Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T14:09:04.612Z Has data issue: false hasContentIssue false

Chapter 12 - Why My “Aha!” Is Your “Hmm …”

Individual Differences in the Phenomenology and Likelihood of Insight Experiences

from V - Cognitive Neuroscience of Insight

Published online by Cambridge University Press:  02 May 2024

Carola Salvi
Affiliation:
John Cabot University, Rome
Jennifer Wiley
Affiliation:
University of Illinois, Chicago
Steven M. Smith
Affiliation:
Texas A & M University
Get access

Summary

Although insight experiences are recognized to be cognitively, physiologically, and neurologically distinct from other forms of reasoning and problem solving, it also appears that the experience of insight is not the same for all types of individuals or in all circumstances. Researchers in our lab and others have begun to examine the individual differences associated with the insight experience: what makes certain individuals more likely to report solving problems insightfully, and how might the subjective experience of insight differ among people according to their underlying psychological and neurobiological characteristics? Research demonstrates that the tendency to experience insight during problem-solving varies among individuals as a function of transient differences in one’s psychological state as well as stable, trait-like differences in neurocognitive dynamics. We argue that an individual differences approach can further disambiguate the components of insight on the behavioral and neural levels and help us understand when, and for whom, such experiences are most likely to occur, and how they may affect us depending on our individual motivations, goals, and underlying neurobiology.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansburg, P. I., & Hill, K. (2003). Creative and analytic thinkers differ in their use of attentional resources. Personality and Individual Differences, 34(7). https://doi.org/10.1016/S0191-8869(02)00104-6.CrossRefGoogle Scholar
Ash, I. K., Cushen, P. J., & Wiley, J. (2009). Obstacles in investigating the role of restructuring in insightful problem solving. The Journal of Problem Solving, 2(2).CrossRefGoogle Scholar
Ashby, F. G., Isen, A. M., & Turken, A. U. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106(3), 529550 https://doi.org/10.1037/0033-295X.106.3.529.CrossRefGoogle ScholarPubMed
Bar, M. (2009). A cognitive neuroscience hypothesis of mood and depression. Trends in Cognitive Sciences, 13(11), 456.CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Barry Kaufman, S., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5. https://doi.org/10.1038/srep10964.CrossRefGoogle Scholar
Beaty, R. E., Silvia, P. J., & Benedek, M. (2017). Brain networks underlying novel metaphor production. Brain and Cognition, 111, 163170. https://doi.org/10.1016/j.bandc.2016.12.004.CrossRefGoogle ScholarPubMed
Becker, M., Kühn, S., & Sommer, T. (2021). Verbal insight revisited – dissociable neurocognitive processes underlying solutions accompanied by an AHA! experience with and without prior restructuring. Journal of Cognitive Psychology, 33(6–7), 659684.CrossRefGoogle Scholar
Becker, M., Sommer, T., & Kühn, S. (2020). Verbal insight revisited: fMRI evidence for early processing in bilateral insulae for solutions with AHA! experience shortly after trial onset. Human Brain Mapping, 41(1), 3045CrossRefGoogle ScholarPubMed
Benedek, M., Kenett, Y. N., Umdasch, K., et al. (2017). How semantic memory structure and intelligence contribute to creative thought: a network science approach. Thinking & Reasoning, 23(2), 158183.CrossRefGoogle Scholar
Beyer, S., & Bowden, E. M. (1997). Gender differences in self-perceptions: Convergent evidence from three measures of accuracy and bias. Personality and Social Psychology Bulletin, 23(2), 157172. https://doi.org/10.1177/0146167297232005.CrossRefGoogle Scholar
Bieth, T., Kenett, Y. N., Ovando-Tellez, M., et al. (2021). Dynamic changes in semantic memory structure support successful problem-solving. PsyArXiv. https://doi.org/10.31234/osf.io/38b4w.CrossRefGoogle Scholar
Biss, R. K., Hasher, L., & Thomas, R. C. (2010). Positive mood is associated with the implicit use of distraction. Motivation and Emotion, 34(1), 7377. https://doi.org/10.1007/s11031-010-9156-y.CrossRefGoogle ScholarPubMed
Boot, N., Nevicka, B., & Baas, M. (2020). Creativity in ADHD: Goal-directed motivation and domain specificity. Journal of Attention Disorders, 24(13), 18571866. https://doi.org/10.1177/1087054717727352.CrossRefGoogle ScholarPubMed
Bowden, E. M., & Beeman, M. J. (1998). Getting the right idea: Semantic activation in the right hemisphere may help solve insight problems. Psychological Science, 9(6), 435440. https://doi.org/10.1111/1467-9280.00082.CrossRefGoogle Scholar
Bowden, E. M., & Jung-Beeman, M. (2003a). Aha! Insight experience correlates with solution activation in the right hemisphere. Psychonomic Bulletin and Review, 10(3), 730737. https://doi.org/10.3758/BF03196539.CrossRefGoogle ScholarPubMed
Bowden, E. M., & Jung-Beeman, M. (2003b). Normative data for 144 compound remote associate problems. Behavior Research Methods, Instruments, & Computers, 35(4), 634639. https://doi.org/10.3758/BF03195543.Google Scholar
Bowden, E. M., Jung-Beeman, M., Fleck, J., & Kounios, J. (2005). New approaches to demystifying insight. Trends in Cognitive Sciences, 9(7). https://doi.org/10.1016/j.tics.2005.05.012.CrossRefGoogle ScholarPubMed
Carson, S. H. (2011). Creativity and psychopathology: A shared vulnerability model. Canadian Journal of Psychiatry, 56(3), 144153.CrossRefGoogle ScholarPubMed
Chesebrough, C. B. (2021). Conceptual change induced by analogical reasoning sparks “Aha!” moments (Order No. 28547111). Available from ProQuest Dissertations & Theses Global. (2566074726). www.proquest.com/openview/69e76cc04937c73e12a8075345a70512/1?pq-origsite=gscholar&cbl=18750&diss=y.Google Scholar
Chesebrough, C., Chrysikou, E. G., Holyoak, K. H., Zhang, Z., & Kounios, J. (2023). Conceptual change induced by analogical reasoning sparks Aha moments. Creativity Research Journal. https://doi.org/10.1080/10400419.2023.2188361.CrossRefGoogle Scholar
Chesebrough, C., & Wiley, J. (2019). Exploring Aha! moments during science learning. CogSci (p. 3429). https://cognitivesciencesociety.org/cogsci-2022/.Google Scholar
Chrysikou, E. G. (2018). The costs and benefits of cognitive control for creativity. In Jung, R. & Vartanian, O. (Eds.), The Cambridge handbook of the neuroscience of creativity (pp. 299317). Cambridge University Press. https://doi.org/10.1017/9781316556238.018.Google Scholar
Clos, M., Bunzeck, N., & Sommer, T. (2019). Dopamine is a double-edged sword: Dopaminergic modulation enhances memory retrieval performance but impairs metacognition. Neuropsychopharmacology, 44(3), 555563.CrossRefGoogle ScholarPubMed
Cosgrave, J., Haines, R., Golodetz, S., et al. (2018). Schizotypy and performance on an insight problem-solving task: The contribution of persecutory ideation. Frontiers in Psychology, 9(May). https://doi.org/10.3389/fpsyg.2018.00708.CrossRefGoogle Scholar
Danek, A. H., & Flanagin, V. L. (2019). Cognitive conflict and restructuring: The neural basis of two core components of insight. AIMS Neuroscience, 6(2), 60.CrossRefGoogle ScholarPubMed
Danek, A. H., Fraps, T., Von Müller, A., Grothe, B., & Öllinger, M. (2013). Aha! experiences leave a mark: Facilitated recall of insight solutions. Psychological Research, 77(5), 659669.Google Scholar
Danek, A. H., Fraps, T., von Müller, A., Grothe, B., & Öllinger, M. (2014). It’s a kind of magic – what self-reports can reveal about the phenomenology of insight problem solving. Frontiers in Psychology, 5, 1408.CrossRefGoogle ScholarPubMed
Danek, A. H., & Salvi, C. (2020). Moment of truth: Why Aha! experiences are correct. The Journal of Creative Behavior, 54(2), 484486. https://doi.org/10.1002/jocb.380.CrossRefGoogle Scholar
Danek, A. H., & Wiley, J. (2020). What causes the insight memory advantage? Cognition, 205, 104411. https://doi.org/10.1016/j.cognition.2020.104411.CrossRefGoogle ScholarPubMed
Danek, A. H., Williams, J., & Wiley, J. (2020). Closing the gap: Connecting sudden representational change to the subjective Aha! experience in insightful problem solving. Psychological Research, 84(1), 111119. https://doi.org/10.1007/s00426-018-0977-8.CrossRefGoogle Scholar
Dollinger, S. J. (2003). Need for uniqueness, need for cognition, and creativity. The Journal of Creative Behavior, 37(2), 99116.CrossRefGoogle Scholar
Durso, F. T., Rea, C. B., & Dayton, T. (1994). Graph-theoretic confirmation of restructuring during insight. Psychological Science, 5, 9498.CrossRefGoogle Scholar
Dygert, S. K. C., & Jarosz, A. F. (2020). Individual differences in creative cognition. Journal of Experimental Psychology: General, 149(7), 12491274. https://doi.org/10.1037/xge0000713.CrossRefGoogle ScholarPubMed
Ellis, D. M., Robison, M. K., & Brewer, G. A. (2021). The cognitive underpinnings of multiply-constrained problem solving. Journal of Intelligence, 9(1), 7.CrossRefGoogle ScholarPubMed
Erickson, B., Truelove-Hill, M., Oh, Y., et al. (2018). Resting-state brain oscillations predict trait-like cognitive styles. Neuropsychologia, 120, 18. https://doi.org/10.1016/j.neuropsychologia.2018.09.014.CrossRefGoogle ScholarPubMed
Fleck, J. I., Green, D. L., Stevenson, J. L., et al. (2008). The transliminal brain at rest: Baseline EEG, unusual experiences, and access to unconscious mental activity. Cortex, 44(10), 13531363. https://doi.org/10.1016/j.cortex.2007.08.024.CrossRefGoogle Scholar
Friston, K. J., Lin, M., Frith, C. D., et al. (2017). Active inference, curiosity and insight. Neural Computation, 29(10), 26332683. https://doi.org/10.1162/neco_a_00999.CrossRefGoogle ScholarPubMed
Gabora, L. (2016). A possible role for entropy in creative cognition. arXiv preprint arXiv:1611.03605.Google Scholar
Gabora, L, Beckage, N. M., & Steel, M. (2022). An autocatalytic network model of conceptual change. Topics in Cognitive Science, 14(1), 163188.CrossRefGoogle ScholarPubMed
Gilhooly, K., & Webb, M. E. (2018). Working memory in insight problem solving. Insight, 105119.CrossRefGoogle Scholar
Gopnik, A. (1998). Explanation as orgasm. Minds and Machines, 8(1), 101118. https://doi.org/10.1023/A:1008290415597.CrossRefGoogle Scholar
Goschke, T., & Bolte, A. (2014). Emotional modulation of control dilemmas: The role of positive affect, reward, and dopamine in cognitive stability and flexibility. Neuropsychologia, 62, 403423. https://doi.org/10.1016/j.neuropsychologia.2014.07.015.CrossRefGoogle ScholarPubMed
Hirsh, J. B., Mar, R. A., & Peterson, J. B. (2012). Psychological entropy: A framework for understanding uncertainty-related anxiety. Psychological Review, 119(2), 304320. https://doi.org/10.1037/a0026767CrossRefGoogle ScholarPubMed
Holyoak, K. J., & Thagard, P. (1995). Mental leaps: Analogy in creative thought. MIT Press.Google Scholar
Isen, A. M., Daubman, K. A., & Nowicki, G. P. (1987). Positive affect facilitates creative problem solving. Journal of Personality and Social Psychology, 52(6), 11221131. https://doi.org/10.1037/0022-3514.52.6.1122.CrossRefGoogle ScholarPubMed
Jarosz, A. F., Colflesh, G. J., & Wiley, J. (2012). Uncorking the muse: Alcohol intoxication facilitates creative problem solving. Consciousness and Cognition, 21(1), 487493. https://doi.org/10.1016/j.concog.2012.01.002.CrossRefGoogle ScholarPubMed
Jung-Beeman, M., Bowden, E. M., Haberman, J., et al. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2(4), e97. https://doi.org/10.1371/journal.pbio.0020097.CrossRefGoogle ScholarPubMed
Kaplan, C. A., & Simon, H. A. (1990). In search of insight. Cognitive Psychology, 22(3), 374419. https://doi.org/10.1016/0010-0285(90)90008-R.CrossRefGoogle Scholar
Karimi, Z., Windmann, S., Güntürkün, O., & AbrAham, A. (2007). Insight problem solving in individuals with high versus low schizotypy. Journal of Research in Personality, 41(2), 473480.CrossRefGoogle Scholar
Kashdan, T. B., Stiksma, M. C., Disabato, D. D., et al. (2018). The five-dimensional curiosity scale: Capturing the bandwidth of curiosity and identifying four unique subgroups of curious people. Journal of Research in Personality, 73, 130149. https://doi.org/10.1016/j.jrp.2017.11.011.CrossRefGoogle Scholar
Kaufman, S. B., Quilty, L. C., Grazioplene, R. G., et al. (2016). Openness to experience and intellect differentially predict creative achievement in the arts and sciences. Journal of Personality, 84(2), 248258.CrossRefGoogle ScholarPubMed
Kenett, Y. N., Anaki, D., & Faust, M. (2014). Investigating the structure of semantic networks in low and high creative persons. Frontiers in Human Neuroscience, 8(June). https://doi.org/10.3389/fnhum.2014.00407.CrossRefGoogle ScholarPubMed
Kenett, Y. N., & Faust, M. (2019). A semantic network cartography of the creative mind. Trends in Cognitive Sciences, 23(4), P271274. https://doi.org/10.1016/j.tics.2019.01.007.CrossRefGoogle ScholarPubMed
Kidd, C., & Hayden, B. Y. (2015). The psychology and neuroscience of curiosity. Neuron, 88(3), 449460.CrossRefGoogle ScholarPubMed
Kizilirmak, J. M., Schott, B. H., Thuerich, H., et al. (2019). Learning of novel semantic relationships via sudden comprehension is associated with a hippocampus-independent network. Consciousness and Cognition, 69, 113132. https://doi.org/10.1016/j.concog.2019.01.005.CrossRefGoogle ScholarPubMed
Kizilirmak, J. M., Thuerich, H., Folta-Schoofs, K., Schott, B. H., & Richardson-Klavehn, A. (2016). Neural correlates of learning from induced insight: A case for reward-based episodic encoding. Frontiers in Psychology, 7(Nov.). https://doi.org/10.3389/fpsyg.2016.01693.CrossRefGoogle ScholarPubMed
Klein, G., & Jarosz, A. (2011). A naturalistic study of insight. Journal of Cognitive Engineering and Decision Making, 5(4). https://doi.org/10.1177/1555343411427013.CrossRefGoogle Scholar
Kounios, J., & Beeman, M. (2014). The cognitive neuroscience of insight. Annual Review of Psychology, 65, 7193. https://doi.org/10.1146/annurev-psych-010213-115154.CrossRefGoogle ScholarPubMed
Kounios, J., & Beeman, M. (2015). The Eureka factor: Creative insights and the brain. Random House.Google Scholar
Kounios, J., Fleck, J. I., Green, D. L., Payne, L., et al. (2008). The origins of insight in resting-state brain activity. Neuropsychologia, 46(1), 281291.CrossRefGoogle ScholarPubMed
Kounios, J., Frymiare, J. L., Bowden, E. M., et al. (2006). The prepared mind: Neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science, 17(10), 882890. https://doi.org/10.1111/j.1467-9280.2006.01798.x.CrossRefGoogle ScholarPubMed
Laukkonen, R. E., Kaveladze, B. T., Tangen, J. M., & Schooler, J. W. (2020). The dark side of Eureka: Artificially induced Aha moments make facts feel true. Cognition, 196, 104122. https://doi.org/10.1016/j.cognition.2019.104122.CrossRefGoogle ScholarPubMed
Liljedahl, P. G. (2005). Mathematical discovery and affect: The effect of AHA! experiences on undergraduate mathematics students. International Journal of Mathematical Education in Science and Technology, 36(2–3), 219234. https://doi.org/10.1080/00207390412331316997.CrossRefGoogle Scholar
Loewenstein, G. (1994). The psychology of curiosity: A review and reinterpretation. Psychological Bulletin, 116(1), 7598. https://doi.org/10.1037//0033-2909.116.1.75.CrossRefGoogle Scholar
Luchini, S., Kenett, Y. N., Zeitlen, D. C., et al. (2023). Convergent thinking and insight problem solving relate to semantic memory network structure. Thinking Skills and Creativity, 48, 101277CrossRefGoogle Scholar
Marvin, C. B., Tedeschi, E., & Shohamy, D. (2020). Curiosity as the impulse to know: Common behavioral and neural mechanisms underlying curiosity and impulsivity. Current Opinion in Behavioral Sciences, 35, 9298. https://doi.org/10.1016/j.cobeha.2020.08.003.CrossRefGoogle Scholar
Mednick, S. (1962). The associative basis of the creative problem solving process. Psychological Review, 69(3), 200232. https://doi.org/10.1037/h0048850.CrossRefGoogle Scholar
Metcalfe, J., & Wiebe, D. (1987). Intuition in insight and noninsight problem solving. Memory & Cognition, 15(3), 238246. https://doi.org/10.3758/BF03197722.CrossRefGoogle ScholarPubMed
Metz, K. E. (1985). The development of children’s problem solving in a gears task: A problem space perspective. Cognitive Science, 9(4), 431471. https://doi.org/10.1207/s15516709cog0904_4CrossRefGoogle Scholar
Moss, J., Kotovsky, K., & Cagan, J. (2007). The influence of open goals on the acquisition of problem-relevant information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(5), 876891. https://doi.org/10.1037/0278-7393.33.5.876.Google ScholarPubMed
Nam, B., Paromita, P., Chu, S. L., Chaspari, T., & Woltering, S. (2021). Moments of insight in problem-solving relate to bodily arousal. Journal of Creative Behavior, 55(4). https://doi.org/10.1002/jocb.504.CrossRefGoogle Scholar
Oettingen, G., Gollwitzer, A., Jung, J., & Okten, I. O. (2022). Misplaced certainty in the context of conspiracy theories. Current Opinion in Psychology, 101393.CrossRefGoogle Scholar
Oh, Y., Chesebrough, C., Erickson, B., Zhang, F., & Kounios, J. (2020). An insight-related neural reward signal. NeuroImage, 214. https://doi.org/10.1016/j.neuroimage.2020.116757.CrossRefGoogle ScholarPubMed
Ovington, L. A., Saliba, A. J., Moran, C. C., Goldring, J., & MacDonald, J. B. (2018). Do people really have insights in the shower? The when, where and who of the Aha! moment. Journal of Creative Behavior, 52(1), 2134. https://doi.org/10.1002/jocb.126.CrossRefGoogle Scholar
Partos, T. R., Cropper, S. J., & Rawlings, D. (2016). You don’t see what I see: Individual differences in the perception of meaning from visual stimuli. PLoS ONE, 11(3), e0150615.CrossRefGoogle ScholarPubMed
Red’ko, V. G., Samsonovich, A. V., & Klimov, V. V. (2023). Computational modeling of insight processes and artificial cognitive ontogeny. Cognitive Systems Research, 78, 7186.CrossRefGoogle Scholar
Rollwage, M., Loosen, A., Hauser, T. U., et al. (2020). Confidence drives a neural confirmation bias. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-16278-6.CrossRefGoogle ScholarPubMed
Rominger, C., Weiss, E. M., Fink, A., Schulter, G., & Papousek, I. (2011). Allusive thinking (cognitive looseness) and the propensity to perceive “meaningful” coincidences. Personality and Individual Differences, 51(8), 10021006. https://doi.org/10.1016/j.paid.2011.08.012.CrossRefGoogle Scholar
Rosen, D. S., Oh, Y., Erickson, B., et al. (2020). Dual-process contributions to creativity in jazz improvisations: An SPM-EEG study. NeuroImage, 213, 116632.CrossRefGoogle ScholarPubMed
Runco, M. A. (2022). Uncertainty makes creativity possible. In Beghetto, R. A. & Jaeger, G. J. (Eds.), Uncertainty: A catalyst for creativity, learning and development (pp. 2336). Springer.Google Scholar
Salvi, C., Beeman, M., Bikson, M., McKinley, R., & Grafman, J. (2020). TDCS to the right anterior temporal lobe facilitates insight problem-solving. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-57724-1.CrossRefGoogle Scholar
Salvi, C., & Bowden, E. (2020). The relation between state and trait risk taking and problem-solving. Psychological Research, 84(5), 12351248. https://doi.org/10.1007/s00426-019-01152-y.CrossRefGoogle ScholarPubMed
Salvi, C., Bricolo, E., Franconeri, S. L., Kounios, J., & Beeman, M. (2015). Sudden insight is associated with shutting out visual inputs. Psychonomic Bulletin & Review, 22(6), 18141819. https://doi.org/10.3758/s13423-015-0845-0.CrossRefGoogle ScholarPubMed
Salvi, C., Bricolo, E., Kounios, J., Bowden, E., & Beeman, M. (2016) Insight solutions are correct more often than analytic solutions. Thinking & Reasoning, 22(4), 443460. https://doi.org/10.1080/13546783.2016.1141798.CrossRefGoogle ScholarPubMed
Salvi, C., Simoncini, C., Grafman, J., & Beeman, M. (2020). Oculometric signature of switch into awareness? Pupil size predicts sudden insight whereas microsaccades predict problem-solving via analysis. NeuroImage, 217, 116933. https://doi.org/10.1016/j.neuroimage.2020.116933.CrossRefGoogle ScholarPubMed
Santarnecchi, E., Sprugnoli, G., Bricolo, E., et al. (2019). Gamma tACS over the temporal lobe increases the occurrence of Eureka! moments. Scientific Reports, 9(1), 112.CrossRefGoogle ScholarPubMed
Schilling, M. A. (2005). A” small-world” network model of cognitive insight. Creativity Research Journal, 17(2–3), 131154.CrossRefGoogle Scholar
Seifert, C. M., Meyer, D. E., Davidson, N., Patalano, A. L., & Yaniv, I. (1995). Demystification of cognitive insight: Opportunistic assimilation and the prepared-mind perspective. In Sternberg, R. J. & Davidson, J. E. (Eds.), The nature of insight (pp. 65124). MIT Press.Google Scholar
Shen, W., Tong, Y., Li, F., et al. (2018). Tracking the neurodynamics of insight: A meta-analysis of neuroimaging studies. Biological Psychology, 138, 189198. https://doi.org/10.1016/j.biopsycho.2018.08.018.CrossRefGoogle ScholarPubMed
Siew, C. S., Wulff, D. U., Beckage, N. M., & Kenett, Y. N. (2019). Cognitive network science: A review of research on cognition through the lens of network representations, processes, and dynamics. Complexity, 5915, 124.CrossRefGoogle Scholar
Skaar, Ø. O., & Reber, R. (2020). Motivation through insight: The phenomenological correlates of insight and spatial ability tasks. Journal of Cognitive Psychology, 33(6), 631643.CrossRefGoogle Scholar
Smith, S. M. (1995). Fixation, incubation, and insight in memory and creative thinking. In Smith, S. M., Ward, T. B., & Finke, R. A. (Eds.), The creative cognition approach (pp. 135146). MIT Press.Google Scholar
Stanciu, M. M., & Papasteri, C. (2018). Intelligence, personality and schizotypy as predictors of insight. Personality and Individual Differences, 134. https://doi.org/10.1016/j.paid.2018.05.043.CrossRefGoogle Scholar
Stephen, D. G., & Dixon, J. A. (2009). The self-organization of insight: Entropy and power laws in problem solving. Journal of Problem Solving, 2(1), 72102.CrossRefGoogle Scholar
Stephen, D. G., Boncoddo, R. A., Magnuson, J. S., & Dixon, J. A. (2009). The dynamics of insight: Mathematical discovery as a phase transition. Memory & Cognition, 37, 11321149.CrossRefGoogle ScholarPubMed
Subramaniam, K., Kounios, J., Parrish, T. B., & Jung-Beeman, M. (2009). A brain mechanism for facilitation of insight by positive affect. Journal of Cognitive Neuroscience, 21(3), 415432. https://doi.org/10.1162/jocn.2009.21057.CrossRefGoogle ScholarPubMed
Thagard, P., & Stewart, T. C. (2011). The AHA! experience: Creativity through emergent binding in neural networks. Cognitive Science, 35(1). https://doi.org/10.1111/j.1551-6709.2010.01142.x.CrossRefGoogle ScholarPubMed
Tik, M., Sladky, R., Luft, C. D. B., et al. (2018). Ultra-high-field fMRI insights on insight: Neural correlates of the Aha!-moment. Human Brain Mapping, 39(8), 32413252. https://doi.org/10.1002/hbm.24073.CrossRefGoogle ScholarPubMed
Truelove-Hill, M., Erickson, B. A., Anderson, J., Kossoyan, M., & Kounios, J. (2018). A growth-curve analysis of the effects of future-thought priming on insight and analytical problem-solving. Frontiers in Psychology, 1311.Google Scholar
Tulver, K., Kaup, K. K., Laukkonen, R., & Aru, J. (2023). Restructuring insight: An integrative review of insight in problem-solving, meditation, psychotherapy, delusions and psychedelics. Consciousness and Cognition, 110, 103494.CrossRefGoogle ScholarPubMed
van de Cruys, S., Damiano, C., Boddez, Y., et al. (2021). Visual affects: Linking curiosity, Aha-Erlebnis, and memory through information gain. Cognition, 212. https://doi.org/10.1016/j.cognition.2021.104698.CrossRefGoogle ScholarPubMed
van den Berg, I., Franken, I. H. A., & Muris, P. (2011). Individual differences in sensitivity to Reward. Journal of Psychophysiology, 25(2). https://doi.org/10.1027/0269-8803/a000032.CrossRefGoogle Scholar
Weafer, J., Crane, N. A., Gorka, S. M., Phan, K. L., & de Wit, H. (2019). Neural correlates of inhibition and reward are negatively associated. NeuroImage, 196. https://doi.org/10.1016/j.neuroimage.2019.04.021.CrossRefGoogle ScholarPubMed
Webb, M. E., Little, D. R., & Cropper, S. J. (2016). Insight is not in the problem: Investigating insight in problem solving across task types. Frontiers in Psychology, 7, 1424. https://doi.org/10.3389/fpsyg.2016.01424.CrossRefGoogle Scholar
Webb, M. E., Little, D. R., & Cropper, S. J. (2018). Once more with feeling: Normative data for the aha experience in insight and noninsight problems. Behavior Research Methods, 50(5), 20352056. https://doi.org/10.3758/s13428-017-0972-9.CrossRefGoogle ScholarPubMed
Webb, M. E., Little, D. R., & Cropper, S. J. (2021). Unusual uses and experiences are good for feeling insightful, but not for problem solving: Contributions of schizotypy, divergent thinking, and fluid reasoning, to insight moments. Journal of Cognitive Psychology, 33(6–7), 770792. https://doi.org/10.1080/20445911.2021.1929254.CrossRefGoogle Scholar
White, H. A., & Shah, P. (2016). Scope of semantic activation and innovative thinking in college students with ADHD. Creativity Research Journal, 28(3), 275282. https://doi.org/10.1080/10400419.2016.1195655.CrossRefGoogle Scholar
Wiley, J., & Jarosz, A. F. (2012). Working memory capacity, attentional focus, and problem solving. Current Directions in Psychological Science, 21(4), 258262. https://doi.org/10.1177/0963721412447622.CrossRefGoogle Scholar
Yu, Y., Salvi, C., & Beeman, M. (2023). Solving problems with an Aha! increases risk preference. Thinking & Reasoning, 122.CrossRefGoogle Scholar
Zabelina, D., Saporta, A., & Beeman, M. (2016). Flexible or leaky attention in creative people? Distinct patterns of attention for different types of creative thinking. Memory & Cognition, 44, 488498.CrossRefGoogle ScholarPubMed
Zedelius, C. M., Protzko, J., Broadway, J. M., & Schooler, J. W. (2021). What types of daydreaming predict creativity? Laboratory and experience sampling evidence. Psychology of Aesthetics, Creativity, and the Arts, 15(4), 596611. https://doi.org/10.1037/aca0000342.CrossRefGoogle Scholar
Zhu, X., Oh, Y., Chesebrough, C., Zhang, F., & Kounios, J. (2021). Pre-stimulus brain oscillations predict insight versus analytic problem-solving in an anagram task. Neuropsychologia, 162. https://doi.org/10.1016/j.neuropsychologia.2021.108044.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×