Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T09:23:23.705Z Has data issue: false hasContentIssue false

Chapter 13 - Insight

What Happens Backstage?

from V - Cognitive Neuroscience of Insight

Published online by Cambridge University Press:  02 May 2024

Carola Salvi
Affiliation:
John Cabot University, Rome
Jennifer Wiley
Affiliation:
University of Illinois, Chicago
Steven M. Smith
Affiliation:
Texas A & M University
Get access

Summary

In this chapter, we argue that differences in problem-solving experiences can be traced to differences in the activation of brain structures involved in the unconscious processing of information (what we refer to as “the backstage”). Scientists commonly distinguish between two major types of problem-solving experiences: via insight and via analysis. Three properties are often mentioned when describing how insight solutions differ from analytic solutions: (1) Solvers are unable to report much of the processing that leads to the solution which comes to mind in an off–on manner; (2) Solvers experience their solutions together with a feeling of pleasure and reward; (3) Solutions via insight feel correct and they actually are. This is captured by a distinctive response: the Aha! This chapter focuses on these three properties and argues that unconscious processes are important for problem-solving in general, but especially important for insight experiences because most of the processing that leads to the solution happens below awareness. It also argues that the positive affect associated with insight serves an adaptive function.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amabile, T. M. (1993). Motivational synergy: Toward new conceptualizations of intrinsic and extrinsic motivation in the workplace. Human Resource Management Review, 3(3), 185201. https://doi.org/10.1016/1053-4822(93)90012-S.CrossRefGoogle Scholar
Ashby, F. G., Isen, A. M., & Turken, A. U. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106(3), 529550. https://doi.org/10.1037/0033-295X.106.3.529CrossRefGoogle ScholarPubMed
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403450.CrossRefGoogle ScholarPubMed
Auble, P. M., Franks, J. J., Soraci, S. A., et al. (1979). Effort toward comprehension: Elaboration or “Aha”? Memory & Cognition, 7(6), 426434. https://doi.org/10.3758/BF03198259.CrossRefGoogle Scholar
Augustine, J. R. (1996). Circuitry and functional aspects of the insular lobe in primates including humans. Brain Research Reviews, 22(3), 229244.CrossRefGoogle ScholarPubMed
Aziz-Zadeh, L., Kaplan, J. T., & Iacoboni, M. (2009). “Aha!”: The neural correlates of verbal insight solutions. Human Brain Mapping, 30(3), 908916. https://doi.org/10.1002/hbm.20554.CrossRefGoogle ScholarPubMed
Ballard, I. C., Murty, V. P., McKell Carter, R., et al. (2011). The dorsolateral prefrontal cortex drives mesolimbic dopaminergic regions to initiate motivated behavior. Journal of Neuroscience, 31, 1034010346.CrossRefGoogle ScholarPubMed
Baumann, N., & Kuhl, J. (2005). Positive affect and flexibility: Overcoming the precedence of global over local processing of visual information. Motivation and Emotion, 29(2), 123134.CrossRefGoogle Scholar
Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making, and the orbitofrontal cortex. Cerebral Cortex, 10(3), 295307. https://doi.org/10.1093/cercor/10.3.295.CrossRefGoogle ScholarPubMed
Becker, M., Kühn, S., & Sommer, T. (2021). Verbal insight revisited – dissociable neurocognitive processes underlying solutions accompanied by an AHA! experience with and without prior restructuring. Journal of Cognitive Psychology, 33(6–7), 659684.CrossRefGoogle Scholar
Becker, M., Sommer, T., & Kühn, S. (2020). Verbal insight revisited: fMRI evidence for early processing in bilateral insulae for solutions with AHA! experience shortly after trial onset. Human Brain Mapping, 41(1), 3045. https://doi.org/10.1002/hbm.24785.CrossRefGoogle ScholarPubMed
Becker, M., Wiedemann, G., & Kühn, S. (2020). Quantifying insightful problem solving: A modified compound remote associates paradigm using lexical priming to parametrically modulate different sources of task difficulty. Psychological Research, 84, 528545. https://doi.org/10.1007/s00426-018-1042-3.CrossRefGoogle ScholarPubMed
Beversdorf, D. Q., Hughes, J. D., Steinberg, B. A., Lewis, L. D., & Heilman, K. M. (1999). Noradrenergic modulation of cognitive flexibility in problem-solving. Neuroreport, 10.CrossRefGoogle ScholarPubMed
Bolte, A., Goschke, T., & Kuhl, J. (2003). Emotion and intuition: Effects of positive and negative mood on implicit judgments of semantic coherence. Psychological science, 14(5), 416421.CrossRefGoogle Scholar
Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8(12), 539546. https://doi.org/10.1016/j.tics.2004.10.003.CrossRefGoogle ScholarPubMed
Bowden, E. M. (1997). The effect of reportable and unreportable hints on anagram solution and the Aha! experience. Consciousness and Cognition, 6(4), 545573.CrossRefGoogle ScholarPubMed
Bowden, E. M., & Jung-Beeman, M. (2003a). Aha! Insight experience correlates with solution activation in the right hemisphere. Psychonomic Bulletin and Review, 10(3), 730737. https://doi.org/10.3758/BF03196539.CrossRefGoogle ScholarPubMed
Bowden, E. M., & Jung-Beeman, M. (2003b). Normative data for 144 compound remote associate problems. Behavior Research Methods, Instruments, & Computers, 35(4), 634639. https://doi.org/10.3758/BF03195543.CrossRefGoogle ScholarPubMed
Bozarth, M. A. (1991). The mesolimbic dopamine system as a model brain reward system. In Willner, P and Scheel-Krüger, J (Eds.), The mesolimbic dopamine system: From motivation to action (pp. 301330). London: John Wiley & Sons.Google Scholar
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215222. https://doi.org/10.1016/S1364-6613(00)01483-2.CrossRefGoogle ScholarPubMed
Bush, G., Vogt, B. A., Holmes, J., et al. (2002). Dorsal anterior cingulate cortex: A role in reward-based decision making. Proceedings of the National Academy of Sciences of the United States of America, 99(1), 523528. https://doi.org/10.1073/pnas.012470999.CrossRefGoogle ScholarPubMed
Cahill, L., & McGaugh, J. L. (1996). Modulation of memory storage. Current Opinion in Neurobiology, 6(2), 237242.CrossRefGoogle ScholarPubMed
Campbell, H. L., Tivarus, M. E., Hillier, A., & Beversdorf, D. Q. (2008). Increased task difficulty results in greater impact of noradrenergic modulation of cognitive flexibility. Pharmacology, Biochemistry, and Behavior, 88(3), 222229.CrossRefGoogle ScholarPubMed
Carr, D. B., & Sesack, S. R. (2000). Projections from the rat prefrontal cortex to the ventral tegmental area: Target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. Journal of Neuroscience 20, 38643873.CrossRefGoogle Scholar
Chang, L. J., Yarkoni, T., Khaw, M. W., & Sanfey, A. G. (2012). Decoding the role of the insula in human cognition: Functional parcellation and large-scale reverse inference. Cerebral Cortex, 23(3), 739749.CrossRefGoogle ScholarPubMed
Chermahini, S. A., & Hommel, B. (2010). The (b)link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition, 115(3), 458465. https://doi.org/10.1016/j.cognition.2010.03.007.CrossRefGoogle Scholar
Colby, C. L. (1991) The neuroanatomy and neurophysiology of attention. Journal of Child Neurology, 6, S88S116.CrossRefGoogle ScholarPubMed
Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306324. https://doi.org/10.1016/j.neuron.2008.04.017.CrossRefGoogle ScholarPubMed
Coull, J. T., Büchel, C., Friston, K. J., & Frith, C. D. (1999). Noradrenergically mediated plasticity in a human attentional neuronal network. NeuroImage, 10(6), 705715. https://doi.org/10.1006/nimg.1999.0513.CrossRefGoogle Scholar
Craig, A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 5970. https://doi.org/10.1038/nrn2555.CrossRefGoogle Scholar
Cristofori, I., Salvi, C., Beeman, M., & Grafman, J. (2018). The effects of expected reward on creative problem solving. Cognitive, Affective, & Behavioral Neuroscience, 5(18), 925931. https://doi.org/10.3758/s13415-018-0613-5.CrossRefGoogle Scholar
Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1346), 14131420.Google ScholarPubMed
Damasio, A. R. (1999). The feeling of what happens: Body and emotion in the making of consciousness. Harcourt Brace and Co.Google Scholar
Danek, A. H., Fraps, T., von Müller, A., Grothe, B., & Öllinger, M. (2013). Aha! experiences leave a mark: Facilitated recall of insight solutions. Psychological Research, 77, 659669. https://doi.org/10.1007/s00426-012-0454-8.CrossRefGoogle Scholar
Danek, A. H., & Salvi, C. (2018). Moment of truth: Why Aha! experiences are correct. Journal of Creative Behavior, 54(2), 484486. https://doi.org/10.1002/jocb.380.CrossRefGoogle Scholar
Danek, A. H., & Wiley, J. (2017). What about false insights? Deconstructing the Aha! experience along its multiple dimensions for correct and incorrect solutions separately. Frontiers in Psychology, 7, 2077. https://doi.org/10.3389/fpsyg.2016.02077CrossRefGoogle ScholarPubMed
Danek, A. H., & Wiley, J. (2020). What causes the insight memory advantage? Cognition, 205, 104411. https://doi.org/10.1016/j.cognition.2020.104411.CrossRefGoogle ScholarPubMed
de Rooij, A., Vromans, R. D., & Dekker, M. (2018). Noradrenergic modulation of creativity: Evidence from pupillometry. Creativity Research Journal, 30(4), 339351. https://doi.org/10.1080/10400419.2018.1530533.Google Scholar
Dominowski, R. L., & Dallob, P. (1995). Insight and problem solving. In Sternberg, R. J & Davidson, J. E. (Eds.), The nature of insight (pp. 273278). MIT Press.Google Scholar
Dreisbach, G., & Goschke, T. (2004). How positive affect modulates cognitive control: Reduced perseveration at the cost of increased distractibility. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(2), 343.Google ScholarPubMed
Duncan, S., & Barrett, L. F. (2007). The role of the amygdala in visual awareness. Trends in Cognitive Sciences. https://doi.org/10.1016/j.tics.2007.01.007.CrossRefGoogle Scholar
Einhäuser, W., Stout, J., Koch, C., & Carter, O. (2008). Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proceedings of the National Academy of Sciences of the United States of America, 105(5), 17041709. https://doi.org/10.1073/pnas.0707727105.CrossRefGoogle ScholarPubMed
Elston, T. W., Croy, E., & Bilkey, D. K. (2019). Communication between the anterior cingulate cortex and ventral tegmental area during a cost-benefit reversal task. Cell Reports, 26(9), 23532361.e3. https://doi.org/10.1016/j.celrep.2019.01.113.CrossRefGoogle ScholarPubMed
Elston, T. W., & Bilkey, D. K. (2017). Anterior cingulate cortex modulation of the ventral tegmental area in an effort task. Cell Rep. 19, 22202230.CrossRefGoogle Scholar
Erickson, B., Truelove-Hill, M., Oh, Y., et al. (2018). Resting-state brain oscillations predict trait-like cognitive styles. Neuropsychologia, 120(May), 18. https://doi.org/10.1016/j.neuropsychologia.2018.09.014.CrossRefGoogle ScholarPubMed
Estrada, C. A., Isen, A. M., & Young, M. J. (1997). Positive affect facilitates integration of information and decreases anchoring in reasoning among physicians. Organizational and Human Decision Processes, 72, 117135.CrossRefGoogle Scholar
Estrada, C., Young, M., & Isen, A. M. (1994). Positive affect influences creative problem solving and reported source of practice satisfaction in physicians. Motivation and Emotion, 18, 285299.CrossRefGoogle Scholar
Federmeier, K. D., Kirson, D. A., Moreno, E. M., & Kutas, M. (2001). Effects of transient, mild mood states on semantic memory organization and use: An event-related potential investigation in humans. Neuroscience Letters, 305(3), 149152.CrossRefGoogle ScholarPubMed
Flynn, F. G., Benson, D. F., & Ardila, A. (1999). Anatomy of the insula: Functional and clinical correlates. Aphasiology, 13(1), 5578.CrossRefGoogle Scholar
Friedman, R. S., Fishbach, A., Förster, J., & Werth, L. (2003). Attentional priming effects on creativity. Creativity Research Journal, 15(2–3), 277286.CrossRefGoogle Scholar
Gao, M., Liu, C. L., Yang, S., et al. (2007). Functional coupling between the prefrontal cortex and dopamine neurons in the ventral tegmental area. Journal of Neuroscience, 27, 54145421.CrossRefGoogle ScholarPubMed
Gariano, R. F., & Groves, P. M. (1988). Burst firing induced in midbrain dopamine neurons by stimulation of the medial prefrontal and anterior cingulate cortices. Brain Research, 462, 194198.CrossRefGoogle ScholarPubMed
Gasper, K., & Clore, G. L. (2002). Attending to the big picture: Mood and global versus local processing of visual information. Psychological Science, 13(1), 3440.CrossRefGoogle Scholar
Goldman-Rakic, P. S. (1988) Topography of cognition: Parallel distributed networks in primate association cortex. Annual Reviews of Neuroscience, 11, 137156.CrossRefGoogle ScholarPubMed
Gompf, H. S., Mathai, C., Fuller, P. M., et al. (2010). Locus ceruleus and anterior cingulate cortex sustain wakefulness in a novel environment. Journal of Neuroscience, 30(43), 1454314551. https://doi.org/10.1523/JNEUROSCI.3037-10.2010.CrossRefGoogle Scholar
Greene, T. R., & Noice, H. (1988). Influence of positive affect upon creative thinking and problem solving in children. Psychological Reports, 63, 895898.CrossRefGoogle Scholar
Hamann, S. B., Ely, T. D., Grafton, S. T., & Kilts, C. D. (1999). Amygdala activity related to enhanced memory for pleasant and aversive stimuli. Nature Neuroscience, 2(3), 289293.CrossRefGoogle ScholarPubMed
Hedne, M. R., Norman, E., & Metcalfe, J. (2016). Intuitive feelings of warmth and confidence in insight and noninsight problem solving of magic tricks. Frontiers in Psychology, 7, 1314. https://doi.org/10.3389/fpsyg.2016.01314.CrossRefGoogle ScholarPubMed
Holroyd, C. B., & McClure, S. M. (2015). Hierarchical control over effortful behavior by rodent medial frontal cortex: A computational model. Psychological Reviews, 122, 5483.CrossRefGoogle ScholarPubMed
Holroyd, C. B., & Yeung, N. (2012). Motivation of extended behaviors by anterior cingulate cortex. Trends Cognitive Science, 16, 122128.CrossRefGoogle ScholarPubMed
Isen, A. M. (1987). Positive affect, cognitive processes, and social behavior. In Berkowitz, L (Ed.), Advances in experimental social psychology (Vol. 20, pp. 203253). Academic Press.Google Scholar
Isen, A. M. (1999). On the relationship between affect and creative problem solving. Affect, Creative Experience, and Psychological Adjustment, 3(17), 317.Google Scholar
Isen, A. M. (2008). Some ways in which positive affect influences decision making and problem solving. In Lewis, M, Haviland-Jones, J. M, & Barrett, L. F (Eds.), Handbook of emotions (pp. 548573). The Guilford Press.Google Scholar
Isen, A. M., Johnson, M. M., Mertz, E., & Robinson, G. F. (1985). The influence of positive affect on the unusualness of word associations. Journal of Personality and Social Psychology, 48(6), 14131426.CrossRefGoogle ScholarPubMed
Isen, A. M., Shalker, T. E., Clark, M., & Karp, L. (1978). Affect, accessibility of material in memory, and behavior: A cognitive loop? Journal of Personality and Social Psychology, 36, 112.CrossRefGoogle ScholarPubMed
Jung-Beeman, M., Bowden, E. M., Haberman, J., et al. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2(4), e97. https://doi.org/10.1371/journal.pbio.0020097.CrossRefGoogle ScholarPubMed
Karson, C. N. (1983). Spontaneous eye-blink rates and dopaminergic systems. Brain: A Journal of Neurology, 106(3), 643653.CrossRefGoogle ScholarPubMed
Kietzmann, T. C., Geuter, S., & König, P. (2011). Overt visual attention as a causal factor of perceptual awareness. PLoS ONE, 6(7), e22614.CrossRefGoogle ScholarPubMed
Kizilirmak, J. M., Thuerich, H., Folta-Schoofs, K., Schott, B. H., & Richardson-Klavehn, A. (2016). Neural correlates of learning from induced insight: A case for reward-based episodic encoding. Frontiers in Psychology, 7(Nov.). https://doi.org/10.3389/fpsyg.2016.01693.CrossRefGoogle ScholarPubMed
Kizilirmak, J. M., Thuerich, H., Folta-Schoofs, K., Schott, B. H., & Richardson-Klavehn, A. (2016). Neural correlates of learning from induced insight: A case for reward-based episodic encoding. Frontiers in Psychology, 7, 1693. https://doi.org/10.3389/fpsyg.2016.01693.CrossRefGoogle ScholarPubMed
Köhler, W. (1921). Intelligenzprüfungen am Menschenaffen. Springer.CrossRefGoogle Scholar
Kounios, J., & Beeman, M. (2014). The cognitive neuroscience of insight. Annual Review of Psychology, 65(1), 7193. https://doi.org/10.1146/annurev-psych-010213-115154.CrossRefGoogle ScholarPubMed
Kounios, J., Fleck, J. I., Green, D. L., et al. (2008). The origins of insight in resting-state brain activity. Neuropsychologia, 46(1), 281291.CrossRefGoogle ScholarPubMed
Kounios, J., Frymiare, J. L., Bowden, E. M., et al. (2006). The prepared mind: Neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science, 17(10), 882890. https://doi.org/10.1111/j.1467-9280.2006.01798.x.CrossRefGoogle ScholarPubMed
Laeng, B., Sirois, S., & Gredebäck, G. (2012). Pupillometry: A window to the preconscious? Perspectives on Psychological Science, 7(1), 1827. https://doi.org/10.1177/1745691611427305.CrossRefGoogle Scholar
Laeng, B., & Teodorescu, D.-S. (2002). Eye scanpath during visual imagery reenact those of perception of the same visual scene. Cognitive Science, 26, 207231.CrossRefGoogle Scholar
Lane, R. D., Reiman, E. M., Axelrod, B., et al. (1998). Neural correlates of levels of emotional awareness: Evidence of an interaction between emotion and attention in the anterior cingulate cortex. Journal of Cognitive Neuroscience, 10(4), 525535.CrossRefGoogle ScholarPubMed
Laukkonen, R. E., Ingledew, D. J., Grimmer, H. J., Schooler, J. W., & Tangen, J. M. (2021). Getting a grip on insight: Real-time and embodied Aha experiences predict correct solutions. Cognition and Emotion, 35(5), 918935. https://doi.org/10.1080/02699931.2021.1908230.CrossRefGoogle ScholarPubMed
Laukkonen, R., & Tangen, J. M. (2017). Can observing a Necker cube make you more insightful? Consciousness and Cognition, 48(Jan.), 198211. https://doi.org/10.1016/j.concog.2016.11.011.CrossRefGoogle ScholarPubMed
Laukkonen, R., Webb, M., Salvi, C., et al. (2023). Insight and the selection of ideas. Neuroscience and Biobehavioral Reviews, 153(March), 105363. https://doi.org/10.1016/j.neubiorev.2023.105363.CrossRefGoogle ScholarPubMed
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. The Behavioral and Brain Sciences, 35(3), 121.CrossRefGoogle ScholarPubMed
Litchfield, D., & Ball, L. J. (2011). Rapid communication: Using another’s gaze as an explicit aid to insight problem solving. Quarterly Journal of Experimental Psychology, 64(4), 649656. https://doi.org/10.1080/17470218.2011.558628.CrossRefGoogle Scholar
Loewenstein, G. F., Weber, E. U., Hsee, C. K., & Welch, N. (2001). Risk as feelings. Psychological Bulletin, 127(2), 267.CrossRefGoogle ScholarPubMed
Ludmer, R., Dudai, Y., & Rubin, N. (2011). Uncovering camouflage: Amygdala activation predicts long-term memory of induced perceptual insight. Neuron, 69(5), 10021014. https://doi.org/10.1016/j.neuron.2011.02.013.CrossRefGoogle ScholarPubMed
Luo, J., Niki, K., & Phillips, S. (2004). Neural correlates of the “Aha! reaction.” Neuroreport, 15, 20132017. https://doi.org/10.1097/00001756-200409150-00004.CrossRefGoogle ScholarPubMed
McGaugh, J. L. (2004). The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annual Reviews of Neuroscience, 27, 128.CrossRefGoogle ScholarPubMed
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure and Function, 214(5–6), 655667.CrossRefGoogle ScholarPubMed
Mesulam, M. M. (1990) Large-scale neurocognitive networks and distributed processing of attention, language, and memory. Annual Neurology, 28, 597613.CrossRefGoogle ScholarPubMed
Mesulam, M. M., & Mufson, E. J. (1982). Insula of the old world monkey. III: Efferent cortical output and comments on function. Journal of Comparative Neurology, 212(1), 3852.CrossRefGoogle ScholarPubMed
Metcalfe, J. (1986). Premonitions of insight predict impending error. Journal of Experimental Psychology: Learning, Memory, and Cognition, 12(4), 623634. https://doi.org/10.1037/0278-7393.12.4.623.Google Scholar
Metcalfe, J., & Wiebe, D. (1987). Intuition in insight and noninsight problem solving. Memory & Cognition, 15(3), 238246. https://doi.org/10.3758/BF03197722.CrossRefGoogle ScholarPubMed
Nasby, W., & Yando, R. (1982). Selective encoding and retrieval of affectively valent information: Two cognitive consequences of children’s mood states. Journal of Personality and Social Psychology, 43, 12441253.CrossRefGoogle ScholarPubMed
Nieuwenhuys, R. (2012). The insular cortex: A review. Progress in Brain Research, 195, 123163.CrossRefGoogle ScholarPubMed
Nygren, T. E., Isen, A. M., Taylor, P. J., & Dulin, J. (1996). The influence of positive affect on the decision rule in risk situations: Focus on outcome (and especially avoidance of loss) rather than probability. Organizational Behavior and Human Decision Processes, 66(1), 5972. https://doi.org/10.1006/obhd.1996.0038.CrossRefGoogle Scholar
Oh, Y., Chesebrough, C., Erickson, B., Zhang, F., & Kounios, J. (2020). An insight-related neural reward signal. NeuroImage, 214(Aug. 2019), 116757. https://doi.org/10.1016/j.neuroimage.2020.116757.CrossRefGoogle ScholarPubMed
Olds, J. (1958). Self-stimulation of the brain; its use to study local effects of hunger, sex, and drugs. Science 127, 315324.CrossRefGoogle ScholarPubMed
Osgood, C. E. (1953). Method and theory in experimental psychology. Oxford University Press.Google Scholar
Pessiglione, M. (2014). How the brain translates money. Science, 316 ,904(2007). https://doi.org/10.1126/science.1140459.Google Scholar
Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron, 48(2), 175187.CrossRefGoogle ScholarPubMed
Posner, M. I., & Petersen, S. E. (1990) The attention system of the human brain. Annual Reviews of Neuroscience, 13, 2542.CrossRefGoogle ScholarPubMed
Qiu, J., Li, H., Yang, D., et al. (2008). The neural basis of insight problem solving: An event-related potential study. Brain and Cognition, 68(1), 100106. https://doi.org/10.1016/j.bandc.2008.03.004.CrossRefGoogle ScholarPubMed
Ranganath, C., & Rainer, G. (2003). Neural mechanisms for detecting and remembering novel events. Nature Reviews Neuroscience, 4(3), 193202. https://doi.org/10.1038/nrn1052.CrossRefGoogle ScholarPubMed
Rowe, G., Hirsh, J. B., & Anderson, A. K. (2007). Positive affect increases the breadth of attentional selection. Proceedings ofthe National Academy of Science of the United States of America, 104, 383388.CrossRefGoogle ScholarPubMed
Salvi, C. (2023). Markers of insight. In Ball, L. J. & Vallée-Tourangeau, F. (Eds.), Routledge international handbook of creative cognition (1st ed., pp. 475490). Routledge.CrossRefGoogle Scholar
Salvi, C., & Bowden, E. M. (2016). Looking for creativity: Where do we look when we look for new ideas? Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2016.00161.CrossRefGoogle Scholar
Salvi, C., & Bowden, E. (2020). The relation between state and trait risk taking and problem-solving. Psychological Research, 84(5), 12351248. https://doi.org/10.1007/s00426-019-01152-y.CrossRefGoogle ScholarPubMed
Salvi, C., Bricolo, E., Franconeri, S. L., Kounios, J., & Beeman, M. (2015). Sudden insight is associated with shutting out visual inputs. Psychonomic Bulletin & Review, 22(6), 18141819. https://doi.org/10.3758/s13423-015-0845-0.CrossRefGoogle ScholarPubMed
Salvi, C., Bricolo, E., Kounios, J., Bowden, E., & Beeman, M. (2016) Insight solutions are correct more often than analytic solutions. Thinking & Reasoning, 22(4), 443460, https://doi.org/10.1080/13546783.2016.1141798.CrossRefGoogle ScholarPubMed
Salvi, C., Leiker, E. K., Baricca, B., et al. (2021). The effect of dopaminergic replacement therapy on creative thinking and insight problem-solving in Parkinson’s Disease patients. Frontiers in Psychology, 12(Mar.), 115. https://doi.org/10.3389/fpsyg.2021.646448.CrossRefGoogle ScholarPubMed
Salvi, C., Simoncini, C., Grafman, J., & Beeman, M. (2020). Oculometric signature of switch into awareness? Pupil size predicts sudden insight whereas microsaccades predict problem-solving via analysis. NeuroImage, 217, 116933. https://doi.org/10.1016/j.neuroimage.2020.116933.CrossRefGoogle ScholarPubMed
Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews. Neuroscience, 10(3), 211223. https://doi.org/10.1038/nrn2573.CrossRefGoogle ScholarPubMed
Sara, S. J., & Bouret, S. (2012). Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron, 76(1), 130141. https://doi.org/10.1016/j.neuron.2012.09.011.CrossRefGoogle ScholarPubMed
Scheerer, M. (1963). Problem-solving. Scientific American, 208(4), 118131.CrossRefGoogle ScholarPubMed
Schooler, J. W., & Melcher, J. (1995). The ineffability of insight. In Smith, S. M., Ward, T. B., & Finke, R. K. (Eds.), The creative cognition approach (pp. 97133). MIT Press.Google Scholar
Schultz, W. (1992, April). Activity of dopamine neurons in the behaving primate. Seminars in Neuroscience, 4(2), 129138. Academic Press. https://doi.org/10.1016/1044-5765(92)90011-P.CrossRefGoogle Scholar
Schwarz, N. (2012). Feelings-as-information theory. In Van Lange, P., Kruglanski, A., & Higgins, E., Handbook of Theories of Social Psychology: Vol. I (pp. 289308). SAGE Publications Ltd.CrossRefGoogle Scholar
Shen, W., Gu, H., Ball, L. J., et al. (2020). The impact of advertising creativity, warning-based appeals and green dispositions on the attentional effectiveness of environmental advertisements. Journal of Cleaner Production, 271, 122618. https://doi.org/10.1016/j.jclepro.2020.122618.CrossRefGoogle Scholar
Shen, W., Tong, Y., Li, F., et al. (2018). Tracking the neurodynamics of insight: A meta-analysis of neuroimaging studies. Biological Psychology, 138, 189198. https://doi.org/10.1016/j.biopsycho.2018.08.018.CrossRefGoogle ScholarPubMed
Shen, W., Yuan, Y., Liu, C., & Luo, J. (2016). In search of the “Aha!” experience: Elucidating the emotionality of insight problem-solving. British Journal of Psychology, 107(2), 281298.CrossRefGoogle ScholarPubMed
Singer, T., Critchley, H. D., & Preuschoff, K. (2009). A common role of insula in feelings, empathy and uncertainty. Trends in Cognitive Sciences, 13(8), 334340CrossRefGoogle ScholarPubMed
Slovic, P., Finucane, M. L., Peters, E., & MacGregor, D. G. (2007). The affect heuristic. European Journal of Operational Research, 177(3), 13331352.CrossRefGoogle Scholar
Smith, R. W., & Kounios, J. (1996). Sudden insight: All-or-none processing revealed by speed-accuracy decomposition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(6), 14431462. https://doi.org/10.1037//0278-7393.22.6.1443.Google ScholarPubMed
Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences, 105(34), 1256912574.CrossRefGoogle ScholarPubMed
Sternberg, R. J., & Davidson, J. E. (Eds.) (1995). The nature of insight. MIT Press.Google Scholar
Sterpenich, V., D’Argembeau, A., Desseilles, M., et al. (2006). The locus ceruleus is involved in the successful retrieval of emotional memories in humans. Journal of Neuroscience, 26(28), 7416–7423. https://doi.org/10.1523/JNEUROSCI.1001-06.2006.CrossRefGoogle Scholar
Subramaniam, K., Kounios, J., Parrish, T. B., & Jung-Beeman, M. (2009). A brain mechanism for facilitation of insight by positive affect. Journal of Cognitive Neuroscience, 21(3), 415432. https://doi.org/10.1162/jocn.2009.21057.CrossRefGoogle ScholarPubMed
Taylor, J. R., Elsworth, J. D., Lawrence, M. S., et al. (1999). Spontaneous blink rates correlate with dopamine levels in the caudate nucleus of MPTP-treated monkeys. Experimental Neurology, 158(1), 214220. https://doi.org/10.1006/exnr.1999.7093.CrossRefGoogle ScholarPubMed
Teasdale, J. D., & Fogarty, S. J. (1979). Differential effects of induced mood on retrieval of pleasant and unpleasant events from episodic memory. Journal of Abnormal Psychology, 88, 248257.CrossRefGoogle ScholarPubMed
Thomas, L. E., & Lleras, A. (2009). Covert shifts of attention function as an implicit aid to insight. Cognition, 111(2), 168174. https://doi.org/10.1016/j.cognition.2009.01.005.CrossRefGoogle ScholarPubMed
Tian, F., Tu, S., Qiu, J., et al. (2011). Neural correlates of mental preparation for successful insight problem solving. Behavioural Brain Research, 216(2), 626630. https://doi.org/10.1016/j.bbr.2010.09.005.CrossRefGoogle ScholarPubMed
Tik, M., Sladky, R., Luft, C. D. B., et al. (2018). Ultra-high-field fMRI insights on insight: Neural correlates of the Aha!-moment. Human Brain Mapping, 39(8), 32413252. https://doi.org/10.1002/hbm.24073CrossRefGoogle ScholarPubMed
Touroutoglou, A., Andreano, J. M., Adebayo, M., Lyons, S., & Barrett, L. F. (2019). Motivation in the service of allostasis: The role of anterior mid-cingulate cortex. In Elliot, A. J (Ed.), Advances in motivation science (pp. 125). Elsevier.Google Scholar
Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews Neuroscience, 16(1), 55161.CrossRefGoogle Scholar
Van Steenburgh, J. J., Fleck, J. I., Beeman, M., et al. (2012). Insight. In Holyoak, K. J. & Morrison, R. (Eds.), Oxford handbook of thinking and reasoning. (pp. 475492). Oxford University Press.CrossRefGoogle Scholar
Vitello, M., & Salvi, C. (2023). Gestalt’s Perspective on Insight: A Recap Based on Recent Behavioral and Neuroscientific Evidence. Journal of Intelligence, 11(12), 224.CrossRefGoogle ScholarPubMed
Vogt, B. A., Finch, D. M., & Olson, C. R. (1992) Functional heterogeneity in cingulate cortex: The anterior executive and posterior evaluative regions. Cerebral Cortex, 2, 435443.Google ScholarPubMed
Wadlinger, H. A., & Isaacowitz, D. M. (2006). Positive mood broadens visual attention to positive stimuli. Motivation and Emotion, 30(1), 8799. https://doi.org/10.1007/s11031-006-9021-1.CrossRefGoogle ScholarPubMed
Wegbreit, E., Suzuki, S., Grabowecky, M., Kounios, J., & Beeman, M. (2012). Visual attention modulates insight versus analytic solving of verbal problems. The Journal of Problem Solving, 4(2), 94115.CrossRefGoogle ScholarPubMed
Weisberg, R. (1986). Creativity: Genius and other myths. WH Freeman/Times Books/Henry Holt & Co.Google Scholar
Williams, C. L., Men, D., Clayton, E. C., & Gold, P. E. (1998). Norepinephrine release in the amygdala after systemic injection of epinephrine or escapable footshock: Contribution of the nucleus of the solitary tract. Behavioral Neuroscience, 112(6), 14141422. https://doi.org/10.1037/0735-7044.112.6.1414.CrossRefGoogle ScholarPubMed
Woodworth, R. S., & Schlosberg, H. (1954). Experimental psychology. Oxford and IBH Publishing.Google Scholar
Yu, Y., Salvi, C., Becker, M., & Beeman, M. (2023). Solving problems with an Aha! increases risk preference. Thinking & Reasoning, 122. https://doi.org/10.1080/13546783.2023.2259552.CrossRefGoogle Scholar
Zhao, Q., Zhou, Z., Xu, H., et al. (2013). Dynamic neural network of insight: A functional magnetic resonance imaging study on solving Chinese “Chengyu” riddles. PLoS ONE, 8(3). https://doi.org/10.1371/journal.pone.0059351.Google Scholar
Zhu, X., Oh, Y., Chesebrough, C., Zhang, F., & Kounios, J. (2021). Pre-stimulus Brain oscillations predict insight versus analytic problem-solving in an anagram task. Neuropsychologia, 162(September 2020), 108044. https://doi.org/10.1016/j.neuropsychologia.2021.108044.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×