Book contents
- Frontmatter
- Contents
- Group photograph
- List of participants
- Preface
- Reviews
- 1 Equations of state in stellar structure and evolution
- 2 Equation of state of stellar plasmas
- 3 Statistical mechanics of quantum plasmas. Path integral formalism
- 4 Onsager-molecule approach to screening potentials in strongly coupled plasmas
- 5 Astrophysical consequences of the screening of nuclear reactions
- 6 Crystallization of dense binary ionic mixtures. Application to white dwarf cooling theory
- 7 Non crystallized regions of White dwarfs. Thermodynamics. Opacity. Turbulent convection
- 8 White dwarf crystallization
- 9 Gravitational collapse versus thermonuclear explosion of degenerate stellar cores
- 10 Neutron star crusts with magnetic fields
- 11 High pressure experiments for astrophysics
- 12 Equation of state of dense hydrogen and the plasma phase transition; A microscopic calculational model for complex fluids
- 13 The equation of state of fluid hydrogen at high density
- 14 A comparative study of hydrogen equations of state
- 15 Strongly coupled ionic mixtures and the H/He equation of state
- 16 White dwarf seismology: Influence of the constitutive physics on the period spectra
- 17 Helioseismology: the Sun as a strongly-constrained, weakly-coupled plasma
- 18 Transport processes in dense stellar plasmas
- 19 Cataclysmic variables: structure and evolution
- 20 Giant planet, brown dwarf, and low-mass star interiors
- 21 Searches for brown dwarfs
- 22 Jovian seismology
- Observational projects
- Posters
12 - Equation of state of dense hydrogen and the plasma phase transition; A microscopic calculational model for complex fluids
from Reviews
Published online by Cambridge University Press: 07 September 2010
- Frontmatter
- Contents
- Group photograph
- List of participants
- Preface
- Reviews
- 1 Equations of state in stellar structure and evolution
- 2 Equation of state of stellar plasmas
- 3 Statistical mechanics of quantum plasmas. Path integral formalism
- 4 Onsager-molecule approach to screening potentials in strongly coupled plasmas
- 5 Astrophysical consequences of the screening of nuclear reactions
- 6 Crystallization of dense binary ionic mixtures. Application to white dwarf cooling theory
- 7 Non crystallized regions of White dwarfs. Thermodynamics. Opacity. Turbulent convection
- 8 White dwarf crystallization
- 9 Gravitational collapse versus thermonuclear explosion of degenerate stellar cores
- 10 Neutron star crusts with magnetic fields
- 11 High pressure experiments for astrophysics
- 12 Equation of state of dense hydrogen and the plasma phase transition; A microscopic calculational model for complex fluids
- 13 The equation of state of fluid hydrogen at high density
- 14 A comparative study of hydrogen equations of state
- 15 Strongly coupled ionic mixtures and the H/He equation of state
- 16 White dwarf seismology: Influence of the constitutive physics on the period spectra
- 17 Helioseismology: the Sun as a strongly-constrained, weakly-coupled plasma
- 18 Transport processes in dense stellar plasmas
- 19 Cataclysmic variables: structure and evolution
- 20 Giant planet, brown dwarf, and low-mass star interiors
- 21 Searches for brown dwarfs
- 22 Jovian seismology
- Observational projects
- Posters
Summary
Abstract
We discuss problems related to the electronic and ionic structure of fluid Hydrogen, for equation of state calculations in the domain where a “plasma phase transition” (PPT) may occur. It is argued that the ionization of an electron bound to a particular nucleus proceeds through a progressive delocalization involving “hopping” electron states (i.e. cluster states). A description of the plasma containing pseudoatoms, pseudomolecules and free electrons is proposed. The PPT, if it exists, might be a mobility edge transition across a percolation threshold. It is shown how the effect of electron density, field-particle distributions and temperature on the binding energy of these pseudoatoms and pseudomolecules, can be included. Finally the abundances of these objects is determined by a minimization which allows the self-consistent optimization of ionic as well as electronic parameters contributing to the total free energy.
On discute les problèmes associés à la structure electronique et ionique de l'Hydrogène en phase fluide, en vue de calculs d'équation d'état dans le domaine d'une éventuelle transition de phase vers l'état de plasma (TPP). L'argument essentiel est que l'ionization d'un électron lié attaché à un atome se produit par une délocalisation progressive mettant en jeu des “états de grappe” (cluster states). La TPP pourrait être une transition de la mobilité se produisant au seuil de percolation. On propose une description du plasma où “pseudoatomes”, “pseudomolécules” et électrons libres coexistent.
- Type
- Chapter
- Information
- The Equation of State in AstrophysicsIAU Colloquium 147, pp. 272 - 286Publisher: Cambridge University PressPrint publication year: 1994