Book contents
- Frontmatter
- Dedication
- Epigraph
- Contents
- Preface
- 1 Nicolas’ π(x)
- 2
Nicolas’ Number of Divisors Function Equivalence- 3
An Aspect of the Zeta Function Zero Gap Estimates- 4
The Rogers–Tao Equivalence- 5
The Dirichlet Series of Dobner- 6
An Upper Bound for the de Bruijn–Newman Constant- 7
The Pólya–Jensen Equivalence- 8
Ono et al. and Jensen Polynomials- 9
Gonek–Bagchi Universality and Bagchi’s Equivalence- 10
A Selection of Undecidable Propositions- 11
Equivalences and Decidability for Riemann’s Zeta- Appendix A
Imports for Gonek’s Theorems- Appendix B
Imports for Nicolas’ Theorems- Appendix C
Hyperbolic Polynomials- Appendix D
Absolute Continuity- Appendix E
Montel’s and Hurwitz’s Theorems- Appendix F
Markov’s and Gronwall’s Inequalities- Appendix G
Characterizing Riemann’s Zeta Function- Appendix H
Bohr’s Theorem- Appendix I
Zeta and L–Functions- Appendix J
de Reyna’s Expansion for the Hardy Contour- Appendix K
Stirling’s Approximation for the Gamma Function- Appendix L
Propositional Calculus P0- Appendix M
First Order Predicate Calculus P1- Appendix N
Recursive Functions- Appendix O
Ordinal Numbers and AnalysisReferencesIndex - 2
Appendix F - Markov’s and Gronwall’s Inequalities
Published online by Cambridge University Press: 11 October 2023
- Frontmatter
- Dedication
- Epigraph
- Contents
- Preface
- 1 Nicolas’ π(x)
- 2 Nicolas’ Number of Divisors Function Equivalence
- 3 An Aspect of the Zeta Function Zero Gap Estimates
- 4 The Rogers–Tao Equivalence
- 5 The Dirichlet Series of Dobner
- 6 An Upper Bound for the de Bruijn–Newman Constant
- 7 The Pólya–Jensen Equivalence
- 8 Ono et al. and Jensen Polynomials
- 9 Gonek–Bagchi Universality and Bagchi’s Equivalence
- 10 A Selection of Undecidable Propositions
- 11 Equivalences and Decidability for Riemann’s Zeta
- Appendix A Imports for Gonek’s Theorems
- Appendix B Imports for Nicolas’ Theorems
- Appendix C Hyperbolic Polynomials
- Appendix D Absolute Continuity
- Appendix E Montel’s and Hurwitz’s Theorems
- Appendix F Markov’s and Gronwall’s Inequalities
- Appendix G Characterizing Riemann’s Zeta Function
- Appendix H Bohr’s Theorem
- Appendix I Zeta and L–Functions
- Appendix J de Reyna’s Expansion for the Hardy Contour
- Appendix K Stirling’s Approximation for the Gamma Function
- Appendix L Propositional Calculus P0
- Appendix M First Order Predicate Calculus P1
- Appendix N Recursive Functions
- Appendix O Ordinal Numbers and Analysis
- References
- Index
Summary
- Type
- Chapter
- Information
- Equivalents of the Riemann Hypothesis , pp. 530 - 531Publisher: Cambridge University PressPrint publication year: 2023