Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-16T16:58:58.618Z Has data issue: false hasContentIssue false

6 - The capacity of finite-state channels in the high-noise regime

Published online by Cambridge University Press:  05 June 2011

Henry D. Pfister
Affiliation:
Texas A&M University
Brian Marcus
Affiliation:
University of British Columbia, Vancouver
Karl Petersen
Affiliation:
University of North Carolina, Chapel Hill
Tsachy Weissman
Affiliation:
Stanford University, California
Get access

Summary

Abstract. This article considers the derivative of the entropy rate of a hidden Markov process with respect to the observation probabilities. The main result is a compact formula for the derivative that can be evaluated easily using Monte Carlo methods. It is applied to the problem of computing the capacity of a finite-state channel (FSC) and, in the high-noise regime, the formula has a simple closed-form expression that enables series expansion of the capacity of an FSC. This expansion is evaluated for a binary-symmetric channel under a (0, 1) run-length-limited constraint and an intersymbol-interference channel with Gaussian noise.

Introduction

The hidden Markov process

A hidden Markov process (HMP) is a discrete-time finite-state Markov chain (FSMC) observed through a memoryless channel. The HMP has become ubiquitous in statistics, computer science, and electrical engineering because it approximates many processes well using a dependency structure that leads to many efficient algorithms. While the roots of the HMP lie in the “grouped Markov chains” of Harris [20] and the “functions of a finite-state Markov chain” of Blackwell [8], the HMP first appears (in full generality) as the output process of a finite-state channel (FSC) [9]. The statistical inference algorithm of Baum and Petrie [5], however, cemented the HMP's place in history and is responsible for great advances in fields such as speech recognition and biological sequence analysis [22, 24]. An exceptional survey of HMPs, by Ephraim and Merhav, gives a nice summary of what is known in this area [12].

Type
Chapter
Information
Entropy of Hidden Markov Processes and Connections to Dynamical Systems
Papers from the Banff International Research Station Workshop
, pp. 179 - 222
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×