Skip to main content Accessibility help
×
Hostname: page-component-6bf8c574d5-r4mrb Total loading time: 0 Render date: 2025-03-04T05:56:39.820Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  28 February 2025

Henry McKean
Affiliation:
New York University
Victor Moll
Affiliation:
Tulane University, Louisiana
Alex Kasman
Affiliation:
College of Charleston, South Carolina
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Elliptic Curves
Function Theory, Geometry, Arithmetic
, pp. 265 - 277
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, N. H. 1826. Beweis der Unmöglichkeit algebraische Gleichungen von höheren Graden als dem vierten allgemeinen aufzulösen. J. reine angew. Math. 1: 6784. Reprinted in Oeuvres Complètes, vol. 1, 66–94. Grondahl, Christiania, Sweden, 1881.Google Scholar
Abel, N. H. 1827. Recherches sur les fonctions elliptiques. J. reine angew. Math. 2: 101–81. Reprinted in Oeuvres Complètes, vol. 1, 263–388. Grondahl, Christiania, Sweden, 1881.Google Scholar
Ablowitz, M. J., and Clarkson, P. A. 1991. Solitons, Nonlinear Evolution Equations, and Inverse Scattering. London Math. Soc. Lecture Notes Series, no. 149. London Math. Soc., London.Google Scholar
Ahlfors, L. V. 1973. Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill, New York.Google Scholar
Ahlfors, L. V. 1979. Complex Analysis. 3d ed. McGraw-Hill, New York.Google Scholar
Airault, H.; McKean, H.; and Moser, J. 1977. Rational and elliptic solutions of the Korteweg–de Vries equation and a related many body problem. Comm. Pure Applied Math. 30: 95148.CrossRefGoogle Scholar
Akhiezer, N. I. 1970. Elements of the Theory of Elliptic Functions. Nauka, Moscow. English translation, AMS, Providence, RI, 1990.Google Scholar
Almkvist, G., and Berndt, B. 1988. Gauss, Landen, Ramanujan, the arithmetic–geometric mean, ellipses, π, and the Ladies Diary. Am. Math. Mon. 95: 585608.Google Scholar
Andrews, G. 1976. The Theory of Partitions. Encyclopedia of Mathematics and Its Applications, vol. 2. Addison-Wesley, Reading, MA.Google Scholar
Andrews, G. A. 1989. On the proofs of the Rogers–Ramanujan identities. In q-Series and Partitions, ed. Stanton, D., 1–14. Springer-Verlag, New York.Google Scholar
Arnold, V. I. 1978. Mathematical Methods of Classical Mechanics. Trans. Vogtmann, K. and Weinstein, A.. Springer-Verlag, New York.CrossRefGoogle Scholar
Artin, E. 1953. Galois Theory. Notre Dame Math. Lect. Notes, no. 2. Notre Dame, South Bend, IN.Google Scholar
Artin, E. 1964. The Gamma Function. Holt, Rinehart and Winston, New York.Google Scholar
Atkin, A. O. L., and O’Brien, J. N. 1967. Some properties of p(n) and c(n) modulo powers of 13. Trans. AMS 126: 442–59.Google Scholar
Ayoub, R. 1982. On the nonsolvability of the general polynomial. Am. Math. Mon. 89: 397401.CrossRefGoogle Scholar
Ayoub, R. 1984. The lemniscate and Fagnano’s contributions to elliptic integrals. Arch. Hist. Exact Sci. 29: 131–49.CrossRefGoogle Scholar
Baker, A. 1971a. Imaginary quadratic fields with class number two. Ann. of Math. (2) 94: 139–52.CrossRefGoogle Scholar
Baker, A. 1971b. On the class number of imaginary quadratic fields. Bull. AMS 77: 678–84.CrossRefGoogle Scholar
Baker, A. 1975. Transcendental Number Theory. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Baker, H. F. 1897. Abel’s Theorem and the Allied Theory Including the Theory of Theta Functions. Cambridge Univeristy Press, Cambridge. Reprinted 1995.CrossRefGoogle Scholar
Baker, H. F. 1911. Function. Encyclopedia Britannica 11: 301–29.Google Scholar
Bashmakova, I. G. 1981. Arithmetic of algebraic curves from Diophantus to Poincaré. Hist. Math. 8: 393416.CrossRefGoogle Scholar
Bateman, H. 1953. Higher Transcendental Functions. McGraw-Hill, New York.Google Scholar
Beardon, A. F. 1983. The Geometry of Discrete Groups. GTM 91. Springer-Verlag, New York.CrossRefGoogle Scholar
Bell, E. T. 1937. Men of Mathematics. Simon and Schuster, New York.Google Scholar
Belokolos, E. D.; Bobenko, A. I.; Enol’skii, V.; Its, A.; and Matveev, V. 1994. Algebraic–Geometric Approach to Nonlinear Integrable Systems. Springer Series in Nonlinear Dynamics. Springer-Verlag, New York.Google Scholar
Belokolos, E. D., and Enol’skii, V. 1994. Reduction of theta functions and elliptic finite-gap potentials. Acta Appl. Math. 36: 87117.CrossRefGoogle Scholar
Berndt, B. 1991. Ramanujan’s Notebooks. Part 3. Springer-Verlag, New York.CrossRefGoogle Scholar
Bernoulli, J. 1713. Ars Conjectandi. Reprinted by Culture et Civilization, Bruxelles, 1968.Google Scholar
Betti, E. 1851. Sopra la risolubilita per radicali delle equazioni algebriche irredutibiliti di grado primo. Ann. Sci. mat. fis. 2: 519. Reprinted in Opere Matematiche, vol. 1, 17–27. Ulrico Hoepli, Milano, 1903.Google Scholar
Betti, E. 1852. Sulla risoluzione delle equazioni algebriche. Ann. Sci. mat. fis. 3: 49115. Reprinted in Opere Matematiche, vol. 1, 31–80. Ulrico Hoepli, Milano, 1903.Google Scholar
Bezout, E. 1779. Théorie générale des équations algébriques. Impr. de PhD Pierres, Paris.Google Scholar
Birch, B. 1973. Some calculations of modular relations. In Modular Functions of One Variable, ed. Kuyk, W., Springer Lecture Notes in Math., no. 320, 175–86. Springer, Berlin.Google Scholar
Birkhoff, G. 1973. A Source Book in Classical Analysis. Harvard University Press, Cambridge, MA.Google Scholar
Birkhoff, G., and Maclane, S. 1948. Modern Algebra. Macmillan, New York.Google Scholar
Bliss, G. A. 1933. Algebraic Functions. AMS Colloquium Publications, vol. 16. AMS, Providence, RI.Google Scholar
Borel, A.; Chowla, S.; Herz, C. S.; Iwasawa, K.; and Serre, J. P. 1966. Seminar on Complex Multiplication. Springer Lecture Notes in Mathematics, no. 21. Springer-Verlag, New York.CrossRefGoogle Scholar
Borevich, Z. I., and Shafarevich, I. R. 1966. Number Theory. Academic Press, New York.Google Scholar
Borwein, J. M., and Borwein, P. B. 1987. Pi and the AGM. Wiley, New York.Google Scholar
Bos, H.; Kers, C.; Oort, F.; and Raven, D. 1987. Poncelet’s closure theorem. Expositiones Mathematicae 5: 289364.Google Scholar
Brioschi, F. 1858. Sulla risoluzione delle equazioni del quinto grado. Annali Math. 1: 326.CrossRefGoogle Scholar
Brioschi, F. 1878. Über die Auflösung der Gleichungen von fünften Grade. Math. Ann. 13: 109–60.Google Scholar
Briot, C., and Bouquet, J. C. 1875. Théorie des fonctions elliptiques. Gauthier-Villars, Paris.Google Scholar
Buhler, W. K. 1981. Gauss: A Biographical Study. Springer-Verlag, New York.CrossRefGoogle Scholar
Byrd, P., and Friedman, M. 1954. Handbook of Elliptic Integrals for Engineers and Physicists. Springer, Berlin.CrossRefGoogle Scholar
Cardano, G. 1545. Artis Magnae sive de regvlis algebraicis. English translation: The Great Art, or the Rules of Algebra. Translated and edited by Witmer, T. R.. Press, MIT, Cambridge, MA, 1968.Google Scholar
Carlitz, L., and Subbarao, M. 1972. A simple proof of the quintuple product identity. Proc. AMS 32: 42–4.CrossRefGoogle Scholar
Cassels, J. W. S. 1966. Diophantine equations with special reference to elliptic curves. J. London Math. Soc. 41, 193291.CrossRefGoogle Scholar
Cayley, A. 1853. Note on the porism of the in- and circumscribed polygon. Philosophical Magazine (4th ser.): 99–103, 376–7. Reprinted in Collected Papers, vol. 2, 138–44.Google Scholar
Cayley, A. 1859. Sixth memoir upon quantics. Phil. Trans. Roy. Soc. 149: 6191. Reprinted in Collected Papers, vol. 2, 561–91.Google Scholar
Cayley, A. 1861. On the porism of the in- and circumscribed polygon. Phil. Trans. Roy. Soc. 149: 225–39. Reprinted in Collected Papers, vol. 4, 292308.Google Scholar
Cayley, A. 1895. An Elementary Treatise on Elliptic Functions. Constable, London. Reprinted by Dover, New York, 1961.Google Scholar
Cayley, A. 1889–97. The Collected Mathematical Papers. 13 vols. Cambridge University Press, Cambridge.Google Scholar
Chalal, J. S. 1988. Topics in Number Theory. Plenum, New York.CrossRefGoogle Scholar
Chazy, J. 1911. Sur les équations différentielles du troisième et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes. Acta Math. 34: 317–85.CrossRefGoogle Scholar
Clemens, C. H. 1980. A Scrapbook of Complex Function Theory. Plenum, New York.Google Scholar
Cohen, H. 1992. Elliptic curves. In From Number Theory to Physics, ed. Waldschmidt, M. et al., 212–37. Springer-Verlag, New York.Google Scholar
Cohen, P. 1984. On the coefficients of the transformation polynomials for the elliptic modular function. Math. Proc. Cambridge Phil. Soc. 95: 389402.CrossRefGoogle Scholar
Cohn, H. 1985. Introduction to the Construction of Class Fields. Cambridge University Press, Cambridge.Google Scholar
Cole, F. N. 1887. Klein’s Ikosaeder. Amer. Journal of Math. 9: 4561.CrossRefGoogle Scholar
Conway, J. H., and Norton, S. P. 1979. Monstrous moonshine. Bull. London Math. Soc. 11, 308–39.CrossRefGoogle Scholar
Copson, E. T. 1935. Theory of Functions of a Complex Variable. Oxford University Press, Oxford.Google Scholar
Cox, D. A. 1984. The arithmetic–geometric mean of Gauss. L’Enseig. Math. 30: 275330.Google Scholar
Cox, D. A. 1989. Primes of the Form x2 + ny2: Fermat, Class Field Theory, and Complex Multiplication. Wiley, New York.Google Scholar
Coxeter, H. S. M. 1963. Regular Polytopes. Dover, New York.Google Scholar
Coxeter, H. S. M. 1980. Introduction to Geometry. 2d ed. Wiley, New York.Google Scholar
Coxeter, H. S. M., and Moser, W. O. J. 1980. Generators and Relations for Discrete Groups. 4th ed. Springer-Verlag, New York.CrossRefGoogle Scholar
Dedekind, R. 1877. Schreiben an Herrn Borchardt über die Theorie der elliptischen Modulfunktionen. J. reine angew. Math. 83: 265–92.Google Scholar
Deuring, M. 1958. Die Klassenkörper der komplexen Multiplikation. Enzy. Math. Wiss. Algebra und Zahlentheorie 10 (11): 160.Google Scholar
Dieudonne, J. 1978. Abrégé d’histoire des mathématiques 1700–1900. Hermann et Cie., Paris.Google Scholar
Dieudonne, J. 1985. History of Algebraic Geometry. Wadsworth, Belmont, CA.Google Scholar
Dirichlet, P. G. L. 1840. Auszug aus einer Akademie der Wissenschaften zu Berlin am 5ten März 1840 vorgelesenen Abhandlung. J. reine angew. Math. 21: 98100.Google Scholar
Dirichlet, P. G. L. 1889. Werke. 2 vols. Reimer, Berlin. Reprinted by Chelsea, New York, 1969.Google Scholar
Dirichlet, P. G. L. 1894. Vorlesungen über Zahlentheorie. 4th ed. Vieweg, Braunschweig.Google Scholar
Drazin, P. G., and Johnson, R. S. 1989. Solitons: An Introduction. Cambridge University Press, New York.CrossRefGoogle Scholar
Dym, H., and McKean, H. 1972. Fourier Series and Integrals. Academic Press, New York.Google Scholar
Edwards, H. 1984. Galois Theory. Springer-Verlag, New York.Google Scholar
Ehrenpreis, L. 1994. Singularities, functional equations, and the circle method. In The Rademacher Legacy to Mathematics, ed. Andrews, G., Bressoud, D., and Parsen, L. A., Math, Contemporary., vol. 166, 35–80. AMS, Providence, RI.Google Scholar
Eichler, M., and Zagier, D. 1982. On the zeros of the Weierstrass -function. Math. Ann. 258: 399407.CrossRefGoogle Scholar
Eisenstein, G. 1847. Beitrage zur Theorie der elliptischen Funktionen. J. reine angew. Math. 35: 135274.Google Scholar
Eisenstein, G. 1975. Mathematische Werke. 2 vols. Chelsea, New York.Google Scholar
Euler, L. 1743. De summis serierum reciprocarum ex …. Miscellania Berolinensia 7: 172–92. Reprinted in Opera Omnia, ser. 1, vol. 14, 138–55.Google Scholar
Euler, L. 1748. Introductio in analysin infinitorum. Marcum-Michaelem Bousquet, Lausanne. English translation: Introduction to Analysis of the Infinite. Trans. Blantan, J. D.. Springer-Verlag, New York, 1988.Google Scholar
Euler, L. 1752. Elementa doctrinae solidorum. Novi comm. acad. sci. Petrop. 4: 109–40. Reprinted in Opera Omnia, ser. 1, vol. 26, 71–93.Google Scholar
Euler, L. 1763. Consideratio formularum quarum integratio per arcus sectionum conicarum absolvi potest. Novi comm. acad. sci. Petrop. 8: 129–49. Reprinted in Opera Omnia, ser. 1, vol. 20, 235–55.Google Scholar
Euler, L. 1782. De miris proprietatibus curvae elasticae sub aequatione y = ∫ xx dx/√(1 − x4) contentae. Acta academiae scientiarum Petrop. 2: 3461. Reprinted in Opera Omnia, ser. 1, vol. 21, 91–118.Google Scholar
Euler, L. 1911–76. Opera Omnia. Teubner, Leipzig.Google Scholar
Fagnano, G. 1750. Metodo per misurare la lemniscata. Giorn. lett. d’Italia 29: 258. Reprinted in Opere Matematiche, vol. 2, papers 32, 33, and 34. Allerighi e Segati, Milano, 1911.Google Scholar
Farkas, H. M., and Kopeliovich, Y. 1993. New theta constant identities. Israel J. Math. 82: 133–41.CrossRefGoogle Scholar
Farkas, H. M., and Kopeliovich, Y. 1994. New theta constant identities II. Proc. AMS 123: 1009–20.Google Scholar
Farkas, H. M., and Kra, I. 1992. Riemann Surfaces. 2d ed. Springer-Verlag, New York.CrossRefGoogle Scholar
Farkas, H. M., and Kra, I. 1993. Automorphic forms for subgroups of the modular group. Israel J. Math. 82: 87131.CrossRefGoogle Scholar
Fermat, P. 1894. Letter to Carcavi, communicated to Huygens, Aug. 14, 1659. In Oeuvres, vol. 2, 431–6. Gauthier-Villars, Paris, 1894.Google Scholar
Ford, J. 1972. Automorphic Functions. 2d ed. Chelsea, New York.Google Scholar
Forster, O. 1981. Lectures on Riemann Surfaces. Trans. Gilligan, B.. GTM 81. Springer-Verlag, New York.CrossRefGoogle Scholar
Fricke, R. 1913. Elliptische Funktionen. Encyclopedia der Math. Wiss. 2 (2): 177348.Google Scholar
Fricke, R. 1916, 1922. Die elliptischen Funktionen und ihre Anwendungen. 2 vols. Teubner, Leipzig.Google Scholar
Fricke, R. 1924–8. Lehrbuch der Algebra. 3 vols. Vieweg, Braunschweig.Google Scholar
Fricke, R., and Klein, F. 1926. Vorlesungen über die Theorie der Automorphen Functionen. Teubner, Leipzig.Google Scholar
Gaal, L. 1973. Classical Galois Theory, with Examples. Chelsea, New York.Google Scholar
Garvan, F. 1995. A combinatorial proof of the Farkas–Kra theta function identities and their generalizations. Journal Math. Anal. Appl. 195: 354–75.CrossRefGoogle Scholar
Gauss, C. F. 1797. Elegantiores integralis (1 − x4)1/2dx proprietates et de curva lemniscata. In Werke, vol. 3, 404–32.Google Scholar
Gauss, C. F. 1799. Arithmetisch Geometrisches Mittel. In Werke, vol. 3, 361432.Google Scholar
Gauss, C. F. 1801. Disquisitiones arithmeticae. Fleischer, Leipzig. Reprinted in Werke, vol. 1. English translation: Yale University Press, New Haven, 1966. Reprinted by Springer-Verlag, New York, 1986.CrossRefGoogle Scholar
Gauss, C. F. 1827. Disquisitiones generales circa superficies curvas. In Werke, vol. 4, 217–58.Google Scholar
Gauss, C. F. 1870–1929. Werke. 11 vols. Königliche Gesellschaft der Wissenschaft, Göttingen. Reprinted by Olms, Hildescheim, 1981.Google Scholar
Goldfeld, D. 1985. Gauss’ class number problem for imaginary quadratic fields. Bull. AMS 13: 2337.CrossRefGoogle Scholar
Gradshteyn, I. S., and Ryzhik, I. M. 1994. Tables of Integrals, Sums, and Products. 5th ed. Ed. Jeffrey, A.. Press, Academic, York, New.Google Scholar
Gray, J. 1986. Linear Differential Equations and Group Theory from Riemann to Poincaré. Birkhäuser, Boston.CrossRefGoogle Scholar
Green, M. L. 1978. On the analytic solution of the equation of fifth degree. Compos. Math. 37: 233–41.Google Scholar
Greenberg, M. J. 1974. An elementary proof of the Kronecker–Weber theorem. Am. Math. Mon. 81: 601–7.CrossRefGoogle Scholar
Greenhill, A. G. 1892. The Applications of Elliptic Functions. Macmillan Press, London.Google Scholar
Griffiths, P. 1976. Variations on a theme of Abel. Invent. Math. 35: 321–90.CrossRefGoogle Scholar
Griffiths, P., and Harris, J. 1978a. On Cayley’s explicit solution of Poncelet’s porism. L’Enseignement Math. 24: 3140.Google Scholar
Griffiths, P., and Harris, J. 1978b. Principles of Algebraic Geometry. Wiley, New York.Google Scholar
Grosswald, E. 1984a. Representations of Integers as Sums of Squares. Springer-Verlag, New York.Google Scholar
Grosswald, E. 1984b. Topics from the Theory of Numbers. 2d ed. Birkhäuser, Boston.CrossRefGoogle Scholar
Halphen, G. H. 1886–91. Traité des fonctions elliptiques et de leurs applications. 3 vols. Gauthier-Villars, Paris.Google Scholar
Hancock, H. 1958. Lectures on the Theory of Elliptic Functions. Dover, New York.Google Scholar
Hannah, M. 1928. The modular equations. Proc. Lon. Math. Soc. 28: 4652.CrossRefGoogle Scholar
Hardy, G. H. 1937. The Indian mathematician Ramanujan. Am. Math. Mon. 44: 137–55. Reprinted in Ramanujan, 1–22.CrossRefGoogle Scholar
Hardy, G. H. 1940. Ramanujan. Cambridge University Press, Cambridge. Reprinted by Chelsea, New York, 1960.Google Scholar
Hardy, G. H., and Wright, E. M. 1979. An Introduction to the Theory of Numbers. 5th ed. Oxford University Press, Oxford.Google Scholar
Hartshorne, R. 1977. Algebraic Geometry. GTM 52. Springer-Verlag, New York.CrossRefGoogle Scholar
Hasse, H. 1967. Vorlesungen über Klassenkörpertheorie. Physica-Verlag, Würzberg.Google Scholar
Hasse, H. 1980. Number Theory. Grunderlehren der mathematischen Wissenchaften 229. Springer-Verlag, New York.CrossRefGoogle Scholar
Heegner, K. 1952. Diophantische Analysis und Modulfunktionen. Math. Z. 56: 227–53.CrossRefGoogle Scholar
Hermite, C. 1859. Considérations sur la résolution algébrique de l’équation du cinquième degré. C.R. Acad. Sci. Paris 46: 508–15. Reprinted in Oeuvres, vol. 1, 3–9. Gauthier-Villars, Paris, 1905–17.Google Scholar
Hermite, C. 1862. Note sur la théorie des fonctions elliptiques. In Calcul différentiel et calcul integral de Lacroix. Mallet-Bachelier, Paris. Reprinted in Oeuvres, vol. 2, 125–238. Gauthier-Villars, Paris, 1908.Google Scholar
Hermite, C. 1865–6. Sur l’ équation du cinquième degré. C.R. Acad. Sci. Paris. Reprinted in Oeuvres, vol. 2, 347–424. Gauthier-Villars, Paris, 1908.Google Scholar
Hermite, C. 1877–82. Sur quelques applications des fonctions elliptiques. C. R. Acad. Paris. Reprinted in Oeuvres, vol. 3, 266–418. Gauthier-Villars, Paris, 1912.Google Scholar
Hilbert, D. 1897. Die Theorie der algebraischen Zahlkörper. Jahresbericht D. Math. Ver. 4: 175546.Google Scholar
Hirschhorn, M. D. 1985. A simple proof of Jacobi’s two-square theorem. Am. Math. Mon. 92: 579–80.CrossRefGoogle Scholar
Hirschhorn, M. D. 1987. A simple proof of Jacobi’s four-square theorem. Proc. AMS 101: 436–8.Google Scholar
Hodgkin, A. 1971. The Conduction of the Nervous Impulse. Liverpool University Press, Liverpool.Google Scholar
Houzel, C. 1978. Fonctions elliptiques et intégrales abeliennes. In Abrégé d’histoire des mathématiques, 1700–1900, ed. Dieudonne, J., 1–112. Hermann et Cie., Paris.Google Scholar
Hurwitz, A., and Courant, R. 1964. Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen. Springer, Berlin.Google Scholar
Husemoller, D. 1987. Elliptic Curves. GTM 111. Springer-Verlag, New York. Imayoshi, Y., and Taniguchi, M. 1992. An Introduction to Teichmüller Spaces. Springer-Verlag, New York.CrossRefGoogle Scholar
Ireland, K., and Rosen, M. 1990. A Classical Introduction to Modern Number Theory. 2d ed. GTM 84. Springer-Verlag, New York.CrossRefGoogle Scholar
Ivory, J. 1796. A new series for the rectification of the ellipsis; together with some observations on the evolution of the formula (a2 + b2 2ab cos ϕ)n. Trans. Royal Soc. Edinburgh 4: 177–90.Google Scholar
Jacobi, C. G. J. 1827. Extraits de deux lettres de M. Jacobi de l’Université de Königsberg à M. Schumacher. Astronomische Nachrichten, vol. 6, no. 123. Reprinted in Gesammelte Werke, vol. 1, 29–36. Reprinted by Chelsea, New York, 1969.Google Scholar
Jacobi, C. G. J. 1828. Note sur la décomposition d’un nombre donné en quatre carrés. J. reine angew. Math. 3: 191. Reprinted in Gesammelte Werke, vol. 1, 247.Google Scholar
Jacobi, C. G. J. 1829. Fundamenta nova theoriae functionarum ellipticarum. Bornträger, Königsberg. Reprinted in Gesammelte Werke, vol. 1, 49–239.Google Scholar
Jacobi, C. G. J. 1832. Anzeige von Legendre Theorie des fonctions elliptiques. J. reine angew. Math. 8: 413–17. Reprinted in Gesammelte Werke, vol. 1, 373–82.Google Scholar
Jacobi, C. G. J. 1838. Theorie der elliptischen Funktionen aus der Eigenschaften der Thetareihen abgeleitet. In Gesammelte Werke, vol. 1, 497538.Google Scholar
Jacobi, C. G. J. 1847. Über die Differentialgleichung welcher die reihen 1 ± 2q + 2q4 ± 2q9+ etc., 2q1/4 + 2q9/4 + 2q25/4+ etc. genüge leisten. J. reine angew. Math. 36: 97112. Reprinted in Gesammelte Werke, vol. 2, 171–90.Google Scholar
Jacobi, C. G. J. 1866. Vorlesungen über Dynamik. Reprinted as Gesammelte Werke, supplementary vol. Reimer, Berlin, 1884.Google Scholar
Jacobi, C. G. J. 1881–91. Gesammelte Werke. 7 vols. Reimer, Berlin. Reprinted by Chelsea, New York, 1969.Google Scholar
Janusz, G. 1973. Algebraic Number Fields. Academic Press, New York.Google Scholar
Jones, G. A., and Singerman, D. 1987. Complex Functions. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Jordan, C. 1870. Traité de substitutions et des équations algébriques. Gauthier-Villars, Paris.Google Scholar
Jordan, C. 1894. Cours d’analyse de l’ École Polytechnique. Vol. 2, Calcul Intégral, Gauthier-Villars, Paris.Google Scholar
Kaltofen, E., and Yui, N. 1984. On the modular equation of order 11. In Third MACSYMA User’s Conference, Proceedings, ed. Golden, V. E., 472–85. General Electric, Schenectady, NY.Google Scholar
Kazdan, J. L. 1985. Prescribing the Curvature of a Riemannian Manifold. CBMS Regional Conf. Series in Mathematics. AMS, Providence, RI.CrossRefGoogle Scholar
Kepler, J. 1596. Mysterium Cosmographicum.Google Scholar
Kirwan, F. 1992. Complex Algebraic Curves. London Mathematical Society Students Texts, no. 23. Cambridge University Press, Cambridge.Google Scholar
Klein, F. 1882. Über eindeutige Funktionen mit linearen Transformationen in sich. Math. Ann. 19: 565–8; 20: 49–51.CrossRefGoogle Scholar
Klein, F. 1884. Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade. Teubner, Leipzig. English translation: The Ikosahedron and the Solution of Equations of the Fifth Degree. Trans. Morrice, G. G.. Dover, New York, 1956. Reprinted with comments by Peter Slodowy, 1993.Google Scholar
Klein, F. 1893. On Riemann’s Theory of Algebraic Functions and Their Integrals. Macmillan and Bowes, Cambridge.Google Scholar
Klein, F. 1908. Elementarmathematik vom höheren Standpunkt aus. Springer, Berlin. English translation: Elementary Mathematics from an Advanced Standpoint. Dover, New York, 1939.Google Scholar
Klein, F., and Fricke, R. 1890, 1892. Vorlesungen über die Theorie der elliptischen Modulfunctionen. Teubner, Leipzig.Google Scholar
Knapp, A. 1993. Elliptic Curves. Mathematical Notes 40. Princeton Univeristy Press, Princeton, NJ.Google Scholar
Knopp, M. 1970. Modular Forms in Analytic Number Theory. Markham, Chicago. Koblitz, N. 1993. Introduction to Elliptic Curves and Modular Forms. 2d. ed. GTM 97. Springer-Verlag, New York.Google Scholar
Koebe, P. 1909–14. Über die Uniformizierung der algebraischen Kurven. Math. Ann. 67 (1909): 145224; 69 (1910): 1–81; 72 (1912): 437–88; 75 (1914): 42–129.CrossRefGoogle Scholar
Koike, M. 1994. Moonshine: A mysterious relationship between simple groups and automorphic forms. AMS Translations (2) 160: 3345.Google Scholar
Kollros, L. 1949. Evariste Galois. Birkhäuser, Basel.Google Scholar
Korteweg, D. J., and de Vries, G. 1895. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 39: 422–43.CrossRefGoogle Scholar
Kovalevskaya, S. 1889. Sur le problème de la rotation d’un corps solide autour d’un point fixe. Acta Math. 12: 177232.Google Scholar
Kra, I. 1972. Automorphic Forms and Kleinian Groups. Benjamin, Reading, MA. Krazer, A. 1903. Lehrbuch der Thetafunktionen. Teubner, Leipzig. Reprinted by Chelsea, New York, 1970.Google Scholar
Krichever, I. M. 1980. Elliptic solutions of the KP equation and integrable systems of particles. Funct. Anal. 14: 4554.Google Scholar
Kronecker, L. 1858. Sur la résolution de l’équation du cinquième degré. C. R. Acad. Paris 46: 1150–2. In Werke, vol. 4, 43–7.Google Scholar
Kronecker, L. 1895–1931. Werke. 5 vols. Teubner, Leipzig. Reprinted by Chelsea, New York, 1968.Google Scholar
Kronecker, L. 1901. Vorlesungen über Zahlentheorie. Teubner, Leipzig. Reprinted by Springer-Verlag, New York, 1978.Google Scholar
Lagrange, J. L. 1868. Oeuvres. Vol. 2. Gauthier-Villars, Paris.Google Scholar
Landen, J. 1771. A disquisition concerning certain fluents, which are assignable by the arcs of the conic sections; wherein are investigated some new and useful theorems for computing such fluents. Philos. Trans. Royal Soc. London 61: 298309.Google Scholar
Landen, J. 1775. An investigation of a general theorem for finding the length of any arc of any conic hyperbola, by means of two elliptic arcs, with some other new and useful theorems deduced therefrom. Philos. Trans. Royal Soc. London 65: 283–9.Google Scholar
Landsberg, M. 1893. Zur Theorie der Gauss’schen Summen und der linearen Transformationen der Thetafunktionen. J. reine. angew. Math. 111: 234–53.Google Scholar
Lang, S. 1984. Algebra. 2d ed. Addison-Wesely, Reading, MA.Google Scholar
Lang, S. 1987. Elliptic Functions. 2d. ed. Springer, Berlin.CrossRefGoogle Scholar
Lawden, D. F. 1989. Elliptic Functions and Applications. Applied Mathematical Sciences, vol. 80. Springer-Verlag, New York.Google Scholar
Lefschetz, S. 1921. On certain numerical invariants of algebraic varieties. Trans. AMS 22: 327482.CrossRefGoogle Scholar
Legendre, A. M. 1811. Exercices de calcul intégral sur diverses ordres de transcendants. Paris.Google Scholar
Legendre, A. M. 1825. Traité des fonctiones elliptiques et des intégrales Euleriennes. Paris.Google Scholar
Lehner, J. 1964. Discontinuous Groups and Automorphic Functions. Mathematical Surveys, no. 8. AMS, Providence, RI.Google Scholar
Leibowitz, A., and Rauch, H. E. 1973. Elliptic Functions, Theta Functions, and Riemann Surfaces. Williams and Wilkins, Baltimore, MD.Google Scholar
Lindeman, F. 1884,1892. Über die Auflösung algebraischer Gleichungen durch transzendente Functionen. Parts 1 and 2. Göttingen Nach. (1884): 245–8; (1892): 292–8.Google Scholar
Liouville, J. 1880. Leçons sur les fonctions doublement périodiques faites en 1847 par M. J. Liouville. J. reine angew. Math. 88: 277310.Google Scholar
Luroth, J. 1876. Beweis eines Satzes über rationalen Curven. Math. Ann. 9: 163–5.Google Scholar
Magnus, W. 1974. Noneuclidean Tessellations and Their Groups. Academic Press, New York.Google Scholar
Massey, W. S. 1991. A Basic Course in Algebraic Topology. GTM 127. Springer-Verlag, New York.CrossRefGoogle Scholar
Matthews, G. B. 1911. Number. Encyclopedia Britannica 29: 847–63.Google Scholar
Mazur, B. 1976. Modular curves and the Eisenstein ideal. IHES Publ. Math. 47: 33186.CrossRefGoogle Scholar
Mazur, B. 1986. Arithmetic on curves. Bull. AMS 14: 207–59.CrossRefGoogle Scholar
McKean, H. P. 1970. Nagumo’s equation. Adv. Math. 4: 209–23.CrossRefGoogle Scholar
McKean, H. P. 1978. Integrable systems and algebraic curves. In Global Analysis, ed. Grmela, M. and Marsden, J. E., Springer Lecture Notes in Mathematics, no. 755, 83–200. Springer, Berlin.Google Scholar
Mestre, J. F. 1992. Un exemple de courbes elliptiques sur ℚ de rang ≥ 15. C. R. Acad. Sci. Paris 314: 453–5.Google Scholar
Milnor, J. 1982. Hyperbolic geometry: The first 150 years. Bull. AMS 6: 924.CrossRefGoogle Scholar
Mordell, L. J. 1917. On Mr. Ramanujan’s empirical expansion of modular functions. Proc. Camb. Phil. Soc. 19: 117–24.Google Scholar
Mordell, L. J. 1922. On the rational solutions of the indeterminate equations of the third and fourth degree. Proc. Camb. Phil. Soc. 21: 179–92.Google Scholar
Mordell, L. J. 1969. Diophantine Equations. Academic Press, New York.Google Scholar
Moser, J. 1980. Various aspects of integrable Hamiltonian systems. Progress in Math. 8: 233–89.CrossRefGoogle Scholar
Mostow, G. D. 1966. Quasi-conformal mappings in n-space and the rigidity of hyperbolic space-forms. IHES Publ. Math. 34: 203–14.Google Scholar
Mumford, D. 1975. Curves and Their Jacobians. University of Michigan Press, Ann Arbor, MI.Google Scholar
Mumford, D. 1976. Algebraic Geometry I: Complex Projective Varieties. Springer, Berlin.Google Scholar
Mumford, D. 1983. Tata Lectures on Theta I. Birkhäuser, Boston.CrossRefGoogle Scholar
Mumford, D. 1984. Tata Lectures on Theta II. Birkhäuser, Boston.Google Scholar
Nagao, K., and Kouya, T. 1994. An example of an elliptic curve over Q with rank 21. Proc. Japan Acad. 70: 104–5.Google Scholar
Nagell, J. 1964. Introduction to Number Theory. Chelsea, New York. Originally printed by Almqvist and Wiskell, Stockholm, 1951.Google Scholar
Nagumo, J. S.; Arimoto, S.; and Yoshizawa, S. 1962. An active pulse transmission line simulating nerve axon. Proc. IRE 50: 2061–70.CrossRefGoogle Scholar
Narasimhan, R. 1992. Compact Riemann Surfaces. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel.CrossRefGoogle Scholar
Neugebauer, O. 1957. The Exact Sciences in Antiquity. Brown University Press, Providence, RI. Reprinted by Dover, New York, 1969.Google Scholar
Neumann, C. 1859. De problemate quodam mechanica, quod ad primam integralium ultra-ellipticorum classem revocatur. J. reine angew. Math. 56: 5466.Google Scholar
Neumann, C. 1865. Vorlesungen über Riemanns Theorie der Abel’schen Integral. Teubner, Leipzig.Google Scholar
Nevanlinna, R. 1970. Analytic Functions. Springer Grundlehren 162. Springer, Berlin.CrossRefGoogle Scholar
Newman, D. J. 1985. A simplified version of the fast algorithms of Brent and Salamin. Math. Comp. 44: 207–10.CrossRefGoogle Scholar
Novikov, S.; Manakov, S.; Pitaevskii, L.; and Zakharov, V. 1984. Theory of Solitons: The Inverse Scattering Method. Plenum, New York.Google Scholar
Oesterle, J. 1985. Nombre de classes des corps quadratiques imaginaires. In Séminaire N. Bourbaki, 1983–1984, Exp. 631, 309–23. Astérisque, vol. 121–2. CNRS, Paris.Google Scholar
Ore, O. 1965. Cardano, the Gambling Scholar. Dover, New York. Originally printed by Princeton University Press, Princeton, NJ, 1953.Google Scholar
Ore, O. 1957. Niels Henrik Abel. Chelsea, New York.Google Scholar
Peterson, H. 1932. Über die Entwicklungskoeffizienten der automorphen Formen. Acta Math. 58: 169215.CrossRefGoogle Scholar
Picard, E. 1879. Sur une propriété des fonctions entiers. C. R. Acad. Sci. Paris 88: 1024–7. Reprinted in Oeuvres, vol. 1, 19–22. CNRS, Paris, 1978.Google Scholar
Picard, E. 1882. Sur la réduction de intégrales abeliennes aux intégrales elliptiques. C. R. Acad. Sci. Paris 94: 1704–7. Reprinted in Oeuvres, vol. 3, 11–14. CNRS, Paris, 1978.Google Scholar
Pogorelov, A. V. 1967. Differential Geometry. Nordhoff, Groningen.Google Scholar
Poincaré, H. 1882. Theorie des groupes fuchsiens. Acta Math. 1: 162. Reprinted in Oeuvres, vol. 2, 108–68. Gauthier-Villars, Paris, 1946.CrossRefGoogle Scholar
Poincaré, H. 1898. Les fonctions fuchsiennes et l’équation Δu = eu. J. de Math. 4: 137230. Reprinted in Oeuvres, vol. 2, 512–91. Gauthier-Villars, Paris, 1946.Google Scholar
Poincaré, H. 1901. Sur les propriétés arithmétiques des courbes algébriques. J. de Math. 7: 161233. Reprinted in Oeuvres, vol. 5, 483–550. Gauthier-Villars, Paris, 1950.Google Scholar
Poincaré, H. 1907. Sur l’uniformisation des fonctions analytiques. Acta Math. 31: 163. Reprinted in Oeuvres, vol. 4, 70–139. Gauthier-Villars, Paris, 1950. Poincarè, H. 1985. Papers on Fuchsian Groups. Trans. Stillwell, J.. Springer-Verlag, New York.CrossRefGoogle Scholar
Pollard, H. 1950. The Theory of Algebraic Numbers. Carus Math. Mono., no. 9. Wiley, New York.Google Scholar
Pólya, G. 1921. Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz. Math. Ann. 84, 149–60. Reprinted in Collected Papers, vol. 4, 69–80. MIT Press, Cambridge, MA, 1974–84.CrossRefGoogle Scholar
Pólya, G. 1927. Elementaren Beweis einer Thetaformel. In Sitz. der Phys. Math. Klasse, 158–61. Preuss. Akad. der Wiss., Berlin. Reprinted in Collected Papers, vol. 1, 303–6. MIT Press, Cambridge, MA, 1974–84.Google Scholar
Poncelet, J. V. 1822. Traité des propriétés projectives des figures. Paris, 1822. Rademacher, H. 1973. Topics in Analytic Number Theory. Springer-Verlag, New York. Ramanujan, S. 1916. On certain arithmetical functions. Trans. Camb. Phil. Soc. 22: 159–84. Reprinted in Collected Papers, 136–62.Google Scholar
Ramanujan, S. 1927. Collected Papers of Srinivasa Ramanujan. Cambridge University Press, Cambridge.Google Scholar
Reid, C. 1970. Hilbert. Springer-Verlag, New York.CrossRefGoogle Scholar
Reyssat, E. 1989. Quelques aspects des surfaces de Riemann. Birkhäuser, Boston.Google Scholar
Riemann, B. 1851. Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. Inaugural dissertation, Göttingen, 1851; reprinted, Göttingen, 1867. Reprinted in Gesammelte mathematische Werke, 3580.Google Scholar
Riemann, B. 1857. Theorie der Abel’schen Functionen. J. reine angew. Math. 54: 88142.Google Scholar
Riemann, B. 1858. Elliptische Funktionen. Teubner, Leipzig.Google Scholar
Riemann, B. 1990. Gesammelte mathematische Werke and wissenschaftlicher Nachlass. Springer, Berlin.CrossRefGoogle Scholar
Ritt, J. F. 1923. Permutable rational functions. Trans. AMS 25: 399448.CrossRefGoogle Scholar
Robert, A. 1973. Elliptic Curves. Springer-Verlag, New York.Google Scholar
Roberts, J. 1977. Elementary Number Theory: A Problem Oriented Approach. MIT Press, Cambridge, MA.Google Scholar
Roch, G. 1865. Über die Anzahl der willkürlischen Constanten in algebraischen Functionen. J. reine angew. Math. 64: 372–6.Google Scholar
Rogers, L. J. 1894. Second memoir on the expansion of certain infinite products. Proc. Lon. Math. Soc. 25: 318–43.Google Scholar
Rosen, M. I. 1981. Abel’s theorem on the lemniscate. Am. Math. Mon. 88: 387–93. Rosen, M. I. 1995. Niels Hendrik Abel and equations of the fifth degree. Am. Math. Mon. 102: 495–505.CrossRefGoogle Scholar
Ruffini, P. 1799. Teoria generale delle equazioni in cui si dimostra impossibile la soluzione algebraica delle equazioni generali di grado superiore al quarto. Tommaso d’Aquino, Bologna. Reprinted in Collected Works, vol. 1, 159–86.Google Scholar
Ruffini, P. 1950. Collected Works. Vol. 1. Math. Circle of Palermo. Tipografia Matematica, Palermo, Italy.Google Scholar
Sansone, G., and Gerretsen, G. 1969. Lectures on the Theory of Functions of a Complex Variable. 2 vols. Wolters-Noordhoff, Groningen.Google Scholar
Sarnak, P. 1990. Some Applications of Modular Forms. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Schoenberg, I. J. 1981. A direct derivation of a Jacobian identity from elliptic functions. Am. Math. Mon. 88: 616–18.CrossRefGoogle Scholar
Schwarz, H. A. 1872. Über diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt. J. reine angew. Math. 75: 292335.Google Scholar
Schwarz, H. A. 1893. Formeln und Lehrsätze zum Gebräuche der elliptischen Funktionen, nach Vorlesungen und Aufzeichnungen des Herrn Prof. K. Weierstrass. Springer, Berlin.CrossRefGoogle Scholar
Segal, S. 1981. Nine Introductions in Complex Analysis. North-Holland Math. Studies, no. 53. North-Holland, Amsterdam.Google Scholar
Serre, J. P. 1973. A Course in Arithmetic. GTM 7. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Shafarevich, I. R. 1977. Basic Algebraic Geometry. Trans. Hirsch, K. A.. Grundlehren 213. Springer, Berlin.Google Scholar
Shanks, D. 1951. A short proof of an identity of Euler. Proc. AMS 2: 747–9.CrossRefGoogle Scholar
Shanks, D. 1958. Two theorems of Gauss. Pacific Journal of Math. 8, 609.CrossRefGoogle Scholar
Shimura, G. 1971. Introduction to the Arithmetic Theory of Automorphic Functions. Princeton University Press, Princeton, NJ.Google Scholar
Siegel, C. L. 1936. Über die Classenzahl quadratischer Zahlkörper. Acta Arith. 1: 83–6.Google Scholar
Siegel, C. L. 1949. Transcendental Numbers. Ann. Math. Studies, no. 16. Princeton University Press, Princeton, NJ.Google Scholar
Siegel, C. L. 1969,1971,1973. Topics in Complex Function Theory. 3 vols. Wiley, New York.Google Scholar
Silverman, J. 1986. The Arithmetic of Elliptic Curves. GTM 106. Springer-Verlag, New York.CrossRefGoogle Scholar
Silverman, J. 1994. Advanced Topics in the Arithmetic of Elliptic Curves. GTM 151. Springer-Verlag, New York.CrossRefGoogle Scholar
Silverman, J., and Tate, J. 1992. Rational Points on Elliptic Curves. Springer-Verlag, New York.CrossRefGoogle Scholar
Skolem, T. 1938. Diophantische Gleichungen. Ergeb. der Math. und ihrer Grenzgeb., vol. 5. Springer, Berlin. Reprinted by Chelsea, New York, 1950.Google Scholar
Sohnke, L. A. 1836. Equationes modulares pro transformatione functionum ellipticarum. J. reine angew. Math. 16: 97130.Google Scholar
Springer, G. 1981. Introduction to Riemann Surfaces. 2d ed. Chelsea, New York.Google Scholar
Stark, H. M. 1967. A complete determination of the complex number fields of class number one. Michigan Math. J. 14: 127.CrossRefGoogle Scholar
Stark, H. M. 1969. On the “gap” in a theorem of Heegner. Journal of Number Theory 1: 1627.CrossRefGoogle Scholar
Stark, H. M. 1970. An Introduction to Number Theory. Markham, Chicago.Google Scholar
Stark, H. M. 1971. A transcendence theorem for class number problems. Ann. of Math. (2) 94: 153–73.CrossRefGoogle Scholar
Stark, H. M. 1973. Class-numbers of complex quadratic fields. In Modular Functions of One Variable, ed. Kuyk, W., Lect, Springer. Notes, no. 320, 153–74. Springer, Berlin.Google Scholar
Stewart, I. 1973. Galois Theory. Chapman Hall, London.Google Scholar
Stillwell, J. 1989. Mathematics and Its History. Springer-Verlag, New York.CrossRefGoogle Scholar
Stillwell, J. 1992. Geometry of Surfaces. Springer-Verlag, New York.CrossRefGoogle Scholar
Stillwell, J. 1994. Elements of Algebra. Springer-Verlag, New York.CrossRefGoogle Scholar
Swinnerton-Dyer, H. P. F. 1988. Congruence properties of τ(n). In Ramanujan Revisited: Proceedings of the Centenary Conference, University of Illinois at Urbana-Champain, June 1–5, 1987, ed. Andrews, G. E. et al., 289–311. Academic Press, Boston.Google Scholar
Tannery, J., and Molk, J. 1893–1902. Elements de la théorie des fonctions elliptiques. 4 vols. Gauthier-Villars, Paris. Reprinted by Chelsea. New York, 1972.Google Scholar
Tartaglia, N. 1546. Quesiti et inventioni diverse. Fascimile of 1554 edition. Ed. Masotti, A.. Ateneo di Brescia, Brescia.Google Scholar
Terras, A. 1985. Harmonic Analysis on Symmetric Spaces and Applications. Vol. 1. Springer-Verlag, New York.CrossRefGoogle Scholar
Thompson, J. G. 1979. Some numerology between the Fischer–Griess monster and the elliptic modular function. Bull. Lon. Math. Soc. 11: 352–3.Google Scholar
Treibich, A. 1994. New elliptic potentials. Acta Appl. Math. 36: 2748.CrossRefGoogle Scholar
Treibich, A., and Verdier, J. 1990. Solitons elliptiques. In Progress in Math., ed. Cartier, P. et al., vol. 88, 437–80. Birkhäuser, Boston.Google Scholar
Van der Pol, B. 1951. On a non-linear partial differential equation satisfied by the logarithm of the Jacobian theta-functions, with arithmetical applications. Parts 1 and 2. Indagationes Math. 13: 261–84.Google Scholar
Vladut, S. G. 1991. Kronecker’s Jugendtraum and Modular Functions. Studies and Developments of Modern Mathematics, vol. 2. Gordon and Breach, New York.Google Scholar
Waerden, B. L. van der. 1970. Modern Algebra. 2 vols. Trans. F. Blum and J. R. Schulenberger. 5th ed. Ungar, New York.Google Scholar
Walker, R. 1978. Algebraic Curves. Springer-Verlag, New York.CrossRefGoogle Scholar
Watson, G. N. 1929. Theorems stated by Ramanujan (7): Theorems on continued fractions. J. London Math. Soc. 4: 3948.CrossRefGoogle Scholar
Watson, G. N. 1933. The marquis and the land-agent; a tale of the eighteenth century. Mathematical Gazette 17: 517.CrossRefGoogle Scholar
Watson, G. N. 1938. Ramanujans Vermutung über Zerfallungsanzahlen. J. reine angew. Math. 179: 97128.CrossRefGoogle Scholar
Watson, G. N. 1939. Three triple integrals. Oxford Quart. Journal Math. 10: 266–76.Google Scholar
Weber, H. 1886. Theorie der Abel’schen Körper. Acta Math. 8: 193263.CrossRefGoogle Scholar
Weber, H. 1891. Elliptische Funktionen und algebraische Zahlen. Vieweg, Braunschweig.Google Scholar
Weber, H. 1908. Lehrbuch der Algebra. Vol. 3. 2d ed. Vieweg, Braunschweig. Reprinted by Chelsea, New York, 1961.Google Scholar
Weierstrass, K. 1915. Vorlesungen über die Theorie der elliptischen Funktionen. Vol. 5 of Math. Werke. Mayer and Müller, Berlin.Google Scholar
Weil, A. 1928. L’arithmetique sur les courbes algébriques. Acta Mathematica 52: 281315. Reprinted in Oeuvres Scientifiques, Collected Papers, vol. 1, 11–45. Springer-Verlag, New York, 1980.CrossRefGoogle Scholar
Weil, A. 1930. Sur un théorème de Mordell. Bull. Sci. Math. 54: 182–91. Reprinted in Oeuvres Scientifiques, Collected Papers, vol. 1, 47–56. Springer-Verlag, New York, 1980.Google Scholar
Weil, A. 1974. Two lectures on number theory, past and present. L’Enseign. Math. 20: 87110. Reprinted in Oeuvres Scientifiques, Collected Papers, vol. 3, 279–302. Springer-Verlag, New York, 1980.Google Scholar
Weil, A. 1975. Elliptic functions according to Eisenstein and Kronecker. Springer, Berlin.Google Scholar
Weil, A. 1983. Number Theory: An Approach Through History. Birkhäuser, Boston.Google Scholar
Weyl, H. 1940. Algebraic Theory of Numbers. Ann. Math. Studies, no. 1. Princeton University Press, Princeton, NJ.CrossRefGoogle Scholar
Weyl, H. 1955. The Concept of a Riemann Surface. 3d ed. Addison-Wesley, Reading, Translation, MA. of Die Idee der Riemannschen Fläche. Teubner, Berlin, 1913.Google Scholar
Whittaker, E. T. 1937. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, Cambridge.Google Scholar
Whittaker, E. T., and Watson, G. N. 1963. A Course in Modern Analysis. 4th ed. Cambridge University Press, Cambridge.Google Scholar
Wijngaarden, A. van 1953. On the coefficients of the modular invariant J(τ). Indag. Math. 15: 389400.CrossRefGoogle Scholar
Winquist, L. 1969. An elementary proof of p(11m + 6) ≡ 0 mod 11. J. Combin. Theory 6: 56–9.CrossRefGoogle Scholar
Wyman, B. F. 1972. What is a reciprocity law? Am. Math. Mon. 79: 571–86.CrossRefGoogle Scholar
Yui, N. 1978. Explicit form of the modular equation. J. reine angew. Math. 299: 185200.Google Scholar
Zagier, D. 1984. L-series of elliptic curves, the Birch–Swinnerton-Dyer conjecture, and the class number problem of Gauss. Notices AMS 31: 739–43.Google Scholar
Zagier, D. 1992. Introduction to modular forms. In From Number Theory to Physics, ed. Waldschmidt, M. et al., 238–91. Springer-Verlag, New York.Google Scholar
Zuckerman, H. S. 1939. Computation of the smaller coefficients of J(τ). Bull. AMS 45: 917–19.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×