357.CrossRefGoogle Scholar
Thomas, H. E. (1952). Ground-water regions of the United States: their storage facilities, v. 3 of The physical and economic foundation of natural resources: US 83rd Congress, House Committee on Interior and Insular Affairs, 3–78.
Thompson, G. M. and Hayes, J. M. (1979). Trichlorofluoromethane in groundwater: a possible tracer and indicator of groundwater age. Water Resour. Res., 15, 546–554.CrossRefGoogle Scholar
Thompson, G. M., Hayes, J. M. and Davis, S. V. (1974). Fluorocarbon tracers in hydrology. Geophys. Res. Lett., 1, 177–180.CrossRefGoogle Scholar
Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geograph. Rev., 38, 55–94.CrossRefGoogle Scholar
Thornthwaite, C. W. and Mather, J. R. (1955). The water balance. Publications in Climatology, 8, 1–104.Google Scholar
Thornthwaite, C. W. and Mather, J. R. (1957). Instructions and tables for computing potential evapotranspiration and the water balance. Publications in Climatology, 10(3), 185–311.Google Scholar
Thornton, P. E., Running, S. W. and White, M. A. (1997). Generating surfaces of daily meteorology variables over large regions of complex terrain. J. Hydrol., 190, 214–251.CrossRefGoogle Scholar
Thorstenson, D. C., Weeks, E. P., Haas, H. et al. (1998). Chemistry of unsaturated zone gases sampled in open boreholes at the crest of Yucca Mountain, Nevada: data and basic concepts of chemical and physical processes in the mountain. Water Resour. Res., 34, 1507–1529.CrossRefGoogle Scholar
Tiedeman, C. R., Goode, D. J. and Hsieh, P. A. (1997). Numerical simulation of ground-water flow through glacial deposits and crystalline bedrock in the Mirror Lake area, Grafton County, New Hampshire. US Geological Survey Professional Paper 1572.
Tiedeman, C. R., Kernodle, J. M. and McAda, D. P. (1998). Application of nonlinear-regression methods to a ground-water flow model of the Albuquerque Basin, New Mexico. US Geological Survey Water-Resources Investigations Report 98–4172.
Timmermans, W. J., Kustas, W. P., Anderson, M. C. and French, A. N. (2007). An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes. Remote Sens. Environ., 108, 369–384.CrossRefGoogle Scholar
Todd, D. K. (1980). Groundwater Hydrology, 2nd edn. New York: John Wiley and Sons.Google Scholar
Todd, D. K. and Mays, L. W. (2005). Groundwater Hydrology, 3rd edn. New York: John Wiley & Sons, Inc.Google Scholar
Toll, N. J. and Rasmussen, T. C. (2007). Removal of barometric pressure effects and earth tides from observed water levels. Ground Water, 45, 101–105.CrossRefGoogle ScholarPubMed
Topp, G. C., Davis, J. L. and Annan, A. P. (1980). Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour. Res., 16, 574–582.CrossRefGoogle Scholar
Topp, G. C. and Ferre, T. P. A. (2002). Thermogravimetric method using convective oven-drying. In Methods of Soil Analysis. Part 4: Physical Methods, ed. Dane, J. H. and Topp, G. C.. Madison, Wisconsin: Soil Science Society of America.Google Scholar
Trommer, J. T., Sacks, L. A. and Kuniansky, E. L. (2007). Hydrology, water quality, and surface- and ground-water interactions in the upper Hillsborough River watershed, west-central Florida. US Geological Survey Scientific Investigations Report 2007–5121.
Troxell, H. C. (1936). The diurnal fluctuation in the groundwater and flow of the Santa Ana River and its meaning. Trans. Amer. Geophys. Union, 17, 496–504.CrossRefGoogle Scholar
Turco, M. J., East, J. W. and Milburn, M. S. (2007). Base flow (1966–2005) and streamflow gain and loss (2006) of the Brazos River, McLennan County to Fort Bend County, Texas. US Geological Survey Scientific Investigations Report 2007–5286.
Tuteja, N. K., Vaze, J., Teng, J. and Mutendeudzi, M. (2007). Partitioning the effects of pine plantations and climate variability on runoff from a large catchment in southeastern Australia. Water Resour. Res., 43, W08415, doi:10.1029/2006/WR005016.CrossRefGoogle Scholar
Tweed, S. O., Leblanc, M., Webb, J. A. and Lubczynski, M. W. (2007). Remote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, southeastern Australia. Hydrogeol. J., 15, 75–96.CrossRefGoogle Scholar
Twine, T. E., Kustas, W. P., Norman, J. M. et al. (2000). Correcting eddy-covariance flux underestimates over a grassland. Agric. Forest Met., 103, 279–300.CrossRefGoogle Scholar
Tyler, S. W., Chapman, J. B., Conrad, S. H. et al. (1996). Soil-water flux in the southern Great Basin, United States: temporal and spatial variations over the last 120 000 years. Water Resour. Res., 32, 1481–1499.CrossRefGoogle Scholar
Tyler, S. W., McKay, W. A. and Mihevc, T. M. (1992). Assessment of soil moisture movement in nuclear subsidence craters. J. Hydrol., 139, 159–181.CrossRefGoogle Scholar
Tyler, S. W. and Walker, G. R. (1994). Root zone effects on tracer migration in arid zones. Soil Sci. Soc. Am. J., 58, 26–31.CrossRefGoogle Scholar
Uhlenbrook, S., Frey, M., Leibundgut, C. and Maloszewski, P. (2002). Hydrograph separations in a mesoscale mountainous basin at event and seasonal timescales. Water Resour. Res., 38 (6), 1096, doi:10.1029/2001WR000938.CrossRefGoogle Scholar
University of Idaho (2003). Ref-ET: Reference evapotranspiration calculation software for FAO and ASCE standardized equations.
US National Research Council (1993). Ground Water Vulnerability Assessment. Predicting Relative Contamination Potential Under Conditions of Uncertainty. Washington, DC: National Academy Press.Google Scholar
US Nuclear Regulatory Commission (1993). 10 CFR Part 61 Licensing requirements for land disposal of radioactive waste.
Vaccaro, J. J. (1992). Sensitivity of groundwater recharge estimates to climate variability and change, Columbia Plateau, Washington. J. Geophys. Res., 97, 2821–2833.CrossRefGoogle Scholar
Vaccaro, J. J. (2007). A deep percolation model for estimating ground-water recharge: documentation of modules for the Modular Modeling System of the US Geological Survey. US Geological Survey Scientific Investigations Report 2006–5318.
Vaccaro, J. J. and Olsen, T. D. (2007). Estimates of ground-water recharge to the Yakima River Basin aquifer system, Washington, for predevelopment and current land-use and land-cover conditions. US Geological Survey Scientific Investigations Report 2007–5007.
Vachaud, G. and Dane, J. H. (2002). Instantaneous profile. In Methods of Soil Analysis. Part 4: Physical Methods, ed. Dane, J. H. and Topp, G. C.. Madison, Wisconsin: Soil Science Society of America.Google Scholar
van Bavel, C. H. M. (1961). Lysimetric measurements of evapotranspiration rates in the eastern United States. Soil Sci. Soc. Amer. Proc., 25, 138–141.CrossRefGoogle Scholar
van der Kamp, G. and Schmidt, R. (1997). Monitoring the total soil moisture on a scale of hectares using groundwater piezometers. Geophys. Res. Lett., 24, 719–722.CrossRefGoogle Scholar
van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J., 44, 892–898.CrossRefGoogle Scholar
van Stempvoort, D., Evert, L. and Wassenaar, L. (1993). Aquifer vulnerability index: a GIS-compatible method for groundwater vulnerability mapping. Can. Water Resour. J., 18, 25–37.CrossRefGoogle Scholar
VanderKwaak, J. E. and Loague, K. (2001). Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model. Water Resour. Res., 37, 999–1013.CrossRefGoogle Scholar
Vecchia, A. V. and Cooley, R. L. (1987). Simultaneous confidence and prediction intervals for nonlinear regression models with application to a groundwater flow model. Water Resour. Res., 22, 95–108.Google Scholar
Viger, R. J. and Leavesley, G. H. (2007). The GIS Weasel user’s manual. US Geological Survey Techniques and Methods Report 6-B4 Section 4.
Viswanathan, M. N. (1984). Recharge characteristics of an unconfined aquifer from the rainfall-water table relationship. J. Hydrol., 70, 233–250.CrossRefGoogle Scholar
Vogel, J. C. (1967). Investigation of groundwater flow with radiocarbon. In Isotopes in Hydrology. Vienna: International Atomic Energy Agency, SM-83/24, 355–369.Google Scholar
Vogel, R. M. and Fennessey, N. M. (1995). Flow duration curves II: a review of applications in water resources planning. Water Resour. Bull., 31, 1029–1039.CrossRefGoogle Scholar
von Asmuth, J. R., Mass, K., Bakker, M. and Petersen, J. (2008). Modeling time series of ground water head fluctuations subjected to multiple stresses. Ground Water, 46, 30–40.Google ScholarPubMed
Voronin, L. M. (2004). Documentation of revisions to the regional aquifer system analysis model of the New Jersey coastal plain. US Geological Survey Water-Resources Investigations Report 2003–4268.
Voss, C. I. and Provost, A. M. (2002). SUTRA, a model for saturated-unsaturated variable-density ground-water flow with solute or energy transport. US Geological Survey Water-Resources Investigations Report 02–4231.
Wagner, B. J. (1995). Sampling design methods for groundwater modeling under uncertainty. Water Resour. Res., 31, 2581–2591.CrossRefGoogle Scholar
Wahl, K. L. and Wahl, T. L. (1988). Effects of regional ground water level declines on streamflow in the Oklahoma panhandle. In Proceedings of the Symposium on Water-Use Data for Water Resources Management, American Water Resources Association.Google Scholar
Walker, G. R. (1998). Using soil water tracers to estimate recharge. In The Basics of Recharge and Discharge, ed. Zhang, L. and G. R. Walker: CSIRO Publication, 7.Google Scholar
Walker, G. R., Jolly, I. D. and Cook, P. G. (1991). A new chloride leaching approach to the estimation of diffuse recharge following a change in land use. J. Hydrol., 128, 49–67.CrossRefGoogle Scholar
Walton, W. C. (1970). Groundwater Resource Evaluation. New York: McGraw-Hill.Google Scholar
Walton, W. C. (2007). Aquifer Test Modeling. Boca Raton, Florida: CRC Press.Google Scholar
Walton-Day, K., Flynn, J. L., Kimball, B. A. and Runkel, R. L. (2005). Mass loading of selected major and trace elements in Lake Fork Creek near Leadville, Colorado, September–October 2001. US Geological Survey Scientific Investigations Report 2005–5151.
Walvoord, M. A. and Phillips, F. M. (2004). Identifying areas of basin-floor recharge in the Trans-Pecos region and the link to vegetation. J. Hydrol., 292, 59–74.CrossRefGoogle Scholar
Walvoord, M. A., Phillips, F. M., Tyler, S. W. and Hartsough, P. C. (2002a). Deep arid system hydrodynamics. 2: Application to paleohydrologic reconstruction using vadose zone profiles from the northern Mojave Desert. Water Resour. Res., 38, 1291, doi: 10.1029/ 2001WR000825.CrossRefGoogle Scholar
Walvoord, M. A., Plummer, M. A., Phillips, F. M. and Wolfsberg, A. V. (2002b). Deep arid system hydrodynamics: 1, Equilibrium states and response times in thick desert vadose zones. Water Resour. Res., 38, 1308, doi: 10.1029/ 2001WR000824.CrossRefGoogle Scholar
Wang, B., Jin, M., Nimmo, J. R., Yang, L. and Wang, W. (2008). Estimating groundwater recharge in Hebei Plain, China, under varying land use practices using tritium and bromide tracers. J. Hydrol., 356, 209–222.CrossRefGoogle Scholar
Warner, M. J. and Weiss, R. F. (1985). Solubilities of chlorofluorocarbons 11 and 12 in water and seawater. Deep-Sea Res., 32, 1485–1497.CrossRefGoogle Scholar
Watson, P., Sinclair, P. and Waggoner, R. (1976). Quantitative evaluation of a method for estimating recharge to the desert basins of Nevada. J. Hydrol., 31, 335–357.CrossRefGoogle Scholar
Webb, R. H. and Leake, S. A. (2006). Ground-water surface-water interactions and long-term change in riverine riparian vegetation in the southwestern United States. J. Hydrol., 320, 302–323.CrossRefGoogle Scholar
Webb, R. M. T., Wieczorek, M. E., Nolan, B. T. et al. (2008). Variations in pesticide leaching related to land use, pesticide properties, and unsaturated zone thickness. J. Environ. Qual., 37, 1145–1157.CrossRefGoogle ScholarPubMed
Weeks, E. P. (1979). Barometric fluctuations in wells tapping deep unconfined aquifers. Water Resour. Res., 15, 1167–1176.CrossRefGoogle Scholar
Weeks, E. P. (2002). The Lisse effect revisited. Ground Water, 40, 652–656.CrossRefGoogle ScholarPubMed
Weeks, E. P., Earp, D. E. and Thompson, G. M. (1982). Use of atmospheric fluorocarbons F-11 and F-12 to determine the diffusion parameters of the unsaturated zone in the southern High Plains of Texas. Water Resour. Res., 18, 1365–1378.CrossRefGoogle Scholar
Weeks, E. P. and Sorey, M. L. (1973). Use of finite-difference arrays of observation wells to estimate evapotranspiration from groundwater in the Arkansas River Valley, Colorado. US Geological Survey Water-Supply Paper 2029-C.
Weeks, J. B., Gutentag, E. D., Heimes, F. J. and Luckey, R. R. (1988). Summary of the High Plains regional aquifer-system analysis in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. US Geological Survey Professional Paper 1400-A.
Weeks, J. B., Leavesley, G. H., Welder, F. A. and Saulnier, G. J. Jr. (1974). Simulated effects of oil-shale development on the hydrology of Piceance Basin, Colorado. US Geological Survey Professional Paper 908.
Weiss, M. and Gvirtzman, H. (2007). Estimating ground water recharge using flow models of perched karstic aquifers. Ground Water, 45, 761–773.CrossRefGoogle ScholarPubMed
Weissmann, G. S., Zhang, Y., LaBolle, E. M. and Fogg, G. E. (2002). Dispersion of groundwater age in an alluvial aquifer system. Water Resour. Res., 38(10), 1198–1211.CrossRefGoogle Scholar
Wellings, S. R. (1984). Recharge of the Upper Chalk aquifer at a site in Hampshire, England. 1: Water balance and unsaturated flow. J. Hydrol., 69, 259–273.CrossRefGoogle Scholar
Wentz, D. A., Rose, W. J. and Webster, K. E. (1995). Long-term hydrologic and biogeochemical responses of a soft water seepage lake in north central Wisconsin. Water Resour. Res., 31, 199–212.CrossRefGoogle Scholar
Wenzel, L. K. (1942). Methods of determining permeability of water-bearing materials with special reference to discharging well methods. US Geological Survey Water-Supply Paper 887.
Westhoff, M. C., Savenjie, H. H. G., Luxemburg, W. M. J. et al. (2007). A distributed stream temperature model using high resolution temperature observations. Hydrol. Earth Sys. Sci., 11, 1469–1480.CrossRefGoogle Scholar
White, W. N. (1930). Preliminary report on the ground-water supply of Mimbres Valley, New Mexico. New Mexico State Engineer Office, Ninth Biennial Report, 1928–30, 133–151.
White, W. N. (1932). A method of estimating ground-water supplies based on discharge by plants and evaporation from soil: results of investigations in Escalante Valley, Utah. US Geological Survey Water-Supply Paper 659-A.
Wierenga, P. J., Hendrickx, J. M. H., Nash, M. H., Ludwig, J. and Daugherty, L. A. (1987). Variation of soil and vegetation with distance along a transect in the Chihuahuan Desert. J. Arid Environ., 13, 53–63.Google Scholar
Wigley, T. M. L., Plummer, L. N. and Pearson, F. J. Jr. (1978). Mass transfer and carbon isotope evolution in natural water systems. Geochimica et Cosmochimica Acta, 42, 1117–1139.CrossRefGoogle Scholar
Wilkison, D. H., Blevins, D. W., Kelly, B. P. and Wallace, W. C. (1994). Hydrology and water quality in claypan soil and glacial till at the Missouri Management Systems Evaluation Area near Centralia, Missouri, May 1991 to September 1993. US Geological Survey Open-File Report 94–705.
Wilson, G. B. and McNeill, G. W. (1997). Noble gas temperatures and excess air component. Applied Geochem., 12, 747–762.CrossRefGoogle Scholar
Wilson, J. L. and Guan, H. (2004). Mountain-block hydrology and mountain-front recharge. In Groundwater Recharge in a Desert Environment. The Southwestern United States, ed. Hogan, J. F., Phillips, F. M. and Scanlon, B. R.. Washington, DC: American Geophysical Union, 113–138.Google Scholar
Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D. and Wullschleger, S. D. (2001). A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agric. Forest Met., 106, 153–168.CrossRefGoogle Scholar
Wilson, L. G. (1980). Regional recharge research for southwest alluvial basins. Tucson, Arizona: Water Resources Research Center.
Wilson, R. D. and Mackay, D. M. (1996). SF6 as a conservative tracer in saturated media with high intragranular porosity or high organic carbon content. Ground Water, 34, 241–249.CrossRefGoogle Scholar
Winter, T. C. (2001). The concept of hydrologic landscapes. J. Amer. Water Resour. Assoc., 37, 335–349.CrossRefGoogle Scholar
Winter, T. C., Harvey, J. W., Franke, O. L. and Alley, W. M. (1998). Ground water and surface water; a single resource. US Geological Survey Circular 1139.
Winter, T. C., Labaugh, J. W. and Rosenberry, P. O. (1988). The design and use of a hydraulic potentiomanometer for direct measurement of differences in hydraulic head between groundwater and surface water. Limnol. Oceanogr., 33, 1209–1214.CrossRefGoogle Scholar
Wolf, A., Saliendra, N., Akshalov, K., Johnson, D. A. and Laca, E. (2008). Effects of different eddy covariance correction schemes on energy balance closure and comparisons with the modified Bowen ratio system. Agric. Forest Met., 148, 942–952.CrossRefGoogle Scholar
Wolock, D. M. (2003). Estimated mean annual natural ground-water recharge in the conterminous United States. US Geological Survey Open-File Report 2003–311.
Wood, W. W. (1999). Use and misuse of the chloride-mass balance method in estimating ground water recharge. Ground Water, 37, 2–3.CrossRefGoogle Scholar
Wood, W. W. and Sanford, W. E. (1995). Chemical and isotopic methods for quantifying ground-water recharge in a regional, semiarid environment. Ground Water, 33, 458–468.CrossRefGoogle Scholar
World Meteorological Organization (1983). Guide to Meteorological Instruments and Methods of Observation. Geneva:World Meteorological Organization.Google Scholar
Xiang, Y., Sykes, J. F. and Thomson, N. R. (1993). A composite L1 parameter estimator for model fitting in groundwater flow and solute transport simulation. Water Resour. Res., 29, 1661–1673.CrossRefGoogle Scholar
Yager, R. M. (1996). Simulated three-dimensional ground-water flow in the Lockport group, a fractured-dolomite aquifer near Niagara Falls, New York. US Geological Survey Water-Supply Paper 2487.
Yang, Y., Lerner, D. N., Barrett, M. H. and Tellam, J. H. (1999). Quantification of groundwater recharge in the city of Nottingham, UK. Environ. Geol., 38, 183–198.CrossRefGoogle Scholar
Young, M. B., Gonneea, M. E., Fong, D. A., Moore, W. S., Herrera-Silveira, J. and Paytan, A. (2008). Characterizing sources of groundwater to a tropical coastal lagoon in a karstic area using radium isotopes and water chemistry. Marine Chemistry, 109, 377–394.CrossRefGoogle Scholar
Zerle, L., Faestermann, T., Knie, K. et al. (1997). The Ca-41 bomb pulse and atmospheric transport of radionuclides. J. Geophys. Res. D, 102, 19517–19527.CrossRefGoogle Scholar
Zhang, L., Dawes, W. R., Hatton, T. J., Reece, P. H., Beale, G. T. H. and Packer, I. (1999). Estimation of soil moisture and groundwater recharge using the TOPOG IRM model. Water Resour. Res., 35, 149–161.CrossRefGoogle Scholar
Zheng, C. and Bennett, G. D. (2002). Applied Contaminant Transport Modeling, 2nd edn. New York: John Wiley and Sons, Inc.Google Scholar
Zheng, C., Lin, J. and Maidment, D. R. (2006). Internet data sources for ground water modeling. Ground Water, 44, 136–138.CrossRefGoogle Scholar
Zheng, C. and Wang, P. P. (1996). Parameter structure identification using tabu search and simulated annealing. Adv. Water Resour., 19, 215–224.CrossRefGoogle Scholar
Zhu, C. (2000). Estimate of recharge from radiocarbon dating of groundwater and numerical flow and transport modeling. Water Resour. Res., 36, 2607–2620.CrossRefGoogle Scholar
Zhu, C., Winterle, J. R. and Love, E. I. (2003). Late Pleistocene and Holocene groundwater recharge from the chloride mass balance method and chlorine-36 data. Water Resour. Res., 39, SBH41-SBH415.CrossRefGoogle Scholar
Zyvoloski, G., Dash, Z. and Kellar, S. (1997). FEHM 1.0: Finite element heat and mass transfer code. Los Alamos National Laboratory Report LA-12062. Los Alamos, NM.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×