Book contents
- Frontmatter
- Contents
- Preface
- List of journal abbreviations
- Part I Foundations of electronic and photoelectron spectroscopy
- Part II Experimental techniques
- Part III Case Studies
- Appendix A Units in spectroscopy
- Appendix B Electronic structure calculations
- Appendix C Coupling of angular momenta: electronic states
- Appendix D The principles of point group symmetry and group theory
- Appendix E More on electronic configurations and electronic states: degenerate orbitals and the Pauli principle
- Appendix F Nuclear spin statistics
- Appendix G Coupling of angular momenta: Hund's coupling cases
- Appendix H Computational simulation and analysis of rotational structure
- Index
Preface
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- Preface
- List of journal abbreviations
- Part I Foundations of electronic and photoelectron spectroscopy
- Part II Experimental techniques
- Part III Case Studies
- Appendix A Units in spectroscopy
- Appendix B Electronic structure calculations
- Appendix C Coupling of angular momenta: electronic states
- Appendix D The principles of point group symmetry and group theory
- Appendix E More on electronic configurations and electronic states: degenerate orbitals and the Pauli principle
- Appendix F Nuclear spin statistics
- Appendix G Coupling of angular momenta: Hund's coupling cases
- Appendix H Computational simulation and analysis of rotational structure
- Index
Summary
Modern spectroscopic techniques such as laser-induced fluorescence, resonance-enhanced multiphoton ionization (REMPI), cavity ringdown, and ZEKE are important tools in the physical and chemical sciences. These, and other techniques in electronic and photoelectron spectroscopy, can provide extraordinarily detailed information on the properties of molecules in the gas phase and see widespread use in laboratories across the world. Applications extend beyond spectroscopy into important areas such as chemical dynamics, kinetics, and analysis of complicated chemical systems such as plasmas and the Earth's atmosphere. This book aims to provide the reader with a firm grounding in the basic principles and experimental techniques employed in modern electronic and photoelectron spectroscopy. It is aimed particularly at advanced undergraduate and graduate level students studying courses in spectroscopy. However, we hope it will also be more broadly useful for the many graduate students in physical chemistry, theoretical chemistry, and chemical physics who encounter electronic and/or photoelectron spectroscopy at some point during their research and who wish to find out more.
There are already many books available describing the principles, experimental techniques, and applications of spectroscopy. However, our aim has been to produce a book that tackles the subject in a rather different way from predecessors. Students at the advanced undergraduate and early graduate levels should be in a position to develop their knowledge and understanding of spectroscopy through contact with the research literature.
- Type
- Chapter
- Information
- Electronic and Photoelectron SpectroscopyFundamentals and Case Studies, pp. xi - xiiPublisher: Cambridge University PressPrint publication year: 2005