Book contents
- Frontmatter
- Contents
- Group photograph
- List of participants
- Preface
- Reviews
- 1 Equations of state in stellar structure and evolution
- 2 Equation of state of stellar plasmas
- 3 Statistical mechanics of quantum plasmas. Path integral formalism
- 4 Onsager-molecule approach to screening potentials in strongly coupled plasmas
- 5 Astrophysical consequences of the screening of nuclear reactions
- 6 Crystallization of dense binary ionic mixtures. Application to white dwarf cooling theory
- 7 Non crystallized regions of White dwarfs. Thermodynamics. Opacity. Turbulent convection
- 8 White dwarf crystallization
- 9 Gravitational collapse versus thermonuclear explosion of degenerate stellar cores
- 10 Neutron star crusts with magnetic fields
- 11 High pressure experiments for astrophysics
- 12 Equation of state of dense hydrogen and the plasma phase transition; A microscopic calculational model for complex fluids
- 13 The equation of state of fluid hydrogen at high density
- 14 A comparative study of hydrogen equations of state
- 15 Strongly coupled ionic mixtures and the H/He equation of state
- 16 White dwarf seismology: Influence of the constitutive physics on the period spectra
- 17 Helioseismology: the Sun as a strongly-constrained, weakly-coupled plasma
- 18 Transport processes in dense stellar plasmas
- 19 Cataclysmic variables: structure and evolution
- 20 Giant planet, brown dwarf, and low-mass star interiors
- 21 Searches for brown dwarfs
- 22 Jovian seismology
- Observational projects
- Posters
15 - Strongly coupled ionic mixtures and the H/He equation of state
from Reviews
Published online by Cambridge University Press: 07 September 2010
- Frontmatter
- Contents
- Group photograph
- List of participants
- Preface
- Reviews
- 1 Equations of state in stellar structure and evolution
- 2 Equation of state of stellar plasmas
- 3 Statistical mechanics of quantum plasmas. Path integral formalism
- 4 Onsager-molecule approach to screening potentials in strongly coupled plasmas
- 5 Astrophysical consequences of the screening of nuclear reactions
- 6 Crystallization of dense binary ionic mixtures. Application to white dwarf cooling theory
- 7 Non crystallized regions of White dwarfs. Thermodynamics. Opacity. Turbulent convection
- 8 White dwarf crystallization
- 9 Gravitational collapse versus thermonuclear explosion of degenerate stellar cores
- 10 Neutron star crusts with magnetic fields
- 11 High pressure experiments for astrophysics
- 12 Equation of state of dense hydrogen and the plasma phase transition; A microscopic calculational model for complex fluids
- 13 The equation of state of fluid hydrogen at high density
- 14 A comparative study of hydrogen equations of state
- 15 Strongly coupled ionic mixtures and the H/He equation of state
- 16 White dwarf seismology: Influence of the constitutive physics on the period spectra
- 17 Helioseismology: the Sun as a strongly-constrained, weakly-coupled plasma
- 18 Transport processes in dense stellar plasmas
- 19 Cataclysmic variables: structure and evolution
- 20 Giant planet, brown dwarf, and low-mass star interiors
- 21 Searches for brown dwarfs
- 22 Jovian seismology
- Observational projects
- Posters
Summary
Abstract
This paper summarizes recent work on the strongly coupled OCP and Binary Ionic Mixture equation of state and other thermodynamic quantities in white dwarf interior conditions for both fluid and solid phases with the assumption of a uniform background. Conditions for phase separation of different elements in fluid or solid phases is strongly dependent on deviations from the linear mixing rule which gives the equation of state as an additive function of the OCP equation of state. These deviations turn out to be small (a few parts in 105) and always positive including the case where the fraction of the higher Z component approaches 0. Also the equation of state of strongly coupled light elements (H and He particularly) obtained from simulations with a linear response description of the electrons is given for conditions appropriate to brown dwarf star interiors. Recent Livermore work on a band structure calculation of the enthalpy of H and He mixtures under jovian conditions is discussed. This work leads to a prediction of a high temperature (15000 oK) for miscibility of He in ionized H at 10 Mb.
Resume
Ce papier resume l'ouvrage recent sur le OCP à fort couplage et sur l'equation d'état et d'autres quantites thermodynamiques pour le melange binarire ionique aux conditions interieure des nains blancs. Les conditions pour seperation de phae dan les éléments divers dans l'état solide ou fluide sont très sensible aux deviations de regie lineaire qui donne l'equation d'état comme function additive sur celui du OCP.
- Type
- Chapter
- Information
- The Equation of State in AstrophysicsIAU Colloquium 147, pp. 330 - 346Publisher: Cambridge University PressPrint publication year: 1994
- 2
- Cited by