Book contents
- Frontmatter
- Contents
- Group photograph
- List of participants
- Preface
- Reviews
- 1 Equations of state in stellar structure and evolution
- 2 Equation of state of stellar plasmas
- 3 Statistical mechanics of quantum plasmas. Path integral formalism
- 4 Onsager-molecule approach to screening potentials in strongly coupled plasmas
- 5 Astrophysical consequences of the screening of nuclear reactions
- 6 Crystallization of dense binary ionic mixtures. Application to white dwarf cooling theory
- 7 Non crystallized regions of White dwarfs. Thermodynamics. Opacity. Turbulent convection
- 8 White dwarf crystallization
- 9 Gravitational collapse versus thermonuclear explosion of degenerate stellar cores
- 10 Neutron star crusts with magnetic fields
- 11 High pressure experiments for astrophysics
- 12 Equation of state of dense hydrogen and the plasma phase transition; A microscopic calculational model for complex fluids
- 13 The equation of state of fluid hydrogen at high density
- 14 A comparative study of hydrogen equations of state
- 15 Strongly coupled ionic mixtures and the H/He equation of state
- 16 White dwarf seismology: Influence of the constitutive physics on the period spectra
- 17 Helioseismology: the Sun as a strongly-constrained, weakly-coupled plasma
- 18 Transport processes in dense stellar plasmas
- 19 Cataclysmic variables: structure and evolution
- 20 Giant planet, brown dwarf, and low-mass star interiors
- 21 Searches for brown dwarfs
- 22 Jovian seismology
- Observational projects
- Posters
8 - White dwarf crystallization
from Reviews
Published online by Cambridge University Press: 07 September 2010
- Frontmatter
- Contents
- Group photograph
- List of participants
- Preface
- Reviews
- 1 Equations of state in stellar structure and evolution
- 2 Equation of state of stellar plasmas
- 3 Statistical mechanics of quantum plasmas. Path integral formalism
- 4 Onsager-molecule approach to screening potentials in strongly coupled plasmas
- 5 Astrophysical consequences of the screening of nuclear reactions
- 6 Crystallization of dense binary ionic mixtures. Application to white dwarf cooling theory
- 7 Non crystallized regions of White dwarfs. Thermodynamics. Opacity. Turbulent convection
- 8 White dwarf crystallization
- 9 Gravitational collapse versus thermonuclear explosion of degenerate stellar cores
- 10 Neutron star crusts with magnetic fields
- 11 High pressure experiments for astrophysics
- 12 Equation of state of dense hydrogen and the plasma phase transition; A microscopic calculational model for complex fluids
- 13 The equation of state of fluid hydrogen at high density
- 14 A comparative study of hydrogen equations of state
- 15 Strongly coupled ionic mixtures and the H/He equation of state
- 16 White dwarf seismology: Influence of the constitutive physics on the period spectra
- 17 Helioseismology: the Sun as a strongly-constrained, weakly-coupled plasma
- 18 Transport processes in dense stellar plasmas
- 19 Cataclysmic variables: structure and evolution
- 20 Giant planet, brown dwarf, and low-mass star interiors
- 21 Searches for brown dwarfs
- 22 Jovian seismology
- Observational projects
- Posters
Summary
Abstract
The inclusion of a detailed treatment of solidification processes in the cooling theory of carbon–oxygen white dwarfs is of crucial importance for the determination of their luminosity function. Carbon–oxygen separation at crystallization yields delays larger than 2 Gyr to cool down to luminosities corresponding to the observed cut–off. This leads to estimates of the age of the galactic disk 1.5 to 2 Gyr older than the ones obtained in previous studies (about 9 Gyr). Furthermore, the presence of minor chemical species, in particular 22Ne, alters significantly the crystallization process, and produces extra delays of 2 to 3 gigayears. However, the detailed computation of the theoretical white dwarf luminosity function, taking into account a reasonable model of galactic chemical evolution, and including the effect of these species, shows that the location of the cut–off, and then the estimated age of the disk, is not modified significantly.
Le traitement détaillé du processus de solidification revêt une importance cruciale dans l'étude du refroidissement des naines blanches carbone–oxygéne et la détermination de leur fonction de luminosité. La séparation du carbone et de l'oxygène lors de la cristallisation introduit un retard de plus de 2 109 ans pour atteindre les valeurs de la luminosité correspondant au cut–off observé. Ceci conduit à une estimation de l'âge du disque de 1.5 à 2 109 ans plus vieille que celles obtenues dans les études précédentes.
- Type
- Chapter
- Information
- The Equation of State in AstrophysicsIAU Colloquium 147, pp. 161 - 185Publisher: Cambridge University PressPrint publication year: 1994