Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-09T23:30:52.345Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  20 April 2017

Ranjan Roy
Affiliation:
Beloit College, Wisconsin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, N. 1965. Oeuvres complètes, 2 vols. New York: Johnson Reprint.
Andrews, G. 1974. Applications of basic hypergeometric functions. SIAM Rev. 16, 441–484.Google Scholar
Andrews, G., and Berndt, B. 2005–. Ramanujan's Lost Notebook. New York: Springer.
Archibald, T. 2002. Charles Hermite and German Mathematics in France. In Parshall, K. H., and Rice, A. C., eds., Mathematics Unbound: The Evolution of an International Research Community,1800–1949, pp. 123–137. Providence, RI: AMS.
Armitage, J.V., and Eberlien, W. F. 2006. Elliptic Functions. Cambridge: Cambridge University Press.
Atkin, A. O. L. 1967. Proof of a Conjecture of Ramanujan. Glasgow Math J 8, 14–32.Google Scholar
Auwers, A. (ed). 1880. Briefwechsel zwischen Gauss und Bessel. Leipzig: Engelmann.
Bachmann, P. 1923. Die Arithmetik der quadratischen Formen. Leipzig: Teubner.
Barrow-Green, June. 1996. Poincaré and the Three Body Problem. Providence: AMS.
Bateman, P. T. 1951. On the representation of a number as the sum of three squares. Trans. Am. Math.Soc. 71, 70–101.Google Scholar
Berggren, L. J. M., Borwein, P. B., Borwein. 1997. Pi: A Source Book. New York: Springer-Verlag.
Berndt, B. 1985–1998. Ramanujan's Notebooks, parts I–V. New York: Springer-Verlag.
Berndt, B. 1992. Hans Rademacher (1892–1969). Acta Arith. 61, 209–231.Google Scholar
Berndt, B. 1993. Theta Functions: from the Classical to the Modern. Providence: AMS. edited by M. R., Murty. Chap. 1 Ramanujan's Theory of Theta-Functions, pages 1–63.
Berndt, B. 2005. Number Theory in the Spirit of Ramanujan. Providence: AMS.
Berndt, B., and Knopp, M. 2008. Hecke's Theory of Modular Forms and Dirichlet Series. Singapore: World Scientific.
Berndt, B., and Ono, K. 2001. The Andrews Festschrift. New York: Springer. edited by Foata, D., and Han, G.-N. Chap. Ramanujan's Unpublished Manuscript on the Partition and Tau Functions with Proofs and Commentary, pages 39–110.
Berndt, B., and Rankin, R. 1995. Ramanujan: Letters and Commentary. Providence: AMS.
Berndt, B., and Rankin, R. 2001. Ramanujan: Essays and Surveys. Providence: AMS.
Bernoulli, Daniel. 1982–1996. Die Werke von Daniel Bernoulli. Basel: Birkhauser.
Bernoulli, Johann. 1968. Opera Omnia. Hildesheim: Georg Olms Verlag.
Bierman, K. R. (ed). 1977. Briefwechsel zwischen Alexander von Humboldt und Carl FriedrichGauss. Berlin: Akedemie-Verlag.
Birch, B. J. 1975. A look back at Ramanujan's notebooks. Math. Proc. Camb. Phil. Soc. 78, 73–79.Google Scholar
Boole, George. 1841. Exposition of a general theory of linear transformations, Parts I and II. Cambridge Math J 3, 1–20, 106–111.Google Scholar
Boole, George. 1844. Notes on linear transformations. Cambridge Math J. 4, 167–171.Google Scholar
Borwein, J. M., and Borwein, P. B. 1987. Pi and the AGM. New York: Wiley.
Bottazini, U., and Gray, J. 2013. Hidden Harmony-Geometric Fantasies. New York: Springer.
Brioschi, F. 1901. Opere Matematiche. Milano: Ulrico Hoepli.
Bruinier, Jan, Hendrik, and Ono, Ken. 2013. Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms. Advances in Math 246, 198–219.Google Scholar
Bruns, H. 1886. Über die Perioden der elliptischen Integrale erster und zweiter Gattung. Math. Annalen 27, no. 2, 234–252.Google Scholar
Cahen, E. 1891. Note sur un développement des quantités numériques, qui présente quelque analogie avec celui en fractions continues. Nouv. Ann. Math 10, 508–514.Google Scholar
Cahen, E. 1894. Sur la fonction ζ (s) de Riemann et sur des fonctions analogs. Ann. Sci. École Norm. Sup. 11, 75–164.Google Scholar
Cardano, G. 1993. ArsMagna or the Rules of Algebra. New York: Dover. translated by T. R.Wittmer.
Carr, G. S. 2013. A Synopsis of Elementary Results in Pure and Applied Mathematics. Cambridge: Cambridge University Press.
Cassels, J. W. S. 1973. Louis Joel Mordell. Biog. Mem. Fellows Royal Soc. 19, 493–520.Google Scholar
Cauchy, A. L. 1882–1974. Oeuvres complètes. Paris: Gauthier-Villars.
Cayley, A. 1874. A memoir on the transformation of elliptic functions. Phil. Trans. Royal Soc. 164, 397–456.Google Scholar
Cayley, A. 1889–1898. Collected Mathematical Papers. Cambridge: Cambridge University Press.
Chan, H. H., and Chua, K. S. 2003. Papers in Memory of Robert A. Rankin. Norwell, MA: Kluwer Acad. Press. Chap. Representations of Integers as Sums of 32 Squares, pages 79–89.
Chowla, S. D. 1934. Congruence properties of partitions. JLMS 9, 247.Google Scholar
Clairaut, A. C. 1739. Recherches générales sur le calcul intégral. Mém. de l'Académie Royale des Sci. 1, 425–436.Google Scholar
Clairaut, A. C. 1740. Sur l'intégration ou la construction des équations différentielles du premier ordre. Mém. de l'Académie Royale des Sci. 2, 293–323.Google Scholar
Clarke, F. M. 1929. Thomas Simpson and his Times. Baltimore: Waverly Press.
Cooper, S. 2001. On sums of an even number of squares, and an even number of triangular numbers: an elementary approach based on Ramanujan's 1ψ1 summation formula. ContemporaryMath, 291, 115–138.CrossRefGoogle Scholar
Cotes, Roger. 1722. Harmonia Mensurarum. Cambridge: Cambridge University Press.
de Moivre, Abraham. 1707. Aequationum quarundam Potestatis tertiae, quintae, septimae, novae, & superiorum, ad infinitum usque pergendo, in terminis finitis, ad imstar Regularum pro Cubicis quae vocantur, Cardani, Resolutio Analytica. Phil. Trans. 25, no. 309, 2368–2371.Google Scholar
de Moivre, Abraham. 1730. Miscellanea analytica de seriebus et quadraturis. London: Touson and Watts.
de Moivre, Abraham. 1967. The Doctrine of Chances. New York: Chelsea.
Dedekind, R. 1930–. Gesammelte MathematischeWerke. Braunschweig: Vieweg. edited by R., Fricke, E., Noether, Ø. Ore.
Deligne, P. 1974. La conjecture de Weil. I. Pub. Math IHES 43, 273–307.Google Scholar
Dewar, Michael, and Murty, M. Ram. 2013. A derivation of the Hardy-Ramanujan formula from an arithmetic formula. Proc. AMS 141, 1903–1911.Google Scholar
Dirichlet, L., and Dedekind, R. 1999. Lectures on Number Theory. Providence: AMS. translated by John, Stillwell.
Dirichlet, P. G. L. 1969. Mathematische Werke. New York: Chelsea.
Dunnington, G. 2004. Gauss: Titan of Science. Washington: MAA.
Edwards, H. M. 1984. Galois Theory. New York: Springer-Verlag.
Eisenstein, G. 1847. Mathematische Abhandlungen, besonders aus dem Gebiete der höheren Arithmetik und der Elliptischen Funktionen. Berlin: G. Riemer.
Eisenstein, G. 1975. Mathematische Werke. New York: Chelsea.
Elfving, G. 1981. The History of Mathematics in Finland, 1828–1918. Helsinki: Societas Scientiarum Fennica.
Elstrodt, J. 2007. Analytic Number Theory: A tribute to Gauss and Dirichlet. Providence: AMS. edited by Duke, W. and Tschinkel, Y. Chap. The life and work of Gustav Lejeune Dirichlet (1905–1859), pages 1–37.
Engelsman, S. B. 1984. Families of Curves and the Origins of Partial Differentiation. Amsterdam: North Holland.
Enneper, A. 1890. Elliptische Functionen. Halle: Louis Nebert.
Euler, L. 1911–. Leonhardi Euleri Opera Omnia. Series I-IV A. Bassel: Birkhäuser.
Euler, Leonhard. 1988. Introduction to Analysis of the Infinite. New York: Springer-Verlag. translated by J. D., Blanton.
Fagnano, G. C. 1750. Produzioni Matematiche del Conte Giulio Carlo di Fagnano. Pesaro: Gavelli.
Feigenbaum, L. 1981. Brook Taylor's Methodus Incrementorum: A Translation with Mathematicaland Historical Commentary. Ph.D. thesis, Yale University, New Haven.
Fine, N. J. 1988. Basic Hypergeometric Series and Applications. Providence: AMS.
Ford, L. R. 1957. Automorphic Functions. New York: Chelsea.
Fuss, P. H. (ed). 1968. Correspondance mathématique et physique, 3 vols. New York: Johnson Reprint.
Gårding, L. 1997. Mathematics and Mathematicians: Mathematics in Sweden before 1950. Providence: AMS.
Gårding, L., and Skau, C. 1994. Niels Henrik Abel and solvable equations. Arch. Hist. of Exact Sc. 48, 81–103.Google Scholar
Gannon, T. 2006. Moonshine Beyond the Monster. Cambridge: Cambridge University Press.
Gauss, C. F. 1863–1927. Werke, vols. 1–12. Leipzig: Teubner.
Gauss, C. F. 1965. Disquisitiones Arithmeticae, English trans. Arthur, A. Clarke, S. J. New Haven: Yale.
Gelfand, Kapranov, Zelevinsky. 1994. Discriminants, Resultants, and Multidimensional Determinants. Boston: Birkhäuser.
Glaisher, J.W. L. 1907a. On the number of representations of a number as a sum of 2r squares, where 2r does not exceed eighteen. Proc. London Math. Soc. series 2, 5, 479–490.Google Scholar
Glaisher, J. W. L. 1907b. On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares. Quarterly J. Pure and Appl. Math. 38, 1–62.Google Scholar
Glaisher, J. W. L. 1908. On elliptic-function expansions in which the coefficients are powers of the complex numbers having n as norm. Quart. J. Pure and Appl. Math 39, 266–300.Google Scholar
Goldstein, Schappacher, Schwermer (ed). 2007. The Shaping of Arithmetic after C. F. Gauss's Disquisitiones Arithmeticae. New York: Springer.
Gowing, R. 1983. Roger Cotes. Cambridge: Cambridge University Press.
Gray, J. 1986. Linear Differential Equations and Group Theory from Riemann to Poincaré. Boston: Birkhäuser.
Green, George. 1970. Mathematical Papers. New York: Chelsea.
Grosswald, E. 1985. Representations of Integers as Sums of Squares. New York: Springer-Verlag.
Gudermann, C. 1838. Theorie der Modular-Functionen und der Modular-Integrale. J. Reine undAngew. Math. 18, 1–54, 220–258.Google Scholar
Guetzlaff, C. 1834. Aequatio modularis pro transformatione functionum ellipticarum septimi ordinis.J. Reine Angew. Math. 12, 173–177.Google Scholar
Gupta, H. 1935. Tables of partitions. PLMS, series 2 39, 142–149.
Hardy, G. H. 1966–1979. Collected Papers of G. H. Hardy. Oxford: Oxford University Press.
Hardy, G. H. 1978. Ramanujan. New York: Chelsea.
Hardy, G. H., and Riesz, M. 1915. The General Theory of Dirichlet Series. Cambridge: Cambridge University Press.
Hecke, E. 1959. Mathematische Werke. Göttingen: Vandenhoeck und Ruprecht.
Hecke, E. 1983. Lectures on Dirichlet Series, Modular Functions and Quadratic Forms. Göttingen:Vandenhoeck and Ruprecht.
Hermite, C. 1905–1917. Oeuvres. Paris: Gauthier-Villars.
Hille, E. 1997. Ordinary Differential Equations in the Complex Domain. New York: Dover.
Hurwitz, A. 1962. Mathematische Werke. Basel: Birkhäuser.
Jacobi, C. G. J. 1846. Opuscula Mathematica, vol. 1. Berlin: G. Reimer.
Jacobi, C. G. J. 1965. Mathematische Werke. New York: Chelsea.
Joubert, C. 1858. Sur divers équations analogues aux équations modulaires dans la théorie des fonctions elliptiques. Comptes Rendus 47, 337–345.Google Scholar
Joubert, C. 1875. Sur les équations qui se recontrent dans la théorie de la transformation des fonctions elliptiques. Paris: Gauthier-Villars.
Kiepert, L. 1879a. Auflösung der Gleichungen fünften Grades. J. Reine Angew. Math. 87, 114–133.Google Scholar
Kiepert, L. 1879b. Zur Transformationstheorie der elliptischen Functionen. J. Reine Angew. Math. 87, 199–216.Google Scholar
Klein, F. 1921–1923. Gessamelte Mathematische Abhandlungen . Berlin: Verlag Julius Springer.
Klein, F. 1933. Vorlesungen über die hypergeometrische Funktion. Berlin: Springer. Compiled and edited by Otto Haupt.
Klein, F. 1956. The Icosahedron. New York: Dover. translated by George, Morrice.
Klein, F., and Fricke, R. 1890–1892. Vorlesungen über die Theorie der Modulfunktionen Leipzig: Teubner.
Knopp, M. 2000. Number Theory. New Delhi: Hindustan Book Agency. edited by Bambah, R. P., et al., Chap. Hamburger's theorem on ζ (s) and the abundance principle for Dirichlet series with fundamental equations, pages 201–216.
Knuth, Donald. 1998. The Art of Computer Programming (third edition), vol. 2. Reading, MA: Addison-Wesley.
Kronecker, L. 1968. Mathematische Werke. New York: Chelsea.
Kronecker, Leopold. 1894. Theorie der einfachen und der vielfachen Integrale. Leipzig: Teubner. edited by E., Netto.
Kuhn, H. K. 1991. History of Mathematical Programming: a collection of personal reminiscences. Amsterdam: North-Holland. edited by Lenstra, Kan, and Schrijver. Chap. Nonlinear programming: A historical note, pages 82–96.
Kummer, Ernst. 1975. Collected Papers. Berlin: Springer Verlag.
Lacroix, S. F. 1819. Traité du calcul différential et du calcul intégral, Vol. 3. Paris: Courcier.
Lagrange, J. L. 1867–1892. Oeuvres, vols. 1–14. Paris: Gauthier-Villars.
Landau, E. 1906. Euler und die Funktionalgleichung der Riemannschen Zetafunktion. Bibliotheca Math. 7, no. 3, 69–79.Google Scholar
Landen, J. 1775. An investigation of a general theorem for finding the length of any arc of any conic hyperbola, by means of two elliptic arcs, with some other new and useful theorems deduced therefrom. Phil. Trans. Roy. Soc. Lon. 65, 283–289.
Legendre, A. M. 1792. Mémoire sur les Transcendantes elliptiques. Paris: Academie des Sciences.
Legendre, A. M. 1811–1817. Exercices de calcul intégral, 2 vols. Paris: Courcier.
Lehmer, D. H. 1937. On the Hardy-Ramanujan series for the partition function. J. London Math. Soc. 12, 171–176.Google Scholar
Leibniz, G. W. 1920. The Early Mathematical Manuscripts of Leibniz. Chicago: Open Court. edited by Gerhardt, C. I., translated with notes by Child, J. M.
Leibniz, G.W. 1971. Mathematische Schriften. Hildesheim: Georg Olms Verlag. edited by Gerhardt, C. I.
Leybourn, Thomas. 1817. The mathematical questions, proposed in the Ladies'diary, and their original answers, together with some new solutions, from its commencement in the year 1704 to 1816. London: Mawman.
Lindelöf, E. 1905. Le calcul des résidus et ses applications à la théorie des fonctions. Paris: Gauthier- Villars.
Liouville, J. 1844. Nouvelle démonstration d'un théorème sur les irrationnelles algébriques. Comptes Rendus, 18, 910–911.Google Scholar
Liouville, J. 1880. Leçons sur les fonctions doublement périodiques. J. Reine Angew. Math. 88, 277– 310.Google Scholar
Lützen, J. 1990. Joseph Liouville 1809–1882. New York: Springer-Verlag.
Markushevich, A. 1992. Introduction to the classical theory of Abelian functions. Providence: AMS.
McKean, H., and Moll, V. 1997. Ellipitc Curves. Cambridge: Cambridge University Press.
Milne, S. C. 2002. Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions,Continued Fractions, and Schur Functions. Boston: Kluwer Acad. Press.
Minkowski, H. 1967. Gesammelte Abhandlungen. Leipzig: Teubner.
Mittag-Leffler, G. 1923. An introduction to the theory of elliptic functions. Ann. Math. 24, 271– 351.Google Scholar
Mordell, L. 1917a. On Mr. Ramanujan's empirical expansions of modular functions. Proc. Camb. Phil. Soc. 19, 117–124.Google Scholar
Mordell, L. 1917b. On the representation of numbers as a sum of 2r squares. Quart. J. Pure and Appl. Math 48, 93–104.Google Scholar
Mordell, L. 1919. On the representation of numbers as a sum of an odd number of squares. Trans. Camb. Phil. Soc. 22, 361–372.Google Scholar
Mordell, L. 1923. On the integer solutions of the equation ey2 = ax3 + bx2 + cx + d. Proc. London Math. Soc. 21, 415–419.Google Scholar
Mordell, L. 1929. Poisson's summation formula in several variables and some applications in the theory of numbers. Proc. Camb. Phil. Soc. 25, 412-420.Google Scholar
Moreno, C. J., and Wagstaff, Jr, S. S. 2006. Sums of Squares of Integers. Boca Raton: Chapman and Hall.
Müller, F. 1867. De transformatione functionum ellipticarum. Berlin: A. W. Schade.
Murty, M. R., and Murty, V. K. 2013. The Mathematical Legacy of Srinivasa Ramanujan. New Delhi: Springer.
Neumann, P. M. 2011. The Mathematical Writings of Évariste Galois. Zürich: European Mathematical Society Publishing House.
Newman, J. 1956. The World of Mathematics, 4 vols. New York: Simon and Schuster.
Newton, Isaac. 1959–1960. The Correspondence of Isaac Newton. Cambridge: Cambridge University Press. edited by Turnbull, H. W.
Newton, Isaac. 1967–1981. The Mathematical Papers of Isaac Newton. Cambridge: Cambridge University Press. edited by Whiteside, D. T.
Ono, K. 2002. Representations of integers as sums of squares. J. Number Theory 95, 253–258.Google Scholar
Ono, K., and Aczel, A. 2016. My Search for Ramanujan. Cham: Springer.
Peiffer, J. 1983. Joseph Liouville (1809–1882): ses contributions à la théorie des fonctions d'une variable complexe. Rev. Hist. Sci. 36, 209–248.Google Scholar
Peters, C. A. F. (ed). 1860–1865. Briefwechsel zwischen C. F. Gauss und H. C. Schumacher, vols. 1–6. Altona: Gustav Esch.
Pieper, H. (ed). 1987. Briefwechsel zwischen Alexander von Humboldt und C. G. Jacob Jacobi. Berlin: Akademie-Verlag.
Rademacher, H., and Grosswald, E. 1972. Dedekind Sums. Washington: MAA.
Rademacher, Hans. 1974. Collected Papers. Cambridge, MA: MIT Press.
Ramanujan, S. 1988. The lost notebook and other unpublished papers. New Delhi: Narosa.
Ramanujan, S. 2000. Collected Papers. Providence: AMS Chelsea.
Rangachari, S. S. 1982. Ramanujan and Dirichlet series with Euler products. Proc. Indian Acad. Soc. (Math Sci.) 91, 1–15.Google Scholar
Rankin, R. 1946. A certain class of multiplicative functions. Duke Math. J. 13, 281–306.Google Scholar
Rankin, R. 1962. On the representation of a number as the sum of any number of squares, and in particular of twenty. Acta Arithmetica 7, 399–407.Google Scholar
Rankin, R. 1965. Sums of squares and cusp forms. Amer. J. Math. 87, 857–862.Google Scholar
Rankin, R. 1977. Modular Forms and Functions. Cambridge: Cambridge University Press.
Remmert, R. 1991. Theory of Complex Functions, An English translation of the second edition of Remmert's Functionentheorie I. New York: Springer-Verlag. translated by Robert B., Burckel.
Riemann, B. 1899. Elliptische functionen. Vorlesungen von Bernhard Riemann. Mit zusätzen herausgegeben von Hermann Stahl. Leipzig: Teubner.
Riemann, B. 1990. Gessammelte Mathematische Werke. Berlin: Springer-Verlag.
Rigaud, S. P. (ed). 1841. Correspondence of Scientific Men of the Seventeenth Century. Oxford: Oxford University Press.
Rochat, Vecten, Fauquier, and Pilatte. 1811–12. Questions résolves. Solutions des deux problèmes proposés à la page 384 du premier volume des Annales. Annales de Math. Pure et Appl. II, 88–93.
Rodríguez, I. Kra, Gilman. 2012. Complex Analysis in the Spirit of Lipman Bers. 2nd ed. New York: Springer.
Ronan, M. 2006. Symmetry and the Monster. New York: Oxford University Press.
Roy, R. 2011. Sources in the Development of Mathematics. Cambridge, New York: Cambridge University Press.
Russ, S. B. 1980. A translation of Bolzano's paper on the intermediate value theorem. Hist. Math. 7, 156–185.Google Scholar
Scharlau, W. 1981. Richard Dedekind 1831–1981: Eine Würdigung zu seinem 150. Geburtstag. Braunschweig/Wiesbaden: Vieweg und Teubner.
Scheibner, W. 1860. Über unendliche Reihen und deren Convergenz. Leipzig: S. Hirzel.
Schwarz, H. A. 1972. Gesammelte Mathematische Abhandlungen. New York: Chelsea.
Serre, J. P. 1966. Seminar on Complex Multiplication. Berlin: Springer. edited by Borel, A. et al., Chap. II Modular forms, pages 1–16.
Shen, L. C. 1993. On the logarithmic derivative of a theta function and a fundamental identity of Ramanujan. J. Math. Anal. Appl. 177, no. 1, 299–307.Google Scholar
Shimura, G. 2002. The representation of integers as sums of squares. Amer. J. Math, 124, 1059–1081.Google Scholar
Simpson, Thomas. 1759. The invention of a general method for determining the sum of every second, third, fourth, or fifth, etc. term of a series, taken in order; the sum of the whole being known. Phil.Trans. 50, 757–769.Google Scholar
Smith, D. E. 1959. A Source Book in Mathematics. New York: Dover.
Smith, H. J. S. 1865. Report on the Theory of Numbers. N.p.: Brit. Assoc. for the Advancement of Science.
Smith, H. J. S. 1965. Collected Mathematical Papers. New York: Chelsea.
Smithies, F. 1997. Cauchy and the Creation of Complex Function Theory. Cambridge: Cambridge University Press.
Sohnke, L. 1837. Aequationes modulares pro transformatione Functionum Ellipticarum. J. ReineAngew. Math 16, 97–130.Google Scholar
Stäkel, P., and Ahrens, W. (eds). 1908. Der Briefwechsel zwischen C. G. J. Jacobi und P. H. Fuss überdie Herausgabe der Werke Leonhard Eulers. Leipzig: Teubner.
Stalker, J. 1998. Complex Analysis: The fundamentals of the classical theory of functions. Boston: Birkhäuser.
Stirling, James, and Tweddle, Ian. 2003. James Stirling's Methodus Differentialis An Annotated Translation of Stirling's Text. London: Springer.
Sylvester, J. J. 1973. Mathematical Papers. New York: Chelsea.
Tannery, J., and Molk, J. 1972. Éléments de la théorie des fonctions elliptiques, 4 vols. New York: Chelsea.
Taylor, B. 1715. Methodus Incrementorum. London: Gulielmi Innys. Translation into English in Feigenbaum (1981).
Titchmarsh, E. C., and Heath-Brown. 1986. The Theory of the Riemann Zeta-function, second edition. New York: Oxford University Press.
Uspensky, J. 1928. On Jacobi's arithmetical theorems concerning the simultaneous representation of numbers by two different quadratic forms. Trans. Am. Math. Soc. 30, 385–404.Google Scholar
van der Waerden, B. L. 1975. On the sources of my book, Modern Algebra. Hist. Math. 2, 32–40.Google Scholar
Waring, Edward. 1988. Meditationes Algebraicae. Providence: AMS. translated by Dennis, Weeks.
Weber, H. 1894–1908. Lehrbuch der Algebra. Braunschweig: Vieweg.
Weierstrass, K. 1894–1927. Mathematische Werke. Berlin: Mayer und Müller.
Weil, A. 1976. Elliptic Functions according to Eisenstein and Kronecker. Berlin: Springer-Verlag.
Weil, A. 1980. Oeuvres Scientifiques. New York: Springer-Verlag.
Weil, A. 1984. Number Theory: An approach through history from Hammurapi to Legendre. Boston: Birkhäuser.
Williams, K. 2011. Number Theory in the Spirit of Liouville. Cambridge: Cambridge University Press.
Zagier, D. 2000. A proof of the Kac-Wakimoto affine denominator formula for the strange series. Math. Res. Letters 7, 597–604.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Ranjan Roy, Beloit College, Wisconsin
  • Book: Elliptic and Modular Functions from Gauss to Dedekind to Hecke
  • Online publication: 20 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781316671504.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Ranjan Roy, Beloit College, Wisconsin
  • Book: Elliptic and Modular Functions from Gauss to Dedekind to Hecke
  • Online publication: 20 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781316671504.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Ranjan Roy, Beloit College, Wisconsin
  • Book: Elliptic and Modular Functions from Gauss to Dedekind to Hecke
  • Online publication: 20 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781316671504.019
Available formats
×